

PROJECT REPORT Adelphia Pipeline Company > Marcus Hook Compressor Station

Plan Approval Application

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road Suite 103 Wexford, PA 15090 (724) 935-2611

September 2018

Project Report 173901.0147

EHS Solutions Delivered Uncommonly Well

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	1
2. PROJECT DESCRIPTION	2
2.1 Compressor Engines	
2.2 Emergency Generator 2.3 Storage Tanks	
3. APPLICABLE REGULATIONS REVIEW	3
3.1 Source Aggregation Analysis	
3.3 Major New Source Review (25 Pa Code §127)	
3.4 Potentially Applicable Federal Emissions Standards	
3.2.1. National Emission Standards for Hazardous Air Pollutants (NESHAP or MACT)	
3.2.2. New Source Performance Standards (NSPS)	
3.3.1. 25 Pa Code §123.1 and 123.2	
3.3.2. 25 Pa Code §123.11 and 123.13	
3.3.3. 25 Pa Code §123.21	
3.3.4. 25 Pa Code §123.31	9
3.3.5. 25 Pa Code §123.41 and 123.43	
3.3.6. 25 Pa Code §127.11	
3.3.7. 25 Pa Code §129.57	
3.3.8. 25 Pa Code §129.96 3.3.9. 25 Pa Code §129.203 and 204	
3.3.9. 25 Pa Code §129.203 and 204 3.3.10. 25 Pa Code §131	
3.3.11. 25 Pa Code §135	
3.3.12. 25 Pa Code §137	
3.3.13. 25 Pa Code §139	
3.2 Title V and State Permitting Requirements	
4. BEST AVAILABLE TECHNOLOGY (BAT) ANALYSIS	12
4.1 BAT For compressor Engines	
4.2 BAT For Emergency Generator Engine	
4.3 BAT For TANKS 4.4 BAT for GHG Emissions Sources	
4.4 DAT IOI GHG EIIIISSIOIIS Sources	
5. SAMPLE EMISSION SOURCE CALCULATIONS	17
APPENDIX A: AREA MAP AND PROCESS FLOW DIAGRAM	Α
APPENDIX B: EMISSION CALCULATIONS & BAT CALCULATIONS	В
APPENDIX C: MANUFACTURER'S SPECIFICATIONS	С
APPENDIX D: PLAN APPROVAL APPLICATION FORMS	D
APPENDIX E: GENERAL INFORMATION FORM (GIF)	Е
APPENDIX F: COMPLIANCE REVIEW FORM	F

APPENDIX G: (COUNTY & MUNICIPAL NOTIFICATIONS	G
APPENDIX H: /	APPLICATION FEE	Н

Adelphia Pipeline Company, LLC (Adelphia) is planning to construct a new natural gas compressor station in Lower Chichester Township, Delaware County, PA (the Marcus Hook CS). Adelphia is submitting this Plan Approval application seeking authorization for the installation of the equipment associated with the construction of the compressor station.

The Marcus Hook Compressor Station (Marcus Hook CS) would be a minor source of air emissions with respect to New Source Review and Title V permitting. Emissions from the equipment associated with the proposed compressor station is reflected in site-wide total emissions shown in this Plan Approval application.

The following sections of this application report address the following topics:

- Section 2: Project Description
- Section 3: Applicable Regulations Review (includes Aggregation Analysis)
- Section 4: Best Available Technology (BAT) Review
- Section 5: Potential Emissions Calculations
- > Appendix A : Area Maps and Process Flow Diagram
- > Appendix B : Detailed Emission Calculations and BAT Analysis
- > Appendix C : Manufacturer's Specifications
- > Appendix D: Plan Approval Application Forms
- > Appendix E: General Information Form (GIF)
- > Appendix F: Compliance Review Form
- > Appendix G: County & Municipal Notifications
- > Appendix H: Application Fee

The proposed Marcus Hook CS would be a natural gas transmission facility covered under Standard Industrial Classification (SIC) Code 4922 and regulated by the Federal Energy Regulatory Commission (FERC). The Marcus Hook CS would compress natural gas from the Marcus Hook interstate pipeline system to be transported downstream along the transmission system. The Marcus Hook CS would have the potential to operate 24 hours per day, 7 days per week and 365 days per year.

At this time, the proposed equipment to be installed at the Marcus Hook CS is as follows:

- Threes (3) Caterpillar (CAT) G3606 natural gas compressor engines (rated at 1,875 horsepower [hp] each) equipped with oxidation catalysts;
- One (1) Cummins GTA28 emergency generator engine (rated at 701 hp) equipped with non-selective catalytic reduction (NSCR);
- One (1) 1,000 gallon produced fluid tank;
- One (1) 500 gallon engine oil tank;
- One (1) 500 gallon triethylene glycol (TEG) tank; and
- Associated piping and components and gas releases.

The proposed sources are described in detail below and depicted on a process flow diagram included in Appendix A.

2.1 COMPRESSOR ENGINES

Adelphia is proposing to install three (3) natural gas-fired reciprocating engines (each rated at 1,875 hp) for the compression and transmission of natural gas. The engines would be 4-stroke, lean burn, spark ignition engines each rated at 1,875 hp and equipped with oxidation catalyst for control of carbon monoxide (CO), volatile organic compound (VOC), and formaldehyde emissions. The compressor engines are expected to operate on a full-time basis and as such are being permitted for 8,760 hours per year. Manufacturer's specifications for the engines and oxidation catalysts are included in Appendix C. This information is based on current design and will, at least, be equivalent to final design.

The function of these reciprocating compressors is to raise the pressure of the gas to overcome the higher operating pressure in the transmission pipeline downstream of the proposed station.

2.2 EMERGENCY GENERATOR

Adelphia is proposing to install one (1) natural gas fired generator that would provide back-up power at the facility. The generator would be powered by a 4-stroke, rich burn, spark ignition engine, rated at 701 hp. This information is based on current design and will, at least, be equivalent to final design. The generator is expected to operate on an emergency basis and as such is being permitted for 500 hours per year.

2.3 STORAGE TANKS

Adelphia is proposing to install one (1) 1,000 gallon produced fluids storage tank, one (1) 500 gallon engine oil tank and one (1) 500 gallon TEG tank. The true vapor pressure of the contents of these tanks would be less than 1.5 psia.

