

June 11, 2025

Mr. James Rebarchak Regional Air Quality Program Manager Pennsylvania Department of Environmental Protection Southeast Regional Office 2 E. Main Street Norristown, PA 19401-4915

Submitted via OnBase

RE: U. S. Steel Fairless Plant

Significant Operating Permit Modification application, pursuant to 25 Pa. Code § 129.114(I)

Mr. Rebarchak,

United States Steel Corporation (U. S. Steel) owns and operates a steel finishing facility located in Fairless Hills, Bucks County, Pennsylvania (Fairless Plant). Cold-rolled products are finished into galvanized sheet products at the site.

On January 30, 2025, U. S. Steel provided the Pennsylvania Department of Environmental Protection (PADEP) an initial notification in accordance with 25 Pa. Code 129.115(a). On February 28, 2025, U. S. Steel provided the PADEP a case-by-case analysis in accordance with 25 Pa. Code 129.114 for Source ID 420 – Galvanizing Line Furnace.

On April 22, 2025, PADEP requested that U. S. Steel submit a Significant Operating Permit Modification application, pursuant to 25 Pa. Code § 129.114(I), no later than June 30, 2025. This submittal serves as the requested application. As requested by PADEP, the RACT III case-by-case analysis is also attached to the application in Appendix A. The permit fee has been mailed separately to PADEP, but a copy of the check is included.

Should you have any questions pertaining to this matter, please contact Michael Dzurinko by phone at 412-233-1467 or by email at mdzurinko@uss.com.

Based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Respectfully,

Kurt Barshick Vice President

U. S. Steel - Mon Valley Works

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

FOR C	FFICIAL USE ONLY
OP #: _	
Date: _	

OPERATING PERMIT MODIFICATION APPLICATION

Section 1 – General Information				
1.1 Application Type				
Type of permit for which application is made:				
☐ Minor Modification ☐ State-Only Operating Permit				
Existing Operating Permit No: Operating Permit #09-00006				
1.2 Facility Information				
Firm Name: United States Steel Corporation Federal Tax ID: 25-0996816				
Facility Name: Mon Valley Works - Fairless Plant Plant Code: 13				
NAICS Code: 332812 SIC Code: 3479				
Description of NAICS Code: Metal Coating				
Description of SIC Code: Manufacturing - Metal Coating And Allied Services				
County: Bucks Municipality: Falls Township				
Latitude: 40° 10 27.5736 Longitude: -74° 45 22.5570				
Horizontal Horizontal Collection Method: Coordinates Method based Geodetic System of 1984 Horizontal Collection Method: Coordinates Method based Geodetic On Interpolation- Satellite Reference Point: Plant entrance to a general entrance to a general plant				
1.3 Permit Contact Information				
Name: Michael Dzurinko Title: Senior Manager, Environmental				
Address: U. S. Steel Irvint Plant, PO Box 878, MS 100				
City: <u>Dravosburg</u> State: <u>PA</u> ZIP: <u>15034</u>				
Telephone: (412) 233-1467				
Email: mdzurinko@uss.com				

1.4 Small Busine	ess Question				
Are you a small b	usiness as defined by the Pennsylvania Air Pollutior	Control	Act? Y	es [⊠ No
Are you a small b	usiness as defined by the U.S. Small Business Adm	inistratio	on? Y	es [⊠ No
1.5 Request for	Confidentiality				
Do you request a	ny information on this application to be treated as "C	Confident	tial"? 🔲 Y	es [⊠ No
Place confidential	l information on separate page(s) marked "Confiden	tial".			
the relevant docu with a letter of re justification for ea	st confidential treatment for information in any document with the confidential information blacked out (equest containing a table identifying the page and ach redacted item as to why it should be deemed only \$127.12(d) and Section 13.2 of the APCA.	and thus line nun	s sultable for purple	redact	ion, along with a
1.6 Certification	of Truth, Accuracy and Completeness by a Res	ponsible	e Official		
responsible officia	I certify that, subject to the penalties of Title 18 Pa. C.S.A. Section 4904 and 35 P.S. Section 4009(b)(2), I am the responsible official having primary responsibility for the design and operation of the facilities to which this application applies and that the information provided in this application is true, accurate, and complete to the best of my knowledge, information, and belief formed after reasonable inquiry.				
(Signed)	1002	Date:	6/11/	202	<u> </u>
Name (Typed):	Kurt Barshick	Title:	Vice Preside	ent - M	on Valley Works
Telephone:	(412) 675-2600				
Email:	kbarshick@uss.com				

Section 2 – Inventory	of Units Being Modified	6		
Unit ID No.	Unit Name	Unit Type		
None				
	×			

Section 3 - Facility Changes

Complete this section ONLY if the changes are for the entire facility. If changes are for a source or sources, skip this Section and complete Section 4 for each Source in which a change is proposed.

- 3.1 Describe all proposed changes to this facility:
 - U. S. Steel is proposing to incorporate the RACT III requirements as specified in 25 Pa. Code 129.111 through 129.115. As noted in the January 2025 initial notification and February 2025 U. S. Steel case-by-case RACT submittal, this includes the following:
 - Biennial tune-up
 - o Source ID 048 Gal3 Steam Boiler
 - Install, maintain and operate in accordance with manufacturer's specifications and good operating practices
 - Source ID 422 Galvanneal Furnace
 - Source ID 426 (part of) Cambridge Space Heater; 2.5 MMBtu/hr
 - Case-by-case good operating practices
 - Source 420 Galvanizing Line Furnace

3.2 If the proposed facility changes involve any changes in actual emissions, please complete the following table. Attach another table if needed.

Pollutant Name	CAS Number	Change in Actual Emissions (+ or -)
	No change in air emissions	

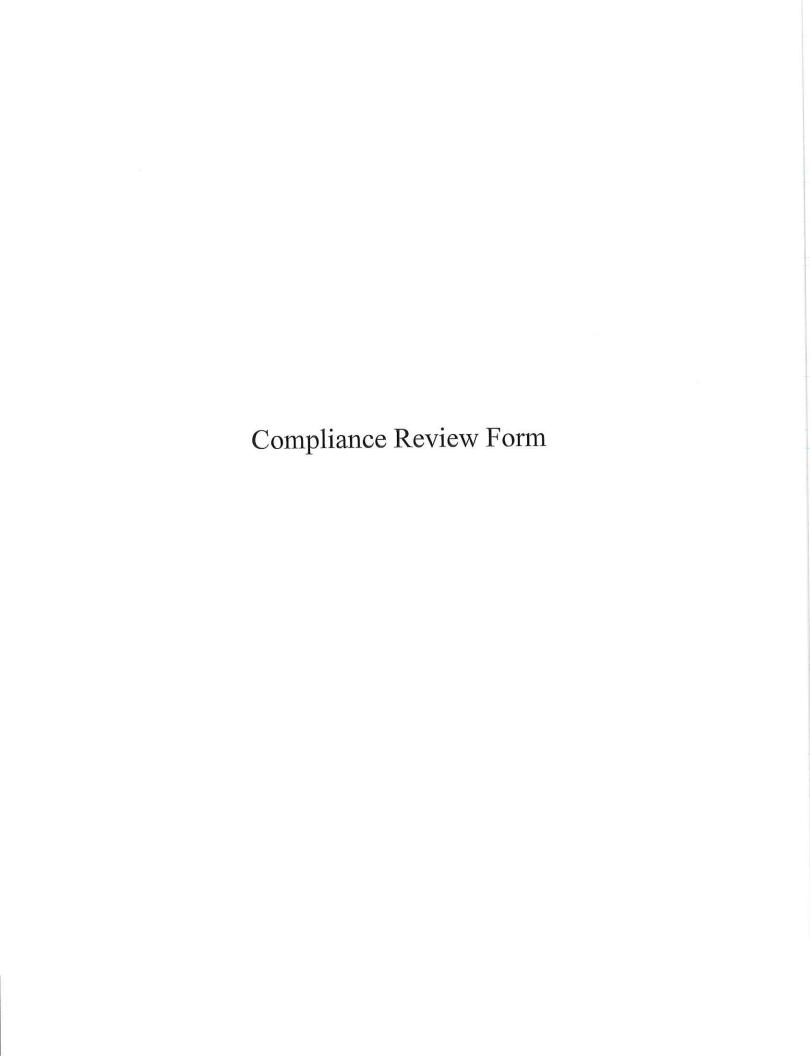
3.3 Anticipated date on which proposed change is scheduled to occur: $\underline{\text{N/A}}$

3.4 List the proposed revision language for the operating permit conditions. This includes all changes to the emissions, monitoring, testing, record-keeping, reporting requirements and work practice standard requirements. Write in the type of applicable requirements in the column provided. Attach another table if needed.

needed.			
Citation Number	Type of Applicable Requirement	Existing Operating Permit Condition or Condition Number	Proposed Language for Permit Condition
129.115(f), 129.115(ï) and 129.115(k)	Recordkeeping – Gal3 Steam Boiler Work Practice – Gal3 Steam Boiler	Section D Source ID 048 Condition #006 Section D Source ID 048 Condition #009	Include presumptive RACT III citation to existing permit conditions.
129.115(f) and 129.115(k)	Recordkeeping – Galv. Line Furnace	Section D Source ID 420 Condition #006	Include case-by-case RACT III conclusions / citation (good operating practices) to existing permit conditions.
	Work Practice – Galv Line Furnace	Section D Source ID 420 Condition #009	Add requirement to "maintain and operate in accordance with manufacturer specifications."
129.115(f) and 129.115(k)	Work Practice – Galvanneal Furnace	N/A	Add presumptive RACT III Work Practice Requirement for Source ID 422 ("Install, maintain, and operate in accordance with manufacturer's specifications and good
129.115(f) and 129.115(k)	Recordkeeping & Work Practice – Cambridge 2.5 MMBtu/hr space heater	N/A	operating practices"). Add presumptive RACT III Work Practice Requirement ("Install, maintain, and operate in accordance with manufacturer's specifications and good operating practices").
129.115(g)	Recordkeeping - Zinc Pot Dryer, Chem Treat Dryer and Space Heaters	N/A	Include RACT III exemption citation for recordkeeping of potential NOx emissions

3.5	Provide a listing of all changes in chronological order (additions and subtractions) made at a facility since t	he
	last submittal and attach it to this application. For example:	
	 March 2016 - Added shot blast booth 5, exempted by the attached Request for Determination. 	
	 Dec 2017 - Installed new paint line in accordance with Plan Approval XX-XXXXX 	

None


3.6 For renewals, please review the current operating permit. If you are proposing any changes to the conditions of the permit, please provide the condition number, the requested change, and justification for the requested change.