Authorization to begin construction and initially operate a new or modified source must be obtained by complying with key regulatory elements:

- Plan Approval Requirements located in 25 PA Code §127.11 127.51;
- Prevention of Significant Deterioration (PSD) and/or Nonattainment New Source Review programs (NNSR) [both parts of the federal New Source Review (NSR) as incorporated by reference under 25 PA Code §127.81 – 127.83 for PSD and implemented in the Pennsylvania SIP under 25 PA Code §127.201 – 127.218 for NNSR];
- Applicable federal and state emission standards and control programs contained in the Pennsylvania State Implementation Plan (SIP); and
- Title V of the 1990 Clean Air Act Amendments (as incorporated and implemented in the Pennsylvania SIP under 25 PA Code §127.501 127.543).

This section of the report addresses the applicability of the proposed project to these permitting programs and requirements.

3.1 SOURCE AGGREGATION ANALYSIS

To determine applicability of various permitting programs to the proposed Marcus Hook CS, a single source determination must be performed for the site. According to the Department's Guidance for Performing Single Stationary Source Determinations for Oil and Gas Industries (Docket 270-0810-006), the following three factors must all be met in order for emission sources to be aggregated and considered a single facility: (1) the sources all belong to the same industrial grouping; (2) the activities are located on one or more contiguous or adjacent properties; and (3) the activities are under common control.

The proposed Marcus Hook CS would be sited within an existing industrial complex. However, Adelphia does not own, or control, any additional sources that are directly adjacent to the Marcus Hook CS. The nearest source controlled by Adelphia is a meter station located almost exactly a quarter mile away and which is situated in Delaware. As a result of the above-described analysis, Adelphia has determined that the proposed Marcus Hook CS is a single source and should not be aggregated with any other source.

3.3 MAJOR NEW SOURCE REVIEW (25 PA CODE §127)

The Federal New Source Review (NSR) program applies to major stationary sources. The NSR permitting regulations are comprised of two programs: 1) Prevention of Significant Deterioration (PSD) for projects located in areas where specified pollutant levels have met National Ambient Air Quality Standards (NAAQS); and 2) Nonattainment New Source Review (NNSR) for projects located in areas where pollutant levels have not attained the corresponding NAAQS. The NSR program regulates the installation of new major sources or major modifications to existing major sources. The Marcus Hook CS is located in Delaware County which is classified as attainment with all NAAQS except for ozone and PM_{2.5}. Due to its location within the Ozone Transport Region (OTR), in accordance with 25 Pa. Code 127.201(f), a facility located in Delaware County that emits or has the potential to emit at least 25 tpy VOC or NO_X would be considered a major facility and would be subject to the requirement applicable to a major facility located in a severe nonattainment area for ozone. These requirements would include Lowest Achievable Emission Rate (LAER), an alternative site analysis and obtaining emissions offsets. However, if NNSR permitting is not triggered, then the project is deemed to not significantly impact the ability of the area to attain the NAAQS. Furthermore, Delaware County is classified as 'moderate' nonattainment

area for $PM_{2.5}$. As such, the major source threshold for this pollutant, and its precursors (NO_x and SO_2), is 100 tpy for $PM_{2.5}$.

The estimated emissions as a result of the proposed project, as shown in Table 3-1, are below major source thresholds for NSR under 25 Pa Code Section 127, Subchapter E and PSD permitting under 25 Pa Code Section 127, Subchapter D. As such, NSR is not applicable to this plan approval application.

	Potential Site-Wide PTE	Major Source Threshold	NSR	Subject to
Pollutant	(TPY) ¹	(TPY)	Program	Major NSR?
PM10	1.91	250	PSD	No
PM _{2.5}	1.91	100	NNSR	No
SO ₂	0.11	250/100	PSD/NNSR	No
CO	10.78	250	PSD	No
NOx	17.07	100/25	PSD/NNSR ²	No
VOC	16.69	25	NNSR	No
CO ₂ e	33,151	NA ³	PSD	No

Table 3-1: NSR Major Source Thresholds⁴

¹ PTE includes site-wide emissions from all sources, including storage tanks, fugitive leaks, and blowdowns.

 2 NO₂ is also a regulated PSD pollutant with a major source threshold of 250 tpy and a precursor of PM_{2.5} with a major source threshold of 100 tpy.

³ Only applicable if another pollutant exceeds major source threshold for PSD.

⁴ Emissions are based on current design for which the formal bidding process is underway. Final design specifications are to be, at least, equivalent.

3.4 POTENTIALLY APPLICABLE FEDERAL EMISSIONS STANDARDS

Two types of federal emission standards could apply to certain operations being permitted as part of this project. These emission standards are: New Source Performance Standards (NSPS) codified in 40 CFR 60 and National Emission Standards for Hazardous Air Pollutants (NESHAP) standards codified in 40 CFR 63.

3.2.1. National Emission Standards for Hazardous Air Pollutants (NESHAP or MACT)

Regulatory requirements for facilities subject to NESHAP standards, otherwise known Maximum Available Control Technology (MACT) Standards for source categories, are contained in 40 CFR Part 63. 40 CFR Part 61 NESHAP standards are defined for specific pollutants while Part 63 NESHAPs are defined for source categories where allowable emission limits are established on the basis of a MACT determination for a particular major source. A major source of HAP is defined as having potential emissions in excess of 25 tpy for total Hazardous Air Pollutants (HAPs) and/or potential emissions in excess of 10 tpy for any individual HAP.

Potential HAP emissions from the proposed Marcus Hook CS would be below the major source thresholds, as shown in Appendix B, and therefore the facility would be an area source of HAP. The potential applicability of specific MACT standards to the Marcus Hook CS is discussed below.

3.2.1.1. NESHAP Subpart HH - Natural Gas Production Facilities

Subpart HH – NESHAP for natural gas production facilities applies to glycol dehydration units at natural gas production facilities that are major or area sources of HAP emissions prior to custody transfer to the transmission pipeline. The proposed project would be located after custody transfer. Therefore, the proposed Marcus Hook CS would not be a natural gas production facility as defined by the rule, and this subpart would not be applicable.

3.2.1.2. NESHAP Subpart HHH - Natural Gas Transmission and Storage Facilities

Subpart HHH, NESHAP from Natural Gas Transmission and Storage Facilities applies to glycol dehydration units at natural gas transmission and storage facilities that are major sources of HAP emissions located downstream of the point of custody transfer (after processing and/or treatment in the production sector), but upstream of the distribution sector. The Marcus Hook CS would be an area source of HAP emissions; therefore, the Marcus Hook CS would not be subject to Subpart HHH.