Not applicable for this modification application (see changes noted in the table in Section 3.4)

	Section 4 – Unit Information (duplicate this section for each unit as needed) – N/A (sitewide incorporation of RACT requirements)				
4.1 Ur	Unit Type: ☐ Combustion ☐ Incinerator ☐ Proc	ess Control Device			
4.2 Ge	General Source Information (Combustion/Incinerator/Proces	s)			
a.	a. Source ID: b. Source	e Name:			
C.	c. Manufacturer: d. Model	No.:			
e.	e. Source Description:				
f.	f. Rated Capacity (for engines use BHP): g. I	nstallation Date:			
h.	h. Rated Power/Electric Output:				
i.	Temperature: Units: % Moisture:	k. Exhaust Flow Volume: SCFM			
4.3 G	General Control Device Information				
a.	a. Unit ID: b. Unit N	lame:			
С	c Used by Sources:				
d.	d. Type:				
e.	e. Pressure Drop (in. H ₂ O): f. Captur	re Efficiency:			
g.	g. Flow Rate (specify unit):				
h.	h. Manufacturer: i. Mo	odel No.:			
j.	j. Installation Date:				

4.4 Proposed Change	4.4 Proposed Changes to Unit N/A (sitewide incorporation of RACT requirements)				
a. Describe all propos	a. Describe all proposed changes to this unit:				
h If the prepared III	nit char	agos involve any changes in	actual er	missions please c	omplete the following table.
b. If the proposed up Attach another tak	ole if ne	eded.	actual Ci	missions, picase o	omplete the following table.
Pollutant Name		CAS Number		Change in A	ctual Emissions (+ or -)
c. Anticipated date of	l on which	n proposed change is schedu	uled to occ	L cur:	
d. List the proposed	revisior	language for the operating p	ermit cond	dition. This includes d work practice sta	s all changes to the emission, andard requirement. Write in needed.
Citation Numbe	r	Type of Applicable Requirement	Permi	ing Operating t Condition or lition Number	Proposed Language for Permit Condition

Section	on 5 – Compliance Plan for the Facility		
77:		Yes	No
5.1	Will your facility be in compliance with all applicable requirements at the time of permit issuance and continue to comply with these requirements during the permit duration?		
5.2	Will your facility be in compliance with all applicable requirements presently scheduled to take effect during the term of the permit?		

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

AIR POLLUTION CONTROL ACT COMPLIANCE REVIEW FORM

	urately provide the following information, as specified. Attach additional sheets as necessary.
Type of Com ☐ Original ☐ Amende	
I	n Approval
	SECTION A. GENERAL APPLICATION INFORMATION
(non-corpora	olicant/Permittee/("applicant") ations-attach documentation of legal name) Steel Corporation -Mon Valley Works - Fairless Plant
Address	Camp Hollow Road
	West Mifflin, PA 15122 c/o Michael Dzurinko
Telephone	(412) 233-1467 Taxpayer ID# 25-1897152
Permit, Plan	Approval or Application ID# Operating Permit #09-00006
box) Individu Municip Propried Public 0 Private Describe be United States	ality

SECTION B. GENERAL INFORMATION REGARDING "APPLICANT"

If applicant is a corporation or a division or other unit of a corporation, provide the names, principal places of business, state of incorporation, and taxpayer ID numbers of all domestic and foreign parent corporations (including the ultimate parent corporation), and all domestic and foreign subsidiary corporations of the ultimate parent corporation with operations in Pennsylvania. Please include all corporate divisions or units, (whether incorporated or unincorporated) and privately held corporations. (A diagram of corporate relationships may be provided to illustrate corporate relationships.) Attach additional sheets as necessary.

Unit Name	Principal Places of Business	State of Incorporation	Taxpayer ID	Relationship to Applicant
United States Steel Corporation (U. S. Steel)	USA	Delaware	25-1897152	Self
			:	

SECTION C. SPECIFIC INFORMATION REGARDING APPLICANT AND ITS "RELATED PARTIES"

Pennsylvania Facilities. List the name and location (mailing address, municipality, county), telephone number, and relationship to applicant (parent, subsidiary or general partner) of applicant and all Related Parties' places of business, and facilities in Pennsylvania. Attach additional sheets as necessary.

Unit Name	Street Address	County and Municipality	Telephone No.	Relationship to Applicant	
Clairton Plant	400 State Street	Allegheny/Clairton (412) 233-		Self	
Edgar Thomson Plant	1300 Braddock Avenue	Allegheny/Braddock	(412) 273- 4730	Self	
Irvin Plant	Camp Hollow Road	Allegheny/West Mifflin	(412) 675- 7382	Self	
Fairless Plant	Pennsylvania Avenue	Bucks/Fairless Hills	(412) 675- 7382	Self	

Provide the names and business addresses of all general partners of the applicant and parent and subsidiary corporations, if any.

Name	Business Address		
U. S. Steel has no subsidiaries that operate in Pennyslvania	NA		

List the names and business as being permitted (i.e. plant mana	
Name	Business Address
Kurt Barshick	P. O. Box 878, Dravosburg, PA 15034

Plan Approvals or Operating Permits. List all plan approvals or operating permits issued by the Department or an approved local air pollution control agency under the APCA to the applicant or related parties that are currently in effect or have been in effect at any time 5 years prior to the date on which this form is notarized. This list shall include the plan approval and operating permit numbers, locations, issuance and expiration dates. Attach additional sheets as necessary.

Plan Approval/ Operating Permit#	Location	Issuance Date	Expiration Date
09-00006	Fairless Plant, Fairless Hills, PA	11/19/2012; 12/22/2016; 10/11/2019; 12/19/2024	12/18/2029
See Attached List	Edgar Thomson Plant, Braddock, PA	See Attached List	See Attached List
See Attached List	Irvin Plant, West Mifflin, PA	See Attached List	See Attached List
See Attached List	Clairton Plant, Clairton, PA	See Attached List	See Attached List
	Operating Permit# 09-00006 See Attached List See Attached List	Operating Permit# Location 09-00006 Fairless Plant, Fairless Hills, PA See Attached List Edgar Thomson Plant, Braddock, PA See Attached List Irvin Plant, West Mifflin, PA See Attached List Clairton Plant, Clairton,	Operating Permit# Date Op-00006 Fairless Plant, Fairless Hills, PA 11/19/2012; 12/22/2016; 10/11/2019; 12/19/2024 See Attached List Edgar Thomson Plant, Braddock, PA See Attached List Irvin Plant, West Mifflin, PA See Attached List Clairton Plant, Clairton, See Attached List

Compliance Background. (Note: Copies of specific documents, if applicable, must be made available to the Department upon its request.) List all documented conduct of violations or enforcement actions identified by the Department pursuant to the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. Attach additional sheets as necessary. See the definition of "documented conduct" for further clarification. Unless specifically directed by the Department, deviations which have been previously reported to the Department in writing, relating to monitoring and reporting, need not be reported.

Date	Location	Plan Approval/ Operating Permit#	Nature of Documented Conduct	Type of Department Action	Status: Litigation Existing/Continuing or Corrected/Date	Dollar Amount Penalty
See Attached List		×				\$
LIST						\$
						\$
						\$
						\$
						\$
						\$
						\$
						\$
27						\$

List all incidents of deviations of the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. This list must include items both currently known and unknown to the Department. Attach additional sheets as necessary. See the definition of "deviations" for further clarification.

Date	Location	Plan Approval/ Operating Permit#	Nature of Deviation	Incident Status: Litigation Existing/Continuing Or Corrected/Date
See Attached				
List				
		ant in under a continuing		

CONTINUING OBLIGATION. Applicant is under a continuing obligation to update this form using the Compliance Review Supplemental Form if any additional deviations occur between the date of submission and Department action on the application.

VERIFICATION STATEMENT

Subject to the penalties of Title 18 Pa.C.S. Section 4904 and 35 P.S. Section 4009(b)(2), I verify under penalty of law that I am authorized to make this verification on behalf of the Applicant/Permittee. I further verify that the information contained in this Compliance Review Form is true and complete to the best of my belief formed after reasonable inquiry. I further verify that reasonable procedures are in place to ensure that "documented conduct" and "deviations" as defined in 25 Pa Code Section 121.1 are identified and included in the information set forth in this Compliance Review Form.

"documented conduct" and "deviations" as defined in 25 Pa Coo in the information set forth in this Compliance Review Form.	de Section 121.1 are identified and included
Na	6-11-2025
Signature	Date
Kurt Barshick	
Name (Print or Type)	
Mon Valley Works - Vice President	
Title	

U. S. Steel – Mon Valley Works Compliance Background – June 2025

Date	Location	Plan Approval/ Operating Permit#	Nature of Documented Conduct	Type of Department Action	Status: Litigation Existing/Continuing Or Corrected/Date	Dollar Amount Penalty
4/18/25	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Battery Fugitive Emissions Violations – 4Q 2023	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 5/16/2025. Settlement discussions ongoing.	\$216,325
3/21/25	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Battery Fugitive Emissions Violations – 3Q 2023	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 4/17/2025. Settlement discussions ongoing.	\$238,675
12/13/24	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Battery Fugitive Emissions Violations – 2Q 2023	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 1/12/2025. Settlement discussions ongoing.	\$170,950
8/26/24	Edgar Thomson Plant	Article XX1/Permit #0051- OP23	Alleged BF Stove and BOP Scrubber CO exceedances	Notice of Violation #240801	Title V Permit Appeal Litigation is ongoing. NOV is neither an order or final action.	\$12,300 (not assessed by ACHD – pending results of permit appeal)
6/20/24	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Battery Fugitive Emissions Violations – 1Q 2023	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 7/19/2024. Settlement agreement reached between USS and ACHD resulting in \$1,800 reduction.	\$77,725
5/2/24	Clairton Plant	Article XXI/Permit #0052- OP22	Self-reported C Quench Tower SO2 exceedance	Enforcement Order #240501	Final	\$7,700
2/26/24	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged violations related to pushing coke without baghouse	Enforcement Order #240204	USS appealed on 3/27/2024. Appeal pending.	\$1,991,000
2/2/24	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Battery Fugitive Emissions Violations – 4Q 2022	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 3/1/2024. Settlement agreement reached between USS and	\$191,350

		T			LOTTO IL'	
					ACHD resulting in \$10,000 reduction.	
12/29/23	Clairton Plant	Article XXI/Permit #0052- OP22	Alleged Exceedances of H2S Ambient Air Standards	Enforcement Order #231203	USS appealed on 1/28/2024. USS disagrees with the penalty and the bases of the allegations in the Order.	\$2,202,825
					Appeal pending	
10/19/23	Clairton Plant	Article XXI/Permit #0052- OP22	Failure to conduct valid B Battery Combustion Stack test within two years	Enforcement Order #231002	Final. Penalty Paid. Test invalidated due to sample probe contamination. Re- test demonstrated compliance.	\$2,860
7/11/23	Clairton Plant	Article XXI/Permit #0052	Alleged Battery Fugitive Emissions Violations - 3Q 2022	Settlement Agreement and Order #190604 – Stipulated Penalties	USS filed notice of dispute on 8/11/2023. Settlement agreement reached between US and ACHD resulting in \$38,275 reduction.	\$263,450
3/15/23	Clairton Plant	Article XXI/ Permit #0052	Alleged exceedance of battery fugitive emissions standards 2Q 2022	Settlement Agreement and Order #190604 – Stipulated Penalties	Final - Resolution Reached without the adjudication or admission of any issue of fact or law. USS filed notice of dispute on 4/14/2023. Settlement Agreement signed on 9/22/2023 between USS and ACHD to resolve 2Q21 through 2Q22 disputes in which ACHD will credit USS \$325,065.	\$307,800 (Alleged Violations/Penalty Reduced Per Settlement.)
12/16/2022	Edgar Thomson Plant	Article XXI, Permit #0051	Alleged Fugitive/Opacity Violations; Alleged Operations and Maintenance Violations	Complaint Filed by USEPA and ACHD on May 17, 2022 in United States District Court, Western District of Pennsylvania; Civil Action 2:22-cv-729	Final - Resolution Reached without the adjudication or admission of any issue of fact or law. USS, USEPA and ACHD entered a settlement as provided in a Consent Decree; as approved and entered by the Court on 12/16/2022. Final. Civil Penalty Paid.	\$1,500,000 to USEPA and ACHD collectively
11/28/22	Clairton Plant	Article XXI/	Alleged Fugitive/Opacity	Settlement Agreement	Final - Resolution Reached without the	\$458,225 (Alleged

		Permit #0052	Violations 1Q 2022	and Order #190604 – Stipulated Penalties	adjudication or admission of any issue of fact or law. USS filed notice of dispute on 12/28/2022. Settlement Agreement signed on 9/22/2023 between USS and ACHD to resolve 2Q21 through 2Q22 disputes in which ACHD will credit USS \$325,065.	Violations/Penalty Reduced Per Settlement.)
3/24/22	Clairton Plant	Article XXI/ Permit #0052	Alleged violations related to pushing coke without baghouse.	Enforcement Order #220304	USS appealed on 4/22/22 Appeal Pending	\$4,570,500
3/7/22	Clairton Plant	Article XXI	Alleged Exceedances of H2S Ambient Air Standards	Enforcement Order #220302	USS appealed on 4/5/22 Appeal Pending	\$1,842,530
3/2/22	Clairton Plant	Article XXI/ Permit #0052	Alleged Battery Fugitive Emissions violations 2Q- 4Q 2021	Settlement Agreement and Order #190604 – Stipulated Penalties	Final - Resolution reached without the adjudication or admission of any issue of fact or law. USS filed notice of dispute on 3/31/2022. Settlement Agreement signed on 9/22/2023 between USS and ACHD to resolve 2Q21 through 2Q22 disputes in which ACHD will credit USS \$325,065.	\$859,300 (Alleged Violations/Penalty Reduced Per Settlement.)
12/6/21	Clairton Plant	Article XXI	Visible Emissions from No. 1 Unit Pulverizer Building	Notice of Violation #211201	Final	NA
8/27/21	Clairton Plant	Article XXI	Anhydrous Ammonia Release	Enforcement Order #210801	Final	\$5,500 assessed
6/4/21	Clairton Plant	Article XXI/ Permit #0052	Alleged Battery Fugitive Emission Violations 1Q 2021	Settlement Agreement and Order #190604 – Stipulated Penalties	Final	\$201,500 assessed

4/1/21	Clairton	Article XXI	Alleged	Notice of	Notice of Violation	NA
	Plant		Exceedances of	Violation	received on	
			H2S Ambient	#210302	3/7/2022. The NOV	
			Air Standards		was not final action.	
l.	1 1				See Enforcement	
					Order #220302	
					issued on March 7,	
					2022 (as noted	
					above.)	
3/12/21	Clairton	Article	Alleged Battery	Settlement	Final - No	\$382,950 assessed
	Plant	XXI/	Fugitive	Agreement	adjudication or	
		Permit	Emission	and Order	admission of any law	
		#0052	Violations 2Q -	#190604 -	or fact.	
			4Q 2020	Stipulated		
				Penalties		
3/1/21	Clairton	Article XXI	Anhydrous	Enforcement	Final	\$4,165 assessed
	Plant		Ammonia	Order		
			Railcar Release	#210201		
1/25/21	Clairton	Article	Self-reported C	Enforcement	Final	\$8,800 assessed
N. S. C.	Plant	XXI/	Battery	Order		
		Permit	Combustion	#210101		
		#0052-	Stack			
		I011b	exceedance			
6/8/20	Edgar	Article XXI	Alleged Visible	Enforcement	Final - No	NA
	Thomson		Emissions	Order	adjudication or	
	Plant		Violations	#200601	admission of any law	
					or fact.	

U. S. Steel Mon Valley Works Incidents of Deviations – June 2025

Date	Location	Plan Approval/ Operating Permit#	Nature of Deviation	Status: Litigation Existing/Continuing Or Corrected/Date
6/2020 — 6/2025	Clairton Plant	Article XXI & Permit #0052 & Permit #0052- OP22 & Permit #0052-OP22a	Refer to semi- annual deviation reports/ annual certifications	NA
6/2020 — 6/2025	Fairless	Permit #09- 00006	Refer to deviation reports; annual certifications	NA
6/2020 – 6/2025	Edgar Thomson	Article XXI & Permit #0051a & Permit #0051-OP23	Refer to semi- annual deviation reports; annual certifications	NA
6/2020 – 6/2025	Irvin	Article XXI & Permit #0050- OP16c & Permit #0050- OP24	Refer to deviation reports; annual certifications	NA

United States Steel Corporation Allegheny County Health Department Permits

Clairton Plant

7035003-010-26320	Coke Battery No. 1
7035003-010-26318	Coke Battery No. 2
7035003-010-26317	Coke Battery No. 3
7035003-010-26312	Coke Battery No. 7
7035003-010-26313	Coke Battery No. 8
7035003-010-26319	Coke Battery No. 9
7035003-010-26309	Coke Battery No. 13
7035003-010-26307	Coke Battery No. 14
7035003-010-25306	Coke Battery No. 15
7035003-010-26304	Coke Battery No. 19
7035003-010-53800	Coke Battery No. 20
78-I-0083-P	Coke Battery B and B Quench Tower
7035003-010-25101	Quench Tower #1
7035003-010-25102	Quench Tower #3
7035003-010-25104	Quench Tower #5
7035003-010-25106	Quench Tower #7
91-I-0021-P	Coke By-Products Recovery Plant
7035003-010-00801	Boiler No. 1
7035003-010-00800	Boiler No. 2
7035003-010-99100	Boiler Nos. 13 and 14
7035003-010-01300	Boiler Nos. R1 and R2
7035003-010-00600	Boiler Nos. T1 and T2
7035003-010-25001	Coke Screening No. 1
7035003-010-25002	Coke Screening No. 2
0052-I003	Coke Screening No. 3
0052-I006	Fan Upgrade 1-3 PEC
0052-I007	Fan Upgrade 7-9 PEC
0052-I008	Fan Upgrade 13-15 PEC
0052-I005a	Fan Upgrade 19/20 PEC
0052-I002b	Ammonia Flare
0052-1004	Methanol/MEA Tanks
73-O-01138-P	Coke Battery 1
73-O-01136-P	Coke Battery 2
73-I-1135-P	Coke Battery 3
73-O-1130-P	Coke Battery 7
73-O-1131-P	Coke Battery 8
73-O-1137-P	Coke Battery 9
73-O-1127-P	Coke Battery 13
78-I-009	Coke Batteries 13-15 Rebuild
73-O-1126-P	Coke Battery 14
93-I-0010-P	Coke Battery 15
77-I-0019-P	Coke Battery 20
87-I-0031-P	PEC for 1-3
87-I-0032-P	PEC for 7-9
87-I-0037-P	PEC for 13-15
87-I-0033-P	PEC for 19/20
78-I-0083-P	Coke Battery B and Quench Tower
90-I-0031-P	Igniters for 1-3, 7-9, and 13-15
90-I-0032-P	Igniters for 19/20
90-I-0033-P	Igniters for B
73-O-1139-P	Quench Tower #1

72 O 1140 B	Quench Tower #3
73-O-1140-P	
73-O-1142-P	Quench Tower #5
73-O-1144-P	Quench Tower #7
73-O-1148-P	Coke Screening #1
73-O-1149-P	Coke Screening #2
GC-80-62	COG Desulfurization
73-I-3784-P	COG Desulfurization
7035003-010-8400	Sulfur Production (Claus Carbonate)
73-O-1153-P	Sulfur Production (Claus Carbonate)
7035003-010-25600	Gas Processing
73-O-1155-P	Gas Processing
91-I-0021-P	Benzene NESHAP By-Product Plant Emission Control
73-O-1161-P	Coal Chemical Recovery #1 Unit
7035003-010-25501	Coal Chemical Recovery #1 Unit
73-I-4035-P	Tanks
73-O-1162-P	Coal Chemical Recovery #2 Unit
7035003-010-25502	Coal Chemical Recovery #2 Unit
73-I-4036-C	Tanks
94-I-0096-C	Boiler #1
75-I-0019-C	Boiler #1
94-I-0019-C	Boiler #2
75-I-0020-C	Boiler #2
94-I-0091-C	Boilers R1 and R2
74-O-6090-C	Boilers R1 and R2
94-I-0093-C	Boilers T1 and T2
89-I-0003-C	Boilers T1 and T2
	Boilers T1 and T2
76-I-0067-C	No. 1 Tar Acid Tanks
73-I-4034-P	Tar Refining Tanks V-100 & V-101
73-I-4030-P	Tar Refining Tanks 3-A & 4-A
73-I-4029-P	Tar Refining Tanks 10, 11, & V-113
73-I-4028-P	Tar Refining Tanks 10, 11, & V-113 Tar Refining Tanks 3 to 8 & T
73-I-4027-P	Road Tar Terminal V-200 to V-208 inclusive
73-I-4026-P	
0052-I011	C Battery
0052-I011b	Revised C Battery
0052-I013	Coke Screening #4
0052-I014a	Quench Towers 5A and 7A
0052-I015	Truck/ Railcar Loading and Process Tanks
0052-I016	Light Oil Loading Facility
0052-I017	1-Hour SO2 NAAQS
0052-I018	15 Battery Stack
0052-I020b	RACT II
0052-OP22a	Title V Operating Permit
Edgar Thomson Plant	
Eugai Thomson Flant	
7035003-002-93800	BOP
7035003-002-32300	BOP Slag Processing
92-I006-P	BOP Slag Processing
92-I0088-P	BOP Slag Processing
92-I066-P	BOP Slag Processing
7035003-002-90105	#1 Blast Furnace
7035003-002-31400	#1 Blast Furnace Hard Slag Pit
94-I-0026-P	#1 Blast Furnace Hard Slag Pit
4-1-0026-P	#1 Blast Furnace Hard Slag Pit
7035003-002-90107	#3 Blast Furnace
1033003-002-70107	Min Filandi, Nillannini.