3.2.1.3. NESHAP Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

Stationary reciprocating internal combustion engines (RICE) at both area and major sources of HAP emissions are potentially subject to Subpart ZZZZ – *NESHAP for Stationary Reciprocating Internal Combustion Engines* (*RICE*). Stationary RICE at facilities that are major sources of HAP are considered new if they are ordered after June 12, 2006. Per 40 CFR §63.6590(c), new area source (such as the Marcus Hook CS) stationary RICE are required to meet the requirements of this MACT standard by meeting the applicable requirements of the applicable New Source Performance Standard in 40 CFR 60 (Subpart IIII for compression ignition engines and Subpart JJJJ for spark ignition engines). No further requirements apply to such engines under NESHAP Subpart ZZZZ.

The three (3) proposed CAT 3606 compressor engines and the Cummins GTA28 generator engine at the proposed Marcus Hook CS would comply with Subpart ZZZZ by complying with 40 CFR 60, Subpart JJJJ as described in the following section.

3.2.2. New Source Performance Standards (NSPS)

Pennsylvania has received delegation from EPA to regulate facilities subject to NSPS. Regulatory requirements for facilities subject to NSPS are contained in Pennsylvania SIP in 25 Pa Code §122 and 40 CFR Part 60. The potential applicability of NSPS standards to the proposed operations at the Marcus Hook CS are:

- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engine
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.2.2.1. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka to those constructed, reconstructed, or modified prior to 1984. All storage tanks located at the Marcus Hook CS would be constructed after these dates; therefore, the requirements of Subparts K and Ka do not apply. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All storage tanks

at the Marcus Hook CS were constructed after this date, but do not have a capacity greater than 75 m³. Therefore, Subpart Kb would not apply to the storage tanks at the Marcus Hook CS.

3.2.2.2. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines, applies to manufacturers, owners and operators of stationary spark (SI) engines. The requirements for SI engines with a maximum power rating greater than or equal to 500 hp (except lean burn engines 500 hp \leq hp < 1,350) apply to owner/operators of such engines ordered on or after July 1, 2007.

The proposed Cummins GTA28 emergency generator engine is a 4-stroke, rich burn spark ignition RICE rated at 701 hp. The engine would be equipped with a non-selective catalytic reduction (NSCR or "three-way") catalyst for control of NO_x, CO, VOC, and HAPs. The engine would be operated only for electric generation during emergency situations and would be subject to the following emissions standards per Table 1 to NSPS Subpart JJJJ applicable to emergency use engines.

Table 3-2: NSPS Subpart JJJJ Emission Standards for Emergency Natural Gas Engines ≥ 130 HP Manufactured On or After 7/1/2010

Pollutant	Emission Standards (g/hp-hr)	Cummins GTA28 Specifications - with NSCR (g/hp-hr) **
NOx	2.0	2.0
CO	4.0	4.0
VOC*	1.0	1.0

*VOC as defined in NSPS JJJJ does not include formaldehyde.

**Emissions are based on current design for which the formal bidding process is underway. Final design specifications are to be, at least, equivalent.

The proposed three (3) CAT G3606 compressor engines would be new 4-stroke, lean burn spark ignition RICE rated at 1,875 hp each. The compressor engines would be equipped with oxidation catalysts and would be subject to the following emissions standards per Table 1 to NSPS Subpart JJJJ applicable to non-emergency use engines. All catalysts will be guaranteed by the manufacturer to have emissions less than those cited in Table 3-3 below.

Table 3-3: NSPS Subpart JJJJ Emission Standards for Non-Emergency Natural Gas Engines ≥ 500 HP Manufactured On or After 7/1/2010

Pollutant	Emission Standards (g/hp-hr)	CAT G3606 Specifications - with Oxidation Catalyst (g/hp-hr)**
NO _X	1.0	0.3
CO	2.0	0.17
VOC*	0.7	0.16

*VOC as defined in NSPS JJJJ does not include formaldehyde.

**Emissions are based on current design for which the formal bidding process is underway. Final design specifications are to be, at least, equivalent.

It should be noted that 40 CFR §60.4243(b)(1) allows for compliance with this subpart to be demonstrated by purchasing an engine certified by the manufacturer according to specified procedures and then operating the engine in accordance with the manufacturer's emission-related written instructions. However, while the proposed engines at Marcus Hook CS would be equipped with control technology to achieve the emissions limits shown in Table 3-3, certification is not available from the engine manufacturer.

Therefore, Adelphia would demonstrate compliance with this subpart for all non-certified engines at the Marcus Hook CS in accordance with 40 CFR 60.4243(b)(2)(ii), which requires Adelphia to keep a maintenance plan and records of conducted maintenance and to maintain and operate the engines, to the extent practicable, in a manner consistent with good air pollution control practices for minimizing emissions. Additionally, Adelphia would be required to conduct an initial performance test and subsequent compliance testing every 8,760 hours of operation or three (3) years, whichever comes first, to demonstrate continued compliance. Testing would be conducted in accordance with 40 CFR §60.4244.

Records of all notifications submitted to comply with this subpart, maintenance conducted on the engines, and performance testing would be maintained in accordance with 40 CFR §60.4245(a). Initial notification of construction commencement would be submitted as required in 40 CFR §60.7(a)(1) and §60.4245(c), and performance testing results would be reported as required in 40 CFR §60.4245(d).

3.2.2.3. NSPS Subpart OOOO - Natural Gas Production, Transmission, and Storage

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and before September 18, 2015. The proposed project does not include any source categories within the applicability dates for this subpart. Therefore, this subpart would not apply.

3.2.2.4. NSPS Subpart OOOOa - Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- Hydraulically fractured wells;
- Centrifugal compressors with wet seals located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- Pneumatic pumps located in the production and processing segments;
- Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The Marcus Hook CS would not be a gas wellhead, nor is it a natural gas processing plant. Therefore, the only potentially applicable requirements for the equipment at the station are those for new storage vessels,

reciprocating compressors, fugitive emission sources, and pneumatic controllers, where construction commenced after September 18, 2015.