7035003-002-31401 94-I-0027-P 7035003-002-93900	#3 Blast Furnace Hard Slag Pit #3 Blast Furnace Hard Slag Pit Dual Slab Caster and Ladle Metallurgy Facility
90-I-003-P	Dual Slab Caster and Ladle Metallurgy Facility
95-I-006-P	RH Vacuum Degasser
94-I-006-P	RH Vacuum Degasser
7035003-004-99200	#2 Power House Riley Boilers #1, 2, & 3
7035003-002-99200	#2 Power House Riley Boilers #1, 2, & 3
0061559-000-73800	Waste Product Recycle & Briquetting Process
93-I-0039-P	Waste Product Recycle & Briquetting Process
0051-I004a	BOP Emission Control Upgrade
0051-I005	LMF Emission Control Upgrade
0051-I006	1-Hour SO2 NAAQS
0051-I008a	RACT II
0051-I009	Emergency Generators
0051-OP23	Title V Operating Permit

Irvin Plant

0050-I002a	Cold Reduction Mill
0050-I001b	64" Pickle Line
0050-I003	OCA Furnace #14
0050-I006	OCA Furnaces #15 and #16
0050-1007	Continuous Terne Line Molten Lead Pot Baghouse
0050-1008	1-Hour SO2 NAAQS
0050-1009	Irvin HSM
0050-OP24	Title V Operating Permit

United States Steel Corporation Pennsylvania Department of Environmental Protection Permits

Fairless Plant

09-00006

Title V Operating Permit

Copies of Letters for Municipal Notifications

United States Steel Corporation Mon Valley Works P.O. Box 878, MS 100 Dravosburg, PA 15034

Via Electronic Mail:

May 8, 2025

Attn: County Commissioner Robert J. Harvie Jr. Bucks County Administration Building 55 East Court Street Doylestown, PA 18901

CommHarvie@buckscounty.org

webmaster@buckscounty.org

Subject:

County Notification of Air Permit Application U. S. Steel – Mon Valley Works – Fairless Plant Facility No. TVOP 09-00006

Dear Commissioner Harvie,

Pursuant to Act 14, Section 1905-A (Cooperation with Municipalities), we are informing you of our intention to file an air permit application (operating permit modification), at the request of the Pennsylvania Department of Environmental Protection (PADEP), pursuant to 25 Pa. Code § 129.114(l), by June 30, 2025, for the Fairless Plant at:

United States Steel Corporation Mon Valley Works – Fairless Plant Fairless Hills, PA, Falls Township, Bucks County

The above mentioned Act 14, which became effective April 17, 1984, requests that applicants for Air Quality Permits under the Air Pollution Control Act must give written notification to each municipality or county in which the activities are located. The written notice is to be received by the local municipality or county at least 30 days before the Department of Environmental Protection issues or denies the permit. Please confirm via email that you have received this notification.

If you have any questions, please contact me at (412) 675-7382 or kkowalski@uss.com.

Sincerely,

Kaylene Kowalski Environmental Dept. Irvin and Fairless Plants

United States Steel Corporation

Tunno, Brett J

From:

Comm. Harvie <commharvie@buckscounty.org>

Sent:

Thursday, May 8, 2025 2:00 PM

To:

Tunno, Brett J

Subject:

[External]-Read: U. S. Steel - Fairless Plant - Notification of Intent to File Air Permit Application

Attachments:

Read: U. S. Steel - Fairless Plant - Notification of Intent to File Air Permit Application

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Please Be Advised

The information in this email is confidential and may be legally privileged and protected under State and/or Federal Laws. It is intended solely for the addressee. Access to this email by anyone else is unauthorized. If you are not the intended recipient, any disclosure, copying, distribution or any action taken or omitted to be taken in reliance on it, is prohibited and may be unlawful.

If you believe that you have received this email in error, please contact the sender or call 215-348-6000. The opinions expressed herein may not necessarily represent those of the County of Bucks

United States Steel Corporation Mon Valley Works P.O. Box 878, MS 100 Dravosburg, PA 15034

Via Electronic Mail

May 8, 2025

Attn: Falls Township Manager Matthew Takita 450 Lincoln Highway Fairless Hills, PA 19030 m.takita@fallstwp.com admin@fallstwp.com

Subject:

Municipal Notification of Air Permit Application U. S. Steel – Mon Valley Works – Fairless Plant Facility No. TVOP 09-00006

Dear Mr. Takita,

Pursuant to Act 14, Section 1905-A (Cooperation with Municipalities), we are informing you of our intention to file an air permit application (operating permit modification), at the request of the Pennsylvania Department of Environmental Protection (PADEP), pursuant to 25 Pa. Code § 129.114(l), by June 30, 2025, for the Fairless Plant at:

United States Steel Corporation Mon Valley Works – Fairless Plant Fairless Hills, PA, Falls Township, Bucks County

The above mentioned Act 14, which became effective April 17, 1984, requests that applicants for Air Quality Permits under the Air Pollution Control Act must give written notification to each municipality in which the activities are located. The written notice is to be received by the local municipality or county at least 30 days before the Department of Environmental Protection issues or denies the permit. Please confirm via email that you have received this notification.

If you have any questions, please contact me at (412) 675-7382 or kkowalski@uss.com.

Sincerely,

Kaylene Kowalski Environmental Dept. Irvin and Fairless Plants

United States Steel Corporation

Tunno, Brett J

From:

Rose Molle <r.molle@fallstwp.com>

To:

Tunno, Brett J

Sent:

Thursday, May 8, 2025 11:51 AM

Subject:

Read: [External] U. S. Steel - Fairless Plant - Notification of Intent to File Air Permit Application

Your message

To: Rose Molle

Subject: [External] U. S. Steel - Fairless Plant - Notification of Intent to File Air Permit Application

Sent: Thursday, May 8, 2025 11:43:45 AM (UTC-05:00) Eastern Time (US & Canada)

was read on Thursday, May 8, 2025 11:51:14 AM (UTC-05:00) Eastern Time (US & Canada).

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

AIR QUALITY FEES SCHEDULE

There are four different Fees Schedules.

- 1. Fees Schedule for New Plan Approval
- 2. Fees Schedule for Pending or Issued Plan Approval
- 3. Fees Schedule for State-Only Operating Permit
- 4. Fees Schedule for Title V Operating Permit

If the company is submitting a new plan approval application, the fees schedule for a "New Plan Approval" should be used. In this form, the company should check the appropriate boxes depending on the types of review requested and pay accordingly.

Similarly, if the company is submitting an Operating Permit application, the company should use the respective fees schedule for an Operating Permit, check all the appropriates boxes, and pay the fees required.

Please make the check payable to the "Commonwealth of Pennsylvania Clean Air Fund." Submit this fees schedule and the check with the application package to the appropriate regional office.

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

QUALITY FEES FOR TITLE V OPERATING PERMIT

		Company I	nformation		
Federal	Гах ID: 25-09968	116	Firm Name: United States S	Steel Corporation	Ü.
Permit #	(If any): Operati	ng Permit #09-00006	Facility Name: Mon Valley	Norks - Fairless	Plant
Municipality: Falls Township County: Bucks		County: Bucks			
Contact I	Person Name: M	ichael Dzurinko	Telephone Number: 412-233-1467		
E-mail: n	ndzurinko@uss.d	com			
		Title V Oper	rating Permit		
Line #	Check the appropriate box below	Type of Authorization		Fee 2021 - 2025	Total Fees
1		New Application, Subchapter G		\$5,000	
2		Renewal		\$4,000	
3		Minor Modification		\$1,500	
4	\boxtimes	Significant Modification		\$4,000	\$4,000
5		Administrative Amendment / Change of Ownership		\$1,500	
6		Plantwide Applicability Limit (PAL) for NSR regulated pollutants or PAL for PSD regulated pollutants or both		\$10,000	

Pay maximum amount of fee when one or more authorizations are requested. For example, when a renewal application and a change of ownership forms are submitted, please pay only the highest amount of fee (\$4,000).

Copy of Permit Check

BMO HARRIS CENTRAL N.A. 1341078081 ROSELLE, ILLINOIS

DO NOT CASH UNLESS WARNING BAND AND CHECK BACKGROUND ARE BLUE. WATERMARK ON BACK, HOLD AT ANGLE TO VIEW

FOUR THOUSAND AND NO/100 DOLLARS*

VOID AFTER 90 DAYS

ORDER

PENNSYLVANIA COMMONWEALTH DEPT ENVIRONMENTAL PROTECTION AIR QUALITY PROGRM-SE REGIONAL 2 EAST MAIN ST NORRISTOWN, PA 19401-4915

0005

1341078081# #071915580# O4#433#880# 2#

United States Steel Corporation

05/16/2025

1341078081

For ERS Invoice Types: Contact Plant

For Inquiries Please Visit: SteelTrack.uss.com

BMOA

DIV. 74 PENNSYLVANIA COMMONWEALTH VENDOR CODE: 109100

PAGE 1 OF 1

Rel PO No. No.

Invoice Invoice Type Date

Invoice Discount

Net Remittance Fac Comments

Remit

No. STANDARD 05/08/2025 08-MAY-2025

4,000.00 817 IMMEDIATE CHECK

Appendix A – USS NOx RACT III – Case by Case Analysis

February 28, 2025

Mr. James Rebarchak Regional Air Quality Program Manager Pennsylvania Department of Environmental Protection Southeast Regional Office 2 E. Main Street Norristown, PA 19401-4915

Submitted via OnBase

RE: U. S. Steel Fairless Plant Case by Case Analysis – 25 Pa. Code 129 RACT III

Mr. Rebarchak,

United States Steel Corporation (U. S. Steel) owns and operates a steel finishing facility located in Fairless Hills, Bucks County, Pennsylvania (Fairless Plant). Cold-rolled products are finished into galvanized sheet products at the site.

On January 30, 2025, U. S. Steel provided the Pennsylvania Department of Environmental Protection (PADEP) an initial notification in accordance with 25 Pa. Code 129.115(a). U. S. Steel committed to performing a case-by-case analysis in accordance with 25 Pa. Code 129.114 for Source ID 420 – Galvanizing Line Furnace. This document serves as that case-by-case analysis, which is required to be provided to PADEP by February 28, 2025.

Should you have any questions pertaining to this matter, please contact Kaylene Kowalski by phone at 412-675-7382 or by email at kkowalski@uss.com.