The produced water storage vessel for the Marcus Hook CS commenced construction after the applicability date, and would be potentially subject to requirements of Subpart OOOOa. Subpart OOOOa applies to storage vessels with VOC emissions equal to or greater than 6 tpy. As shown in Appendix B, the storage vessel at the facility would have VOC emissions less than 6 tpy and, therefore, would not be subject to Subpart OOOOa.

The reciprocating compressors at the facility are subject to the requirements of NSPS 0000a, 40 CFR §60.5385a, which requires owners and operators of affected reciprocating compressors to change the rod packing prior to each operating 26,000 hours or prior to 36 months of since start up or the last packing replacement. Adelphia would comply with the requirements of this rule for the compressors at the facility.

The pneumatic controllers at the facility would potentially be subject to NSPS 0000a. All pneumatic controllers proposed to be located at the Marcus Hook CS would either be intermittent or air/electric. Therefore, these units would not be subject to the requirements of Subpart 0000a.

The collection of fugitive emission sources at the Marcus Hook CS would be an affected facility under this subpart. Per 60.5397a, Adelphia would be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. Adelphia would also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a quarterly basis. Adelphia would also be subject to the applicable recordkeeping and reporting requirements of the rule.

3.5 POTENTIALLY APPLICABLE STATE STANDARDS

The Pennsylvania Code contains regulations that fall under two (2) main categories: the regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., sulfur compound emissions from combustion units). The generally applicable requirements are straightforward (e.g., filing of emission statements) and, as such, are not discussed in further detail. The specific requirements associated with the proposed Marcus Hook CS are discussed in the following section.

3.3.1. 25 Pa Code §123.1 and 123.2

25 Pa Code §123.1 and 123.2, *Prohibition of Certain Fugitive Emissions* and *Fugitive Particulate Matter*, both state exceptions to fugitive emissions sources and methods for controlling fugitive emissions. This regulation applies to the facility in general.

3.3.2. 25 Pa Code §123.11 and 123.13

25 Pa Code §123.11, *Particulate Emissions: Combustion Units,* defines particulate matter emissions for combustion units. Combustion units are defined in §121.1 as stationary equipment used to burn fuel primarily for the purpose of producing power or heat by indirect heat transfer such as boilers. This definition does not apply to the proposed generator and compressor engines at the Marcus Hook CS. As such, the particulate matter emissions limitations for processes in 25 Pa Code §123.13 *Particulate Emissions: Processes* would apply to these units instead.

25 Pa Code §123.13 defines particulate matter emissions limitations for processes. For processes excluded from Table 1 of §123.13(b), particulate emissions are limited to 0.04 gr/dscf and 0.02 gr/dscf, for exhaust flowrates less than 150,000 dscfm and greater than 300,000 dscfm, respectively. Particulates from equipment with

exhaust flowrates between 150,000 dscfm and 300,000 dscfm are limited to the allowable emission rate calculated using the formula in 123.13(c)(1)(ii). As all proposed combustion sources at the facility would be fueled exclusively with pipeline quality natural gas, potential particulate emissions from all sources would be expected to comply with these requirements.

3.3.3. 25 Pa Code §123.21

25 Pa Code §123.21, *Sulfur Compound Emissions: General,* states that the concentration of sulfur oxides in the effluent gas may not exceed 500 ppmvd. The proposed equipment at Marcus Hook CS would combust pipeline quality natural gas and the sulfur oxide emissions would be expected to be well below this concentration level in the combustion exhaust.

3.3.4. 25 Pa Code §123.31

25 Pa Code §123.31, *Odor Emissions,* prohibits the emission of malodorous air contaminants from any source that are detectable outside the facility fence line. This regulation applies to the facility in general. The gas in the pipeline will be odorized. However, Adelphia would take measures to minimize odor from the Marcus Hook CS operations by combusting pipeline quality natural gas fuel only, using air pneumatics, employing gas detection monitors inside the compressor station building that is continuously monitored by a supervisory control and data acquisition (SCADA) system, and by use of pressure/vacuum reliefs on the produced fluid storage tank to minimize atmospheric venting under normal operations.

3.3.5. 25 Pa Code §123.41 and 123.43

25 Pa Code §123.41, *Visible Emissions: Limitations,* states that a facility may not emit visible emissions equal to or greater than 20% for a period or periods aggregating more than 3 minutes in any 1 hour, or equal to or greater than 60% at any time. This standard would apply to the proposed combustion units at the Marcus Hook CS. The use of pipeline quality natural gas as fuel would ensure compliance with this requirement.

3.3.6. 25 Pa Code §127.11

25 Pa Code §127.11, *Plan Approval Requirements*, outlines requirements for Plan Approvals required to authorize construction or modification of air contamination sources. Construction, installation, modification, or reactivation of air contaminant sources or air pollution control devices is prohibited unless otherwise approved by the Department. The construction of new equipment at the proposed Marcus Hook CS would be subject to Plan Approval permitting requirements under this requirement.

3.3.7. 25 Pa Code §129.57

25 Pa Code §129.57, *Storage Tanks Less Than or Equal to 40,000 Gallons Capacity Containing VOCs*, contains requirements for storage vessels less than 40,000 gallons in capacity that contain VOCs. Under this section, above-ground storage tanks with a capacity greater than or equal to 2,000 gallons which contain VOCs with a vapor pressure greater than 1.5 psia must be equipped with pressure relief valves which are maintained in good operating condition and which are set to release at no less than 0.7 psig of pressure or 0.3 psig of vacuum (or the highest possible pressure and vacuum in accordance with state or local fire codes or the National Fire Prevention Association (NFPA) guidelines). The proposed produced fluid storage tank, oil storage tank, and TEG tank for the Marcus Hook CS would be less than 2,000 gallons in capacity, and also would not contain VOCs with a vapor pressure greater than 1.5 psia (see EPA TANKS output for vapor pressure data in Appendix B). As such, the proposed tanks would not be subject to the requirements in 25 Pa. Code §129.57.

3.3.8. 25 Pa Code §129.96

25 Pa Code §129.96, *Additional RACT Requirements for Major Sources of NOx and VOCs*, establishes control standards for major stationary sources of NO_x and VOC under the Reasonably Available Control Technology (RACT) program. The standards are also only applicable for sources in existence on or before July 20, 2012. Major stationary sources of NO_x and VOC are defined in 25 PA Code §121.1. For RACT purposes, the applicable major source thresholds are 100 tons per year of NO_x and 50 tons per year of VOC.