Based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Respectfully,

Kurt Barshick Vice President

U. S. Steel - Mon Valley Works

NO_X REASONABLY AVAILABLE CONTROL TECHNOLOGY STUDY

U. S. Steel Corporation/ Fairless, Pennsylvania

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road Suite 310 Wexford, PA 15090

February 2025

TABLE OF CONTENTS

1.	BACK	GROU	ND :	1-1	
2.	RACT	DEFI	NITION AND METHODOLOGY	2-1	
2.1 Top-Down Approach		lown Approach	2-1		
	Z-11 -L-	2.1.1	Sten 1 – Identify All Control Options	Z-1	
		2.1.2	Step 2 – Fliminate Technically Infeasible Options	2-1	
		2.1.3	Step 3 – Rank Remaining Control Options	2-2	
		2.1.3	Step 4 – Evaluation of Most Effective Control Option	2-2	
		2.1.5	Step 5 – Select RACT	2-2	
2	NOv	TOP-D	OWN PACESTIDY	3-1	
2.1 Stop 1 - Identify All Control Ontions			1 - Identify All Control Ontions	3-1	
	J 11 JL	311	Peview of Potentially Applicable NO _x Control Technologies	2-T	
		3.1.2	Selective Non-Catalytic Reduction (SNCR)	2-T	
		3.1.3	Selective Catalytic Reduction (SCR)	3-2	
		3.1.4	Low NOV Burners (LNBs)	3-2	
		215	Good Combustion Practices/Proper Furnace Operation/Minimize Excess Air	. 3-2	
	3.2	Ston	2 _ Eliminate Technically Infeasible Options	3-3	
	3.2	3.2.1	SNCR/SCR	. 3-3	
		3.2.2	LNRs	. 3-3	
		3.2.3	Good Combustion Practices/Proper Furnace Operation/Minimize Excess Air	. 3-3	
	3.3	Chan	2 Pank Pemaining Control Ontions	3-3	
		Step	4 – Evaluation of Most Effective Control Option	3-4	
	3.4	Step	SCR	.3-4	
		3.4.2	LNBs	.3-4	
				.3-5	
	100 E	3.4.3	5 – Select RACT	3-5	
	3.5	Step	5 – Select KACI		
Al	PPENI	OIX A.	JANUARY 2025 RACT III NOTIFICATION	A-1	
Al	APPENDIX B. STACK TEST DATA EXCERPT B-1				
412				C-1	
A	APPENDIX C. COST CALCULATIONS				

LIST OF TABLES

Table 3-1. Potentially Available NO_X Control Technologies for Galvanizing Line Furnace	3-1
Table 3-2. Remaining Control Options for Galvanizing Line Furnace	3-4
Table 3-3. Cost Effectiveness of SCR (Maximum Actuals Basis)	3-4
Table 3-4. Emission Reductions for the Galvanizing Line Furnace	3-5
Table 3-5, Cost-Effectiveness of Installing LNBs for the Galvanizing Line Furnace	3-5

United States Steel Corporation (U. S. Steel) owns and operates a steel finishing facility located in Fairless Hills, Bucks County, Pennsylvania (Fairless Plant). The Fairless Plant has historically been considered a minor source of nitrogen oxide (NO_x) emissions as it relates to Reasonably Available Control Technology (RACT) requirements. On July 30, 2024, the US Environmental Protection Agency (EPA) redesignated Bucks, Chester, Delaware, Montgomery and Philadelphia Counties as a serious nonattainment area for the 2015 Ozone NAAQS. This reclassification reduces the major source NO_x RACT threshold from 100 tons per year (tpy) to 50 tpy. The Title V permit for the Fairless Plant (TVOP 09-00006) contains a facility-wide less than 100 tpy NO_x restriction and, therefore, the Fairless Plant would be reclassified as a major source under NO_x RACT. As a major source for NO_x RACT, the Fairless Plant is subject to portions of 25 Pa. Code 129.111 through 129.115.

On January 30, 2025, U. S. Steel provided the Pennsylvania Department of Environmental Protection (PADEP) an initial notification in accordance with 25 Pa. Code 129.115(a). The notification has been included as Appendix A for reference. The notification, which satisfied the initial notification requirement in the regulation as well as that communicated by PADEP via email², provided U. S. Steel's NO_x RACT requirement for each source of NO_x at the Fairless Plant. As outlined in Attachment A to the letter, U. S. Steel committed to performing a case-by-case analysis in accordance with 25 Pa. Code 129.114 for Source ID 420 – Galvanizing Line Furnace. This document serves as that case-by-case analysis, which is required to be provided to PADEP by February 28, 2025.

¹ Submitted via the electronic upload tool by Kaylene Kowalski (U. S. Steel) on January 30, 2025.

² Email from Southeast Regional Office to Kaylene Kowalski (U. S. Steel) on November 5, 2024

2. RACT DEFINITION AND METHODOLOGY

RACT, or Reasonably Available Control Technology, is required on existing major sources of NO_X (and VOC for major sources of VOC) in the ozone non-attainment area (NAA). At the federal level, RACT is not defined by statute or rule, rather it is defined in USEPA guidance as "the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility." Considering this definition, RACT involves identifying implementable control technologies with due consideration given to technological and economic feasibility. Since RACT considers the technological and economic impacts of controls, the analysis and determination may differ from source to source and location to location.

2.1 Top-Down Approach

In this RACT study, U. S. Steel is using USEPA's top-down approach to determining the feasibility of control technologies. The five steps in a top-down RACT evaluation can be summarized as follows:

- Step 1. Identify all possible control technologies
- Step 2. Eliminate technically infeasible options
- Step 3. Rank the technically feasible control technologies based upon emission reduction potential
- Step 4. Evaluate ranked controls based on energy, environmental, and/or economic considerations
- Step 5. Select RACT

The following sections contain a description of the five (5) basic steps of this "top-down" approach.

2.1.1 Step 1 – Identify All Control Options

In this step, available control technologies with the practical potential for application to the emission unit and regulated air pollutant in question are identified. The selected control technologies vary widely depending on the process technology and pollutant being controlled. The application of demonstrated control technologies in other similar source categories to the emission unit in question may also be considered in this step.

The following resources are typically consulted when identifying potential technologies for criteria pollutants:

- USEPA's RACT/BACT/LAER Clearinghouse (RBLC) database;
- NSPS, NESHAP, and RACT regulations for similar operations;
- Engineering experience with similar control applications; and
- Information provided by air pollution control equipment vendors with significant market share in the industry.

2.1.2 Step 2 – Eliminate Technically Infeasible Options

After control technologies are identified under Step 1, an analysis is conducted to eliminate technically infeasible options. A control option is eliminated from consideration if there are process-specific conditions that prohibit the implementation of the control technology or if the highest control efficiency of the option would result in an emission level that is higher than any applicable regulatory limits, such as a New Source Performance Standard (NSPS) or National Emission Standard for Hazardous Air Pollutants (NESHAP). A

^{3 44} Fed. Reg. 53762 (9/17/1979)

control option is "technically feasible" if it has been "demonstrated" or if it is both "available" and "applicable."

2.1.3 Step 3 – Rank Remaining Control Options

All remaining technically feasible control options are ranked based on their overall control effectiveness for the pollutant under review. If there is only one remaining option or if all the remaining technologies could achieve equivalent control efficiencies, ranking based on control efficiency is not required. Collateral impacts are usually not considered until step four of the five step top-down RACT analysis.

2.1.4 Step 4 - Evaluation of Most Effective Control Option

After identifying and ranking available and technically feasible control technologies, the economic, environmental, and energy impacts are evaluated to select the best control option. If collateral impacts do not disqualify the top-ranked option from consideration, it is selected as the basis for the RACT limit. Alternatively, in the judgment of the permitting agency, if economic, environmental, or energy considerations impact the top control option, the next most stringent option is evaluated. This process continues until a control technology is identified. This step validates the suitability of the top control option identified or provides a clear justification as to why the top option should not be selected as RACT.

2.1.5 Step 5 - Select RACT

In the final step, the RACT is determined for each emission unit under review based on evaluations from the previous step.

As noted in Section 1, a case-by-case RACT study is required for the galvanizing line furnace. The furnace has a total of 242 burners with a total firing capacity of 68.4 MMBtu/hr natural gas. This section provides the analysis for this source in accordance with the procedures outlined in Section 2.

3.1 Step 1 – Identify All Control Options

Step 1 in a top-down analysis is to identify all available control technologies. The evaluation of potential controls for NO_x emissions from furnaces includes both an investigation of end-of-pipe (post-combustion methods) and combustion modifications/optimization that reduce the formation of thermal NO_x. The basic complicating factor in efforts to reduce thermal NO_x from the steel industry is the fundamental need for high temperatures in order to work the materials (i.e., steel). Table 3-1 contains a list of the various technologies that have been identified as potentially applicable for the control of NO_x emissions.

Table 3-1. Potentially Available NO_X Control Technologies for Galvanizing Line Furnace

Potentially Applicable NO_X Control Technologies

Selective Non-Catalytic Reduction (SNCR)

Selective Catalytic Reduction (SCR)

Low NOx or Ultra Low NOx Burners (LNB or ULNB)

Good Combustion Practices

3.1.1 Review of Potentially Applicable NO_x Control Technologies

The following section provides a discussion of each potentially applicable technology identified above as it might be applied to the furnace at the Fairless Plant. The technical feasibility of each of the listed control options is discussed in Step 2.

3.1.2 Selective Non-Catalytic Reduction (SNCR)

SNCR uses ammonia (NH₃) or a urea solution $[CO(NH_2)_2]$, injected into the gas stream, to chemically reduce NO_X to form N₂ and water. High temperatures, optimally between 1,600 to 2,400°F, promote the reaction via the following equation:

$$CO(NH_2)_2 + 2 NO + \frac{1}{2} O_2 \rightarrow 2 N_2 + CO_2 + 2 H_2O$$

 $4 NH_3 + 6NO \rightarrow 5 N_2 + 6 H_2O$

At temperatures below the optimal range, unreacted ammonia can pass through the SNCR and be emitted from the stack (known as "ammonia slip"). At temperatures above the range, ammonia may be combusted, generating additional NOx. In addition, an effective mixing of gases and entrainment of the reductant into the exhaust gases at the injection point is a critical factor in ensuring an efficient reaction. SNCR is being employed on various types of combustion sources in a wide range of sizes, including industrial boilers, electric utility steam generators, thermal incinerators, cement kilns, and industrial process furnaces in

various sectors.⁴ SNCR is not suitable for sources where the residence time is too short (reducing conversion of reactants), temperatures or NOx concentrations are too low (slowing reaction kinetics), the reagent would contaminate the product, or no suitable location exists for installing reagent injection ports. Expected removal efficiencies for SNCR are dependent on many factors, including the reagent type, injection rate, pre-control NOx concentration as well as CO and O₂ concentrations, temperature, and residence time.⁵

3.1.3 Selective Catalytic Reduction (SCR)

Like SNCR, SCR is also a post-combustion NOx control technology which removes NOx from flue gas based on the chemical reaction of a NOx reducing agent (typically ammonia); however, in the case of SCR this takes place using a metal-based catalyst. An ammonia or urea reagent is injected into the exhaust gas and the reaction of NOx and oxygen occurs on the surface of a catalyst which lowers the activation energy required for NOx decomposition into nitrogen gas and water vapor. Reactor design, operating temperature, sulfur content of the fuel, catalyst de-activation due to aging, ammonia slip emissions, and the ammonia injection system design are all important technical factors for effective SCR operation. Generally, SCR can achieve higher control efficiencies and be applied to a broader and lower range of exhaust temperatures relative to SNCR. However, this is accompanied by significantly higher capital and operating costs. Another primary disadvantage of an SCR system is that particles from the catalyst may become entrained in the exhaust stream and contribute to increased particulate matter emissions. In addition, ammonia slip reacts with the sulfur in the fuel creating ammonia bisulfates that become particulate matter.