This regulation would not apply because the Marcus Hook CS would not have potential emissions of NO_X in excess of 100 tpy or VOC in excess of 50 tpy and because the compressor station would be built after July 20, 2012. However, note that the limitation on hours of operation would be consistent with presumptive RACT for an emergency engine as set for in 25 Pa Code §129.93.

3.3.9. 25 Pa Code §129.203 and 204

25 Pa Code §129.203, *Stationary Internal Combustion Engines*, establishes NO_x RACT emission limits for stationary internal combustion engines rated for more than 1,000 hp which are located in Bucks, Chester, Delaware, Montgomery, or Philadelphia County. The proposed Marcus Hook CS would be located in Delaware County. As such, the proposed compressor engines would be subject to these requirements. The allowable emissions for spark-ignited engines are 3.0 grams of NO_x per brake horsepower- hr. Also, the owner or operator of the stationary internal combustion engine shall calculate the difference between the allowable and actual emissions from the unit during the period from May 1 through September 30. Adelphia would comply with the requirements of this rule by installing natural gas fired spark ignition compressor engines that do not exceed the allowable emissions rate. Adelphia would also keep records of actual emissions from each engine for the specified reporting period. Actual emissions of NO_x from the proposed engines would be determined using the 1-year average emission rate calculated from the most recent permit emission limit compliance demonstration test data for NO_x.

3.3.10. 25 Pa Code §131

25 Pa Code §131, *Ambient Air Quality Standards*, references National Ambient Air Quality Standards (NAAQS) for criteria pollutants and establishes State Ambient Air Quality Standards (SAAQS) for settled particulate, beryllium, fluorides, and hydrogen sulfide. As discussed in Section 3.3, the proposed project would not trigger NSR and the associated emissions of criteria pollutants would not reasonably be anticipated to exceed the corresponding NAAQS. The proposed project would not emit any quantifiable amount of beryllium, fluorides, or hydrogen sulfide, and as such the corresponding SAAQS would not apply.

3.3.11. 25 Pa Code §135

25 Pa Code §135, *Reporting of Sources*, includes requirements for submittal of emissions data to the Department for the purposes of evaluating the effectiveness of regulations, identifying available or potential emission offsets, and maintaining an accurate inventory of air contaminant emissions for air quality assessment and planning activities. As the proposed Marcus Hook CS would be considered part of an oil and natural gas system, emissions from the sources at the site would be subject to reporting and recordkeeping requirements under this section. As such, Adelphia would submit annual emissions inventory data by March 1 of year per the Department's requirements.

3.3.12. 25 Pa Code §137

25 Pa Code §137, *Air Pollution Episodes*, contains requirements intended to prevent the excessive buildup of air pollutants during air pollution episodes, thereby preventing the occurrence of an emergency due to the effects of

the pollutants on the health of persons. This chapter specifically addresses air pollution episodes and the Department's response to such episodes. §137.4 specifies certain industrial sources that must have standby plans, which includes coal- and oil-fired electric and steam generating facilities and other specific manufacturing industries (e.g., metals, refining, paper, etc.). The proposed Marcus Hook CS would be a natural gas transmission facility, which is not an industry specified by these regulations.

3.3.13. 25 Pa Code §139

25 Pa Code §139, *Sampling and Testing*, establishes requirements for source operators to provide adequate sampling ports, safe sampling platforms and adequate utilities, and establishes testing procedures to be followed, for performance testing when required by the Department. The proposed Marcus Hook CS would be designed and constructed to accommodate performance testing as required by applicable federal regulations (e.g., NSPS Subpart JJJJ) and any permit conditions set forth by the Department in the ensuing Plan Approval.

3.2 TITLE V AND STATE PERMITTING REQUIREMENTS

The Title V Operating Permit program applies to stationary sources with the potential to emit over 100 tons per year (tpy), or a lower major source threshold defined by nonattainment status, of any individual criteria air pollutant, 10 tpy of any individual Hazardous Air Pollutant (HAP), or 25 tpy of combined HAPs. Since this site would be in Delaware County, PA which is in the severe ozone transport region, a major source threshold of 25 tpy is applicable for VOC and NO_x. As shown in Appendix B, maximum potential emissions for NO_x, VOC, and total HAP from the Marcus Hook CS would not exceed the major source thresholds for Title V. Therefore, the Marcus Hook CS would be a minor source with respect to the Title V Program after the construction of the proposed project. Adelphia would apply for a State Only Operating Permit once the Plan Approval is issued and the facility is constructed.

With respect to greenhouse gases (GHGs), EPA had previously incorporated provisions into the existing Title V rules via the Greenhouse Gas Tailoring Rule. These included the specification of a major source threshold and subject to regulation/significant emission rate of 100,000 tpy and 75,000 tpy of carbon dioxide equivalent (CO₂e), respectively¹, for current projects. On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for greenhouse gases (GHGs) under the PSD and Title V programs². In essence, GHGs remain "subject to regulation" but only for sources which otherwise trigger Title V requirements. As such, the Marcus Hook CS would not be subject to the regulation of GHG emissions, as it would not trigger Title V requirements.

¹ CO₂e is carbon dioxide equivalents calculated as the sum of the six well-mixed GHGs (CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) with applicable global warming potentials per 40 CFR 98 applied.

² http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf

Under PADEP air permitting regulations in 25 Pa Code §127.1, new sources of air emissions must implement Best Available Technology (BAT). The Marcus Hook CS would be installing new equipment, sources applicable to this requirement that must be deemed by PADEP to satisfy this requirement before a Plan Approval can be issued. The section addresses the proposed BAT for the various emission sources proposed as part of this project.

4.1 BAT FOR COMPRESSOR ENGINES

The proposed natural gas-fired compressor engines would be 1,875 bhp four stroke-lean burn Caterpillar G3606 engines. The engines would be equipped with air/fuel ratio control to reduce NO_x emissions. Caterpillar's specifications for this engine indicate an emission rate of 0.3 g/bhp-hr, which is much lower than the current applicable limit of 1.0 g/bhp-hr required by NSPS Subpart JJJJ for engines of this size, type, and use. Furthermore, this emission rate would be compliant with PADEP's BAT limit for compressor engines in the production/gathering segment of the industry authorized under GP-5 as finalized in February 2013. As such, Adelphia believes that the potential NO_x emissions rate of 0.3 g/bhp-hr complies with the BAT requirement in 25 Pa Code § 127.1 and as such, Adelphia would propose a limit of 0.3 g/bhp-hr.

A potential option to further reduce NO_X emissions is through the use of Selective Catalytic Reduction (SCR) control technology. The SCR process chemically reduces the NO_X molecule into molecular nitrogen and water vapor. A nitrogen-based reagent such as ammonia or urea is injected into the engine exhaust upstream of a catalyst bed. The exhaust gas mixes with the reagent and enters a reactor module containing catalyst. The hot flue gas and reagent diffuse through the catalyst. The reagent reacts selectively with the NO_X within a specific temperature range and in the presence of the catalyst and oxygen. The rate of reaction would depend on the type of catalyst, reagent, and the temperature. The reaction requires an optimum temperature range of 480 to 800 °F and fairly constant exhaust temperatures for best performance. ³

SCR is not a widely used technology for natural gas-fired combustion engines like those proposed for this project. Although potentially technically feasible, SCR is very costly. Capital costs are significantly higher than other types of NO_X controls due to the volume of catalyst that is required. The Operating & Maintenance (O & M) costs of using SCR are driven by the reagent usage, catalyst replacement, and increased electrical power usage. The following shows budgetary cost estimates for installation of SCR for each of the compressor engines proposed for this project:

Capital Cost	~ \$990,000
O & M Cost	~ \$200,000
Annual Cost	~ \$300,000

The compressor engines being proposed for the Marcus Hook CS are estimated with potential emissions at approximately 5.43 tpy each. At an estimated NO_X control efficiency of 90%, the cost effectiveness of SCR on the engines at the proposed Marcus Hook CS would be estimated to be greater than \$60,000 per ton (see Appendix B for detailed cost-effectiveness calculations). Therefore, SCR is determined to be **economically infeasible** for this application. As such, Adelphia believes that the proposed NO_X emission rate of 0.3 g/bhp-hr complies with the BAT requirement in 25 Pa Code § 127.1.

³ <u>http://www.epa.gov/ttn/catc/dir1/fscr.pdf</u>

Adelphia Pipeline Company | Marcus Hook Compressor Station Trinity Consultants

Adelphia is proposing the use of an oxidation catalyst as BAT for controlling emissions of Carbon Monoxide (CO) and Volatile Organic Compounds (VOC) from the compressor engines. The rate of formation of CO during natural gas combustion depends primarily on the efficiency of combustion. The formation of CO occurs in small, localized areas inside the combustion chamber (engine cylinder) where oxygen levels cannot support the complete oxidation of carbon to CO₂. CO emissions resulting from natural gas combustion can be decreased via catalytic oxidation.

This reaction is promoted by several noble metal-enriched catalysts at high temperatures. The oxidation catalyst will be guaranteed a CO removal efficiency of 93% at this temperature, resulting in an emission rate of 0.17 g/bhp-hr. This emission rate is well below the current limit of 2.0 g/bhp-hr required by NSPS Subpart JJJJ for non-emergency lean burn natural gas engines \geq 1,350 HP manufactured after July 1, 2010, and is less than the PADEP's BAT level for compressor engines under GP-5 (0.25 g/bhp-hr). As such, Adelphia believes that the potential CO emissions rate complies with the BAT requirement in 25 Pa Code § 127.1.

Catalytic oxidation also promotes the conversion of non-methane/non-ethane hydrocarbon (NMNEHC) and formaldehyde to carbon dioxide and water, over the face of the catalyst, thereby reducing emissions of these pollutants. The efficiency of the oxidation catalyst proposed for the Marcus Hook CS compressor engines is estimated to be at least 50% for NMNEHC emissions resulting in an emission rate of 0.16 g/bhp-hr, and at least 75% for formaldehyde emissions resulting in an emission rate of 0.04 g/bhp-hr. The engines' NMNEHC emission rate is well below the current limit of 0.7 g/bhp-hr required by NSPS Subpart JJJJ for non-emergency lean burn natural gas engines \geq 1,350 HP manufactured after July 1, 2010, and the proposed NMNEHC and formaldehyde emission limits are compliant with PADEP's BAT limits in the recently finalized GP-5. Similar to CO and NO_X, Adelphia believes that the potential NMNEHC and formaldehyde emission rates comply with the BAT requirement in 25 Pa Code § 127.1.

Potential BAT options for both PM/PM₁₀ and SO₂ emissions, based on a search in the EPA's Reasonably Available Control Technology (RACT)/Best Available Control Technology (BACT)/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC) database, indicate that the only technologies used to reduce these pollutants from natural gas burning engines are good combustion practices and low-sulfur fuels. The sulfur content of the pipeline quality natural gas, which would be used in the engines, is very low. Adelphia would also operate the engines in accordance with the manufacturer's recommended practice to minimize emissions of particulate matter and SO₂. Both technologies are considered base-case and are equally effective. Adelphia proposes that the combination of good combustion practices and the firing of pipeline quality natural gas be considered BAT for the proposed compressor engines.

The proposed BAT levels for the new engines at the Marcus Hook CS are summarized below. These levels are at least as stringent as the presumptive BAT levels that PADEP established in the GP-5 permit conditions. See Appendix B for a top-down BACT analysis.

	Proposed BAT for Compressor Engines				
Pollutant Controls Removal Efficienc		Removal Efficiency	Emission Rate		
NO _X	Lean-Burn, Air-to- Fuel Ratio Control	Inherent Design	0.3 g/bhp-hr		
СО	Catalytic Oxidation	93 %	0.17 g/bhp-hr		
NMNEHC	Catalytic Oxidation	~50 %	0.16 g/bhp-hr		
нсно	Catalytic Oxidation	75 %	0.04 g/bhp-hr		

Table 4-1. Summary of Proposed BAT for Compressor Engines

4.2 BAT FOR EMERGENCY GENERATOR ENGINE

The Cummins GTA28 emergency generator engine would be expected to operate less than 500 hours per year. Based on potential emissions from the unit, the emergency generator engine is exempt from Plan Approval permitting. The engine would be equipped with a non-selective catalytic reduction (NSCR or "three-way") catalyst for controlling emissions of NOX, CO, and VOC. The engine will comply with Federal requirements of NSPS JJJJ.