The primary chemical reactions for an SCR unit can be expressed as follows:

$$4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

 $4 \text{ NH}_3 + 2 \text{ NO}_2 + 2 \text{ O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

The general temperature range for the majority of commercial SCR system catalysts is 480 to $800^{\circ}F$; operation outside the optimum temperature range can result in increased ammonia slip or increased NO_X emissions. The maximum removal efficiency is associated with temperatures between 700 and 750°F, with efficiency drastically reduced at temperatures below $600^{\circ}F$.

3.1.4 Low NO_X Burners (LNBs)

The principle of all LNBs is the same: step-wise or staged combustion and localized exhaust gas recirculation at the flame is employed. LNBs are designed to control fuel and air mixing to create larger and more branched flames. Peak flame temperatures are reduced and the flame structure reduces oxygen supply to the hottest part of the flame, resulting in less NO_X formation. LNB retrofits on existing units must carefully consider furnace geometry, as the LNB flame diameters and lengths are typically larger and can impinge on furnace walls which may lead to reduced control efficiencies.

3.1.5 Good Combustion Practices/Proper Furnace Operation/Minimize Excess Air

The formation of NO_X is minimized by proper combustion unit design and operation. Generally, emissions are minimized when the operating temperatures are kept at the lower end of the desired range. The

⁴ Air Pollution Control Cost Manual, Section 4.2, Chapter 1, Selective Non-Catalytic Reduction, NO_x Control, EPA Form 2220-1.(rev. 4-77), Page 1-1.

⁵ Air Pollution Control Cost Manual, Section 4.2, Chapter 1, Selective Non-Catalytic Reduction, NO_x Control, EPA Form 2220-1.(rev. 4-77), Page 1-2.

⁶ Air Pollution Control Cost Manual, Section 4.2, Chapter 2, Selective Catalytic Reduction, July 2019, Page 20.

controlled distribution of air at the air and fuel injection zones can also help minimize NOx formation. Ideally, maintaining a low-oxygen condition near fuel injection points approaches an off-stoichiometric staged combustion process. A certain amount of air is required to provide sufficient oxygen to burn all of the fuel introduced to the furnace. However, excess air contributes to increased NOx emissions through increasing the amount of air that must be heated (i.e., decreasing fuel efficiency and resulting in higher NOx emissions) and providing more oxygen in the combustion zone which can in turn lead to greater amounts of thermal NOx formation. By minimizing the amount of air used in the combustion process while maintaining proper furnace operation, the formation of NOx can be reduced.

3.2 Step 2 – Eliminate Technically Infeasible Options

3.2.1 SNCR/SCR

As noted in prior sections, efficient SCR systems generally require exhaust temperatures between 480°F to 800°F for NO_X removal. Operation of SCR systems within this temperature range is critical to avoid damage to the catalyst bed. The flue gas exhaust temperatures from the galvanizing line furnace are at approximately 500°F, which is at, or near, the lower bound of the range of the operating temperature for SCR systems. As such, the flue gas temperature would require reheating through the firing of supplemental natural gas which would result in additional fuel cost and generate additional NO_X. While there is a risk of product contamination from contact with the reagent in this direct-fired furnace, SCR technology has been presumed to be technically feasible.

Efficient SNCR systems require exhaust temperatures between 1,600 to 2,400°F for optimal NO $_{\rm X}$ removal. As noted above, the flue gas temperatures from the galvanizing line furnace are significantly lower than the optimum temperature range for efficient SNCR systems. The flue gases would have to be reheated by using natural gas to raise the gas temperatures in the range of 1,600 to 2,400 °F for effective reaction of NO $_{\rm X}$ with ammonia. This would require significant fuel cost and generate additional NO $_{\rm X}$ from the combustion of natural gas. Further, the uncontrolled concentration of NO $_{\rm X}$ in the exhaust gas from the furnace is approximately 30 ppm, as shown in Appendix B, which is well below the effective SNCR threshold of > 200 ppm. For these reasons, SNCR is deemed technically infeasible for RACT purposes for the galvanizing line furnace.

3.2.2 LNBs

LNB is a potentially feasible control option for the galvanizing line furnace. As part of the RACT study, U. S. Steel evaluated the economic feasibility of replacing the existing burners in the affected furnace with LNBs capable of meeting the presumptive NO_X limit for similarly sized furnaces (i.e., 0.1 lb/MMBtu). The emissions reduction and associated cost-effectiveness are discussed in Step 4.

3.2.3 Good Combustion Practices/Proper Furnace Operation/Minimize Excess Air

Good combustion practices are a feasible option for the galvanizing line furnace. U. S. Steel employs certain practices such as annual adjustments/tune-ups and operating and maintaining the furnace in accordance with manufacturer recommendations.

3.3 Step 3 – Rank Remaining Control Options

The remaining technically feasible NO_x control technologies for the affected source are as follows:

Table 3-2. Remaining Control Options for Galvanizing Line Furnace

Galvanizing Line Furnace

SCR
LNBs
Good Combustion Practices

The cost effectiveness of the remaining technically feasible NO_x control technologies are discussed in Step 4 below.

3.4 Step 4 – Evaluation of Most Effective Control Option

The capital and operating costs as well as cost-effectiveness of the different control options should be calculated in a manner consistent with the most recent edition of the "United States Environmental Protection Agency Air Pollution Control Cost Manual".

3.4.1 SCR

U. S. Steel evaluated the economic feasibility of retrofitting the galvanizing line furnace with SCR to meet the proposed presumptive NOx limit (i.e., 0.1 lb/MMBtu). U. S. Steel performed cost calculations (shown in Appendix C) for installing SCR on the furnace using EPA's Air Pollution Control Cost Manual (CCM), Section 4, Chapter 2 (SCR), NOx Controls. Despite some technical concerns noted in Section 3.1.2, including lower starting point concentrations⁷ as well as the exhaust temperature being on the extreme low end of the ideal temperature range for SCR, U. S. Steel assumed an 80 percent control efficiency for this application. The emissions reduction for the furnace is conservatively calculated based on the maximum potential emission rate (emission factor multiplied by maximum capacity).

Table 3-3 below summarizes the cost-effectiveness assessment of retrofitting SCR utilizing USEPA's SCR cost spreadsheet based on the 2019 CCM. The detailed cost calculations are shown in Appendix C C.

Table 3-3. Cost Effectiveness of SCR (Maximum Actuals Basis)

Source Description	Total Capital Investment	Total Annualized Cost	Cost Effectiveness (\$/ton)
Galvanizing Line Furnace	\$3,697,627	\$1,024,347	\$19,516

As shown in the above table, retrofit installation of SCR on the galvanizing line furnace is not economically feasible.

3.4.2 LNBs

Similar to the SCR cost effectiveness evaluation, U. S. Steel evaluated the economic feasibility of replacing the existing burners in the galvanizing line furnace with LNBs. The emissions reduction and associated cost-effectiveness assessments are calculated assuming the following:

⁷ U.S. EPA, Technology Transfer Network, Clean Air Technology Center. "Air Pollution Control Technology Fact Sheet – Selective Catalytic Reduction." File number EPA-452/F-03-032. https://www3.epa.gov/ttncatc1/dir1/fscr.pdf (Accessed February 11, 2025).

- U. S. Steel utilized LNB vendor quotes for a similar galvanizing line furnace at its Pro-Tec facility in Ohio to perform this cost effectiveness evaluation. The vendor quote for each burner was used to estimate the total burner replacement cost for this furnace.
- ▶ The cost analysis utilizes the vendor guaranteed NO_X emission factor of 0.065 lb/MMBtu that was provided to the Pro-Tec facility. U. S. Steel notes that this guarantee was specific to the Pro-Tec facility and there is no assurance that the vendor would guarantee the same emission rate at Fairless. Nevertheless, U. S. Steel used this emission rate as a conservative estimate given that it is lower than the presumptive NO_X RACT limit for similarly sized furnaces (i.e., 0.1 lb/MMBtu).
- ► The emissions reduction for the furnace is conservatively calculated based on the maximum potential emission rate (emission factor multiplied by maximum capacity).

The emissions reduction and associated cost-effectiveness assessments are shown in Table 3-4 and Table 3-5, respectively. Detailed cost calculations are shown in Appendix C.

Table 3-4. Emission Reductions for the Galvanizing Line Furnace

Emission Unit	Annual Fuel	Baseline Emission	LNB Emission	Emissions
	Usage	Factor	Factor	Reduction
	(MMBtu/yr)	(lb/MMBtu)	(lb/MMBtu)	(tpy)
Galvanizing Line Furnace	599,184	0,219	0.065 ^a	46.11

a. As previously noted, a vendor guaranteed NO_x emission factor of 0.065 lb/MMBtu for a similar galvanizing line annealing furnace at U. S. Steel's Pro-Tec facility was used as a conservative approach. U. S. Steel notes that this guarantee was specific to the Pro-Tec facility and there is no assurance that the vendor would guarantee the same emission rate at Fairless.

Table 3-5. Cost-Effectiveness of Installing LNBs for the Galvanizing Line Furnace

Emission Unit	Total Capital Investment	Total Indirect Annual Costs	NO _x removed (tpy)	Cost Effectiveness (\$/ton)
Galvanizing Line Furnace	\$22,933,897	\$6,585,806	46.11	\$142,837

As shown in Table 3-5, it is not economically feasible to replace the existing burners in the galvanizing line furnace with LNBs.

3.4.3 Good Combustion Practices/Proper Furnace Operation/Minimize Excess Air

U. S. Steel employs certain practices such as annual adjustments/tune-ups and operating and maintaining the furnace in accordance with manufacturer recommendations. Since these practices are already in place, there is no additional cost considerations. Therefore, good combustion practices are economically feasible.

3.5 Step 5 - Select RACT

As presented in the above sections, there are no emission reduction add-on control options that are both technically and economically feasible for the galvanizing line furnace. As such, the only remaining technically

and economically feasible control technology is good combustion practices. The Fairless Plant proposes to continue to employ good combustion management practices as RACT III for the source listed above. This will continue to be demonstrated through maintaining and operating the source in accordance with manufacturer specifications as well as adhering to the existing permit requirement to conduct an adjustment or tune-up on an annual basis.

APPENDIX A. JANUARY 2025 RACT III NOTIFICATION

January 30, 2025

Mr. James Rebarchak Regional Air Quality Program Manager Pennsylvania Department of Environmental Protection Southeast Regional Office 2 E. Main Street Norristown, PA 19401-4915

Submitted via OnBase

RE: U. S. Steel Fairless Plant Initial Notification – 25 Pa. Code 129 RACT III

Mr. Rebarchak,

United States Steel Corporation (U. S. Steel) owns and operates a steel finishing facility located in Fairless Hills, Bucks County, Pennsylvania (Fairless Plant). Cold-rolled products are finished into galvanized sheet products at the site. This letter satisfies the initial notification requirements contained in 25 Pa. Code 129.115a and as communicated by the Department via email¹.

The Fairless Plant has historically been considered a minor source of nitrogen oxide (NO_x) emissions as it relates to Reasonably Available Control Technology (RACT) requirements. On July 30, 2024, the US Environmental Protection Agency (EPA) redesignated Bucks, Chester, Delaware, Montgomery and Philadelphia Counties as a serious nonattainment area for the 2015 Ozone NAAQS. This reclassification reduces the major source NO_x RACT threshold from 100 tons per year (tpy) to 50 tpy. The Title V permit for the Fairless Plant (TVOP 09-00006) contains a facility-wide less than 100 tpy NO_x restriction and, therefore, the Fairless Plant would be reclassified as a major source under NO_x RACT. As a major source for NO_x RACT, the Fairless Plant is subject to portions of 25 Pa. Code 129.111 through 129.115:

- Section 129.111 provides applicability information;
- 2. Section 129.112 outlines presumptive RACT requirements;
- 3. Section 129.114 states the requirement and method for case-by-case RACT proposals; and
- Section 129.115 provides for notifications (including this initial notification due January 31, 2025), compliance demonstrations and recordkeeping and reporting requirements.

This letter is being submitted to meet the initial notification requirements of RACT III per 25 Pa. Code 129.115(a). The attachments to this letter are as follows:

- Attachment A contains the required information for the applicable equipment to satisfy 25 Pa. Code 129.115(a)(2) and 129.115(a)(5) through (7). Attachment A also contains facility information.
- ▶ Attachment B summarizes each RACT III citation referenced in Appendix A table of information.

As noted in Attachment A, U. S. Steel will be performing a case-by-case RACT proposal for Source ID 420 – Galvanizing Line Furnace. The case-by-case RACT submissions will be made to the Department by February 28, 2025.

¹ Email from Southeast Regional Office to Kaylene Kowalski (U. S. Steel) on November 5, 2024

Mr. James Rebarchak - Page 2 January 30, 2025

Should you have any questions pertaining to this matter, please contact Kaylene Kowalski by phone at 412-675-7382 or by email at kkowalski@uss.com.

Based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Respectfully,

Kurt Barshick Vice President

U. S. Steel - Mon Valley Works

cc: Kaylene Kowalski (USS)

Mike Dzurinko (USS)

Brett Tunno (USS)

Chris Hardin (USS)

Matthew DeLibero (USS)

Mike Benner (USS)

Attachments

ATTACHMENT A -RACT III NO_x Initial Notification Information

NO _x RACT Compliance Demonstration Citation	129.115(f), 129.115(f) and 129.115(k)			To be determined		129.115(f) and 129.115(k)			N/A – Records per 129.115(h)			129.115(f) and 129.115(k)	20-01-01	
NO _x RACT Compliance Demonstration	Tune-ups and recordkeeping.			To be determined		Operating practices	and recordkeeping.		NA - Exempt			Operating practices	and recordkeeping.	
NO _x RACT Requirement Citation	129.112(b)(1)			129.114		129 112(F)(4)			129.111(c)			129,112(c)(4)		
NO _x RACT Requirement	Biennial tune-up			Case-By-Case		Install, maintain, and operate in accordance with	specifications and good operating practices	Potential to emit	(0.55 tpy) is less than 1 tpy NOx.	See attached calculations.	Install, maintain, and operate in	accordance with	specifications and	good operating practices
NO _x RACT Compliance Option	Presumptive			Case-By-Case		O. States			Exempt			Dragimptive	and incall	
Equipment Model	PFTAR750- 4G150S 31.2 MMBtu/hr	Natural-gas fired	Direct-fired furnace	68.4 MMBtu/hr	Natural-gas fired	16.0 MMBtu/hr	Natural-gas fired	100-I-SGA	1.25 MMBtu/hr,	each	C2500	2.5 MMBtu/hr		
Equipment Make	Johnston Boiler Co.			General Electric Co.		Surface	Inc.	Dravo Corp.			Cambridge	Inc.		
Source Description	Gal3 Steam Boiler			Galvanizing Line Furnace		Galvanneal	Furnace	Thirty-seven	(37) Space Heaters		Space Heater			
Source	048			420			477		3	Part of 426	(Misc.	NG Usage)	,	

Source	Source Description	Equipment Make	Equipment Model	NOx RACT Compliance Option	NO _x RACT Requirement	NO _x RACT Requirement Citation	NO _x RACT Compliance Demonstration	NO _x RACT Compliance Demonstration Citation
	Chem Treat Dryer	Eclipse Combustion, Inc.	AH-O 120 1.2 MMBtu/hr	Exempt	Potential to emit (0.44 tpy) is less than 1 tpy NO _x . See attached calculations.	129.111(c)	NA - Exempt	N/A – Records per 129.115(g)
	Zinc Pot Dryer	Eclipse Combustion, Inc.	50 Minimatic 1.0 MMBtu/hr	Exempt	Potential to emit (0.53 tpy) is less than 1 tpy NO _x . See attached calculations.	129.111(c)	NA - Exempt	N/A – Records per 129.115(h)
100	Parts Washer	N/A	N/A			N/A - Not a NO _x Source	x Source	
N/A	Storage Tanks	N/A	N/A			N/A - Not a NOx Source	× Source	

•

ATTACHMENT B - RACT III Citation Summary

RACT Citation	Citation Summary
129.111(c)	Sections 129.112—129.114 do not apply to the owner and operator of a NOx air contamination source that has the potential to emit less than 1 TPY of NOx located at a major NOx emitting facility subject to subsection (a) or (b) or a VOC air contamination source that has the potential to emit less than 1 TPY of VOC located at a major VOC emitting facility subject to subsection (a) or (b). The owner or operator shall identify and list these sources in the written notification required under § 129.115(a).
129.112(b)(1)	Combustion unit or process heater with a rated heat input equal to or greater than 20 million Btu/hour and less than 50 million Btu/hour shall conduct a biennial tune-up in accordance with the procedures in 40 CFR 63.11223 (relating to how do I demonstrate continuous compliance with the work practice and management practice standards?). (A) Each biennial tune-up shall occur not less than 3 months and not more than 24 months after the date of the previous tune-up. (B) The biennial tune-up must include, at a minimum, the following: (I) Inspection and cleaning or replacement of fuel-burning equipment, including the burners and components, as necessary, for proper operation as specified by the manufacturer. (II) Inspection of the flame pattern and adjustment of the burner, as necessary, to optimize the flame pattern to minimize total emissions of NO _x and, to the
129.112(c)(4)	(III) Inspection and adjustment, as necessary, of the air-to-fuel ratio control system to ensure proper calibration and operation as specified by the manufacturer. A boiler or other combustion source with a rated heat input less than 20 million Btu/hr located at a major NOx emitting facility or major VOC emitting facility and is subject to 129.111 shall install, maintain, and operate the source in accordance with the manufacturer's specification with good operating practices.
129.115(g)	Beginning with the compliance date specified in § 129.112(a), the owner or operator of an air contamination source claiming that the air contamination source is exempt from the applicable NO _x emission rate threshold specified in § 129.114(b) and the requirements of § 129.112 based on the air contamination source's potential to emit shall maintain records that demonstrate to the Department or appropriate approved local air pollution control agency that the air contamination source is not subject to
129.115(i)	The owner or operator of a combustion unit or process heater subject to 129.112(b) shall record each adjustment conducted under the procedures in § 129.112(b). This record must contain, at a minimum: (1) The date of the tuning procedure. (2) The name of the service company and the technician performing the procedure (3) The final operating rate or load. (4) The final NO _x and CO emission rates. (5) The final excess oxygen rate. (6) Other information required by the applicable operating permit.

U. S. Steel Corporation Mon Valley Works, Fairless Hills Plant

Source	Furnace Rating, mmbtu/hr	NOx emission factor, lbs/mmbtu ¹	PTE NOx, tons	_
Space Heaters - Dravo Corp	20 50000		0.55	(per heater)
(each)	1.25	0.100	0.55	(per neater)
Space Heaters - Cambridge	2.5	0.100	1.10	
Zinc Pot Dryer ¹	1.0	0.100	0.44	
Chemtreat Dryer ¹	1.2	0.100	0.53	

¹Emission factor from AP-42 Section 1.4, small boilers less than 100 MMBtu/hr

APPENDIX B. STACK TEST DATA EXCERPT

TABLE 1

SUMMARY OF EMISSION RESULTS NITROGEN OXIDE EMISSIONS U.S. STEEL CORPORATION FAIRLESS PLANT SEPTEMBER 4-5, 2014 GALVANIZING LINE EXHAUST

Parameter	Run 1
Gas Flow (cfm)-rated fan output	90000
Oxygen concentration, %	17.64
Natural Gas F-factor, dscf/mmBtu	8710
Natural Gas usage, mmcf/hr	0.0725
Nitrogen Oxides Emissions	
ppmv	29.90
lb/hr	19.276
lb/mmcf	265.88
lb/mmBtu (based on Method 19)	0.199