4.3 BAT FOR TANKS

NSPS 0000a regulates VOC emissions from storage tanks at oil and gas facilities. Emissions control is required for storage tanks with VOC emissions greater than 6.0 tpy, as EPA has deemed controls for such tanks to be cost effective. The proposed produced fluid tank for the Marcus Hook CS would be estimated to have potential VOC emissions from combined working, breathing, and flashing losses at 0.50 tpy. As such, the installation of add-on controls is believed to be economically infeasible for this tank. Potential emissions from all other storage tanks are even lower than the produced fluid tank.

4.4 BAT FOR GHG EMISSIONS SOURCES

While the proposed construction of the Marcus Hook CS would not trigger PSD permitting for any regulated pollutant based on maximum potential emission rates, Adelphia is including this discussion of BAT for GHG pollutants as requested by PADEP for similar projects. EPA has published white papers for different industries to discuss available GHG control technologies. However, at this time, there is no white paper specifically for the natural gas sector. In the permitting guidance, EPA agrees that energy efficiency improvements would satisfy the BACT requirements for GHGs in most cases. As such, GHG BAT would be expected to be limited to the use of energy efficient design and the minimization of GHG releases through good work practices for the natural gas industry.

Adelphia is proposing that 40 CFR 60 Subpart OOOOa requirements be utilized to satisfy Best Available Technology (BAT) requirements for fugitive emissions (as opposed to pulling in state-specific Leak Detection and Repair [LDAR] requirements such as GP-5), as the requirements would be stringent and prevent confusing regulatory overlap (at no additional environmental benefit). As noted in Section 3.3.2.4, the requirements of this regulation would apply to the Marcus Hook CS. The regulation does not distinguish between gathering and transmission facilities in terms of LDAR requirements; the Marcus Hook CS would be subject to OGI monitoring requirements as a transmission facility. Fugitive GHG (and to a lesser extent, VOC) leaks would be minimized by adhering to good operating and maintenance practices. Despite the lack of federal or PADEP guidance on conducting control technology reviews for GHGs, Adelphia believes the proposed project is designed to reduce GHG emissions where technically and economically feasible and, therefore, to a level that would be consistent with BACT or BAT.

In addition, Adelphia has reviewed EPA's voluntary Natural Gas Star program for potential emission reduction measures.⁴ Total site-wide VOC and GHG emissions from fugitive and blowdown sources are estimated to be low. Therefore, any additional emission reduction would not be cost effective due to the minimal emission reductions achieved. Table 4-5 summarizes the evaluation of the Natural Gas Star program practices for the proposed compressor station.