APPENDIX C. COST CALCULATIONS

Data Inputs - Fairless Plant Source ID 420 Enter the following data for your combustion unit What type of fuel does the unit burn? Industrial Is the combustion unit a utility or industrial boiler? Is the SCR for a new boiler or retrofit of an existing boller? Please enter a retrofit factor between 0.8 and 1.5 based on the level of difficulty. Enter 1 for projects of average retrofit difficulty. Complete all of the highlighted data fields: for applicable to units burning fuel oil or natural gas 68.4 MMBtu/hour Type of coal burned: Not Applicable What is the maximum heat input rate (QB)? percent by weight 1,033 Btu/scf Enter the sulfur content (%5) = What is the higher heating value (HHV) of the fuel? "HHV/value of 1033 Btu/scf is a default value. See below for da 580,042,594 scf/Year What is the estimated actual annual fuel consumption? or applicable to units buring fuel oil or natural gas Note: The table below is pre-populated with default values for HHV and '85. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided. 8.2 MMBtu/MW Enter the net plant heat input rate (NPHR) Coal Type Fuel Type Coal Fuel Oil Default NPHR 10 MMBtu/MW 11 MMBtu/MW If the NPHR is not known, use the default NPHR value: Lignite Natural Gas 8.2 MMBtu/MW Please click the calculate button to calculate weighted average values based on the data in the table above. 5 Feet above sea level For coal-fired bollers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the Cost Estimate tab. Please select your preferred method; Plant Elevation O Method 1 @ Not applicable Enter the following design parameters for the proposed SCR: Number of SCR reactor chambers (nec) Number of days the SCR operates (t_{SCR}) 365 days Number of catalyst layers (Risal) Number of days the boiler operates (tplant) 365 days 1 Number of empty catalyst layers (Remoty) Inlet NO. Emissions (NOv.) to SCR 0.219 lb/MMBtu Ammonia Slip (Slip) provided by vendor 2 ppm Outlet NO, Emissions (NOxout) from SCR 0.044 lb/MMBtu Volume of the catalyst layers (Vol_{catalyst}) UNK Cubic feet Stoichiometric Ratio Factor (SRF) (Enter "UNK" if value is not known) 1.050 Flue gas flow rate (Q_{fueges}) *The SRF value of 1.05 is a default value. User should enter actual value, if known. (Enter "UNK" if value is not known) UNK acfm Estimated operating life of the catalyst (Heaver) 24,000 hours 500 °F Gas temperature at the SCR inlet (T) 25 Years* Estimated SCR equipment life 484 ft3/min-MMBtu/hour s, the typical equipment life is between 20 and 25 years Base case fuel gas volumetric flow rate factor $(Q_{f,el})$ 29 percent* Concentration of reagent as stored (Catavel) Density of reagent as stored (patern) 56 lb/cubic feet* Densities of typical SCR reagents: 14 days Number of days reagent is stored (transge) 71 lbs/ft³ 50% urea solution 29.4% aqueous NH₃ 56 lbs/ft3 Select the reagent used Enter the cost data for the proposed SCR Desired dollar-year 791 Enter the CEPCI value for 2024 S41.7 2016 CEPCI (Final 9/24 value) CEPCI = Chemical Engineering Plant Cost Index CEPCI for 2024 (bank prime rate; Jan. 2025) 7.5 Percent Annual Interest Rate (i) 50 293/gallon is a default value for 29% ammonia. User should enter actual value, if known. 0.293 \$/gallon for 29% ammonia* Reagent (Cost, ...) \$0.0676/kWh is a default value for electrity cost. User should enter actual value, if known. 0.0676 \$/kWh Electricity (Cost_{elect}) \$/cubic foot (includes removal and disposal/regeneration of existing catalys * \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, 227.00 and installation of new catalyst Catalyst cost (CC regime) \$60/hour is a default value for the operator labor rate. User should enter actual value, if known. 60.00 5/hour (including benefits)* Operator Labor Rate 4 hours/day is a default value for the operator labor. User should enter actual value, if known. 4.00 hours/day* Operator Hours/Day Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) = 0.0

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Qg) =	HHV x Max. Fuel Rate =		MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	580,042,594	scf/Year
Actual Annual fuel consumption (Mactual) =		580,042,594	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	0.82	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =		fraction
Total operating time for the SCR (t _{co}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =		percent
NOx removed per hour =	NOx _{in} x EF x Q _B =		lb/hour
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	52.49	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.00	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	27,398	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	52.00	/hour
Residence Time	1/V _{space}	0.02	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		
Elevation Factor (ELEVF) =	14.7 psia/P =		Last Ten
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.5	psia psia
Retrofit Factor (RF)	Retrofit to existing boiler	1.00	D

Not applicable; factor applies only to coal-fired boilers

Not applicable; elevation factor does not apply to plants located at elevations below 500 feet.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) Y -1), where Y = $H_{colored}/(t_{SCR} \times 24 \text{ hours})$ rounded to the nearest integer	0.3095	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _n x EF _{adi} x Slipadj x NOx _{adi} x S _{adi} x (T _{adi} /N _{scr})	526.85	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	29	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	7	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value Units	11100
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	33 ft ²	
Reactor length and width dimensions for a square reactor =	(A _{SCR}) ^{0.5}	5.7 feet	
	(R + R	66 feet	

Reagent Data:

Ammonia Type of reagent used

Molecular Weight of Reagent (MW) = 17.03 g/mole Density =

56 lb/ft³

Discount of the Control of the Contr	Equation	Calculated Value	Units
Parameter	(NOx _{in} x Q _B x EF x SRF x MW _B)/MW _{NOx} =		5 lb/hour
Reagent consumption rate (m _{reagent}) =	m _{reazent} /Csol =	1	6 lb/hour
Reagent Usage Rate (m _{sol}) =	(m _{rol} x 7.4805)/Reagent Density		2 gal/hour
	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	80	gallons (storage needed to store a 14 day reagent supply rounded to the

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i(1+i)^{n}/(1+i)^{n}-1=$	0.0897
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage: Electricity Consumption (P) =	A x 1,000 x 0.0056 x (Coalf x HRF) $^{0.43}$ = where A = (0.1 x QB) for industrial boilers.	35.17	kw

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

TCI = 86,380 x $(200/B_{MW})^{0.35}$ x B_{MW} x ELEVF x RF

TCI = 62,680 x B_{MW} x ELEVF x RF

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

TCI = 7,850 x $(2,200/Q_B)^{0.35}$ x Q_B x ELEVF x RF

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour :

 $TCI = 10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

TCI = 5,700 x Q_B x ELEVF x RF

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

TCI = 7,640 x Q_B x ELEVF x RF

The TCI has been adjusted to include an additional cost of \$500,000 for new duct burners and associated equipment needed to reheat the flue gas from the No. 2 Galvanizing Line Annealing Furnace. U. S. Steel estimated the additional capital cost based on cost estimates for a similar project at its Great Lakes, Michigan facility.

Total Capital Investment (TCI) =

\$3,697,627

in 2024 dollars

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

	1
Direct Annual Costs (DAC) =	\$689,820 in 2024 dollars
	\$334,527 in 2024 dollars
Indirect Annual Costs (IDAC) =	
Total annual costs (TAC) = DAC + IDAC	\$1,024,347 in 2024 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost = Annual Reagent Cost = Annual Electricity Cost = Annual Catalyst Replacement Cost =	0.005 x TCI = $m_{sol} \times Cost_{reag} \times t_{op} = $ P x Cost _{clect} x t _{op} =	\$18,488 in 2024 dollars \$5,506 in 2024 dollars \$20,827 in 2024 dollars \$12,338 in 2024 dollars
Annual Natural Gas Cost for Reheat =	NG _{Cost}	\$632,660 in 2024 dollars
Disset Appual Cost =	$n_{ser} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	\$689,820 in 2024 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,850 in 2024 dollars \$331,677 in 2024 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$334,527 in 2024 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	T

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,024,347 per year in 2024 dollars
The state of the s	52 tons/year
NOx Removed =	\$19,516 per ton of NOx removed in 2024 dollars
Cost Effectiveness =	

Low-NOx Burner Cost Effectiveness (PTE Basis) Galvanizing Line Furnace (Source ID 420)

DIMENSIONAL ANALYSIS

Time Conversion Mass Conversion	8,760 hours/year 2,000 lb/ton	
ASSUMPTIONS		
Cost Year	2025	
Economic Life	5 yrs	US EPA CAUPS
Applied Interest Rate	7.5 %	https://www.federalreserve.gov/releases/h15/

(bank prime loan rate; January 2025)

Annual Interest Rate

Source 420 Burner Capacity Existing NO _x Emission Rate - Source 420	68.4 MMBtu/hr 0.219 lb/MMBtu	Total Capacity for Burners for Source 10 420 per Title V operating permit. 2014 States Test Result with 10% Additional Nargin Vender Creaming for a civiliar relevanistic line ampelling formace at U. S. Steel's Pro-tec facility in Ohio.
Vendor Guarantee NO _X Emissions Potential NO _X Emissions - Before LNBs	65.58 tons/yr	rendor benefatte, for each Stack (MMBtu/hr) x NO _x Emission Factor for Each Stack (Ib/MMBtu) x Max Operating Hours (Ins/yr) / 2.000 (Ib/ton)
Potential NO _x Emissions - After LNBs NO _x Removed	19.47 tons/yr 46.11 tons/yr	LNBs NO_{χ} Guarantee ($ByMMBtu$)] χ Heat Input Rating ($MMBtu/hr$) χ 8,760 (hrs/yr) / 2,000 (lb/ton) Potential NO_{χ} Emissions Before LNBs - Potential NO_{χ} Emissions After Controls
Canital recovery factor, CRF	0.2472	

TOTAL CAPITAL INVESTMENT

1. Replacement Burner Direct Equipment Cost

		6,618,000 Replacement burner cost for each burner is based on a 2019 vendor quote for a similar galvanizing	1,309,000 line annealing furnace at U. S. Steel's Pro-tec racuity in Unio. The Vertool quote includes to st. 1,309,000 estimates for the replacement burners, associated tube, and controller modifications. The per burner	5,390,000 rate has been escalated for inflationary factors.	
Replacement Total Burner Quantity of Burners Burner Cost per Replacement Cost per	Zone				\$ 9,317,000
Replacement Burner Cost per	Burner	\$ 38,500 \$	\$ 38,500 \$	\$ 38,500 \$	
Quantity of Burners		89	34	140	242
Bumers Company		Zones 1 - 2	Zone 3	Zones 4 - 8	Total Burners Replaced

Direct Installation Costs

2. Dilect fillstandtion costs			
Miscellaneous Materials	₩.	1,967,982	Facility estimated cost for miscellaneous materials, demo, piping modifications, and burner installation are based on a similar
Demo	49	441,417	ww-NOx burner replacement project at other U.S. Steel facilities. A per burner rate was applied and escalated for inhationary
Natural Gas Piping Modifications	₩.	819,616	abactors.
Burner Installation	49	3,972,749	
Total	8	7,301,766	

Low-NOx Burner Cost Effectiveness (PTE Basis)
Galvanizing Line Furnace (Source ID 420)

3. Indirect Installation Cost		
Saring and Project Support	2,492,815	15% of Direct Cost

Engineering and Project Support	\$ 2,492,815 \$ 3,822,316	13% of Direct Cost + Indirect Cost)
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Total \$ 6,315,131	
Total Capital Investment, TCI	\$ 22,933,897	=Direct Equipment Cost + Direct Installation Costs + Indirect Installation Costs
TOTAL ANNUAL COSTS		
Direct Annual Costs		
Annual Maintenance Costs		
Annual Operator Labor Cost	•	
Total direct annual cost, DAC	-	
Indirect Annual Costs		
Annual Administrative Cost	\$ 458,678	2% of 1CL
Property Tax	\$ 229,339	1% of TCI
Tosticance	\$ 229,339	1% of TCI
Capital recovery, CR	\$ 5,668,450	
Total indirect annual costs, IDAC	\$ 6,585,806	
Total annual cost TAC	\$ 6,585,806	= DAC + IDAC

=TAC / NOx Removed (tpy)

\$ 142,836.80 \$/ton

COST EFFECTIVENESS
Annual cost in terms of NO_x removed