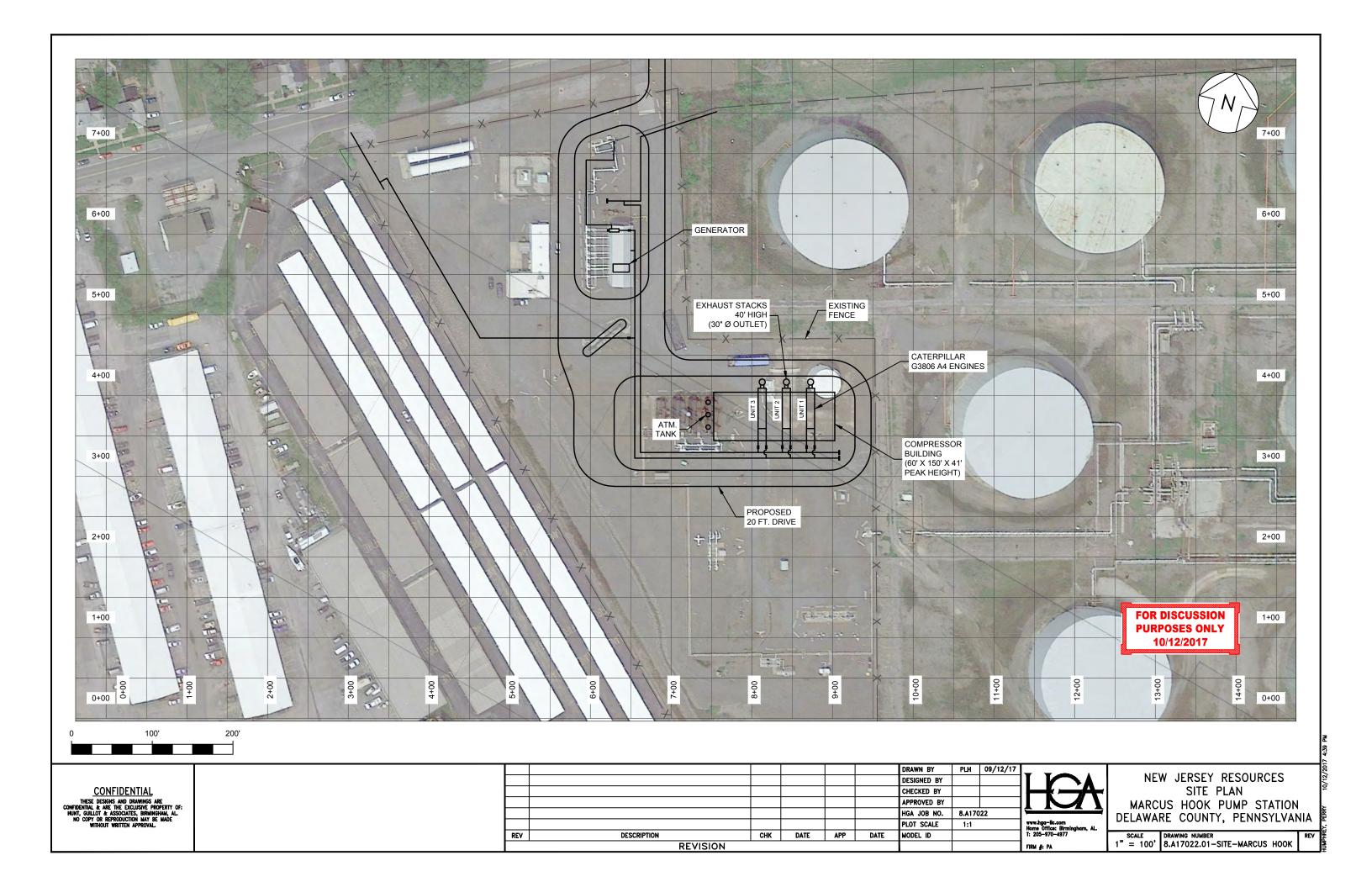
⁴ http://www.epa.gov/gasstar/

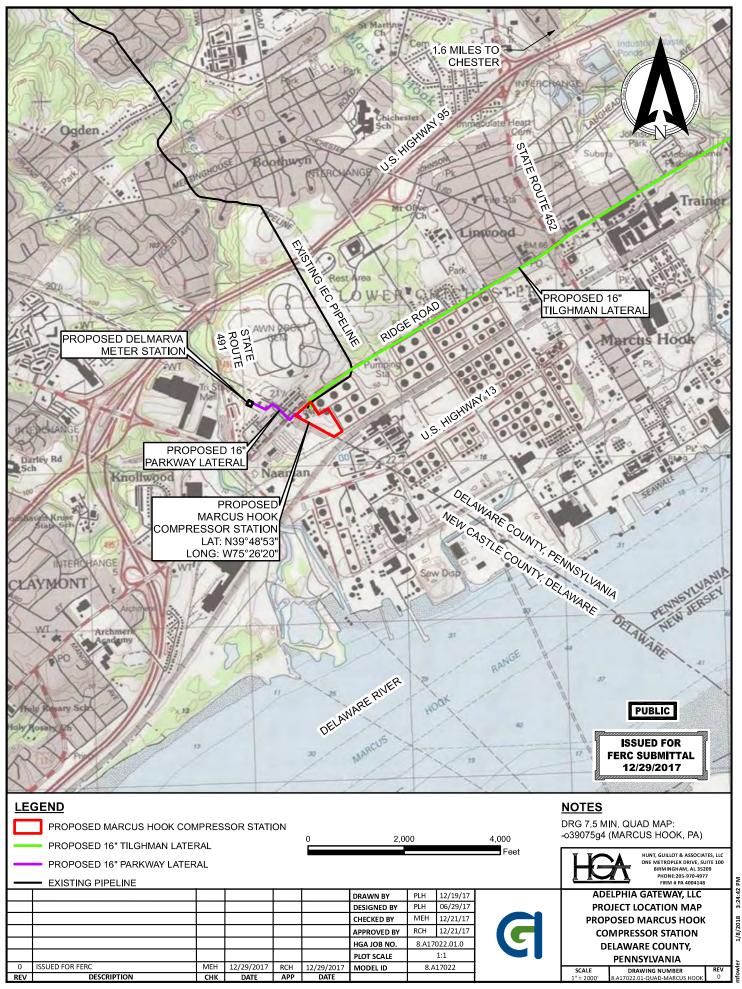
Table 4-5. Summary of Natural Gas Star Program

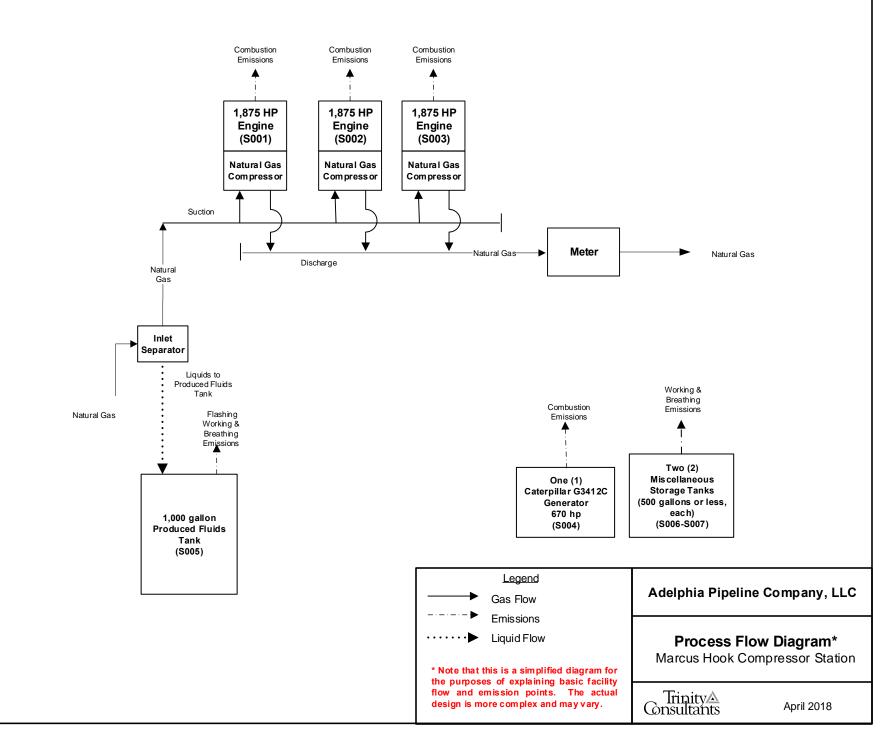
Energy Star Project ⁵	Feasibility Assessment
Replace Gas Starters with Air or Nitrogen	Feasible – Engine gas starters may be replaced with air. However, this requires installation of a large compressed air system that is not practical.
Reduce Natural Gas Venting with Fewer Compressor Engine Startups and Improved Engine Ignition	Feasible – Engines are intended to operate at all times other than preventative maintenance shutdowns. Adelphia's preventative maintenance program would reduce engine starts related to unanticipated engine shutdown/repairs.
Reducing Methane Emissions from Compressor Rod Packing Systems	Not feasible – This reduction strategy is applicable to older compressors with potentially worn packing. Compressors are equipped with newly installed packing by design. Adelphia would follow the manufacturer's recommended procedures and Subpart 0000a for proper maintenance and inspection of compressor rod packing systems.
Test and Repair Pressure Safety Valves	Feasible - Completed by Adelphia on periodic basis.
Eliminate Unnecessary Equipment and/or Systems	Adelphia would only be installing what is required for this application.
Install Automated Air/Fuel Ratio Controls	Feasible – Engines would be equipped with state-of-the art AFR (air-to-fuel-ratio) controllers.
Install Electric Motor Starters	Not feasible – these engines are intended to operate at all times therefore the number of starts is minimized and the potential methane reductions would be minimal.
Reducing Emissions When Taking Compressors Off- Line	Feasible - Blowdown gas may be injected into the fuel gas recovery system. However, the proposed facility is a transmission facility that is expected to operate at or near 100% capacity year round. Shutdown events are expected to be very infrequent, and the current design of the station does not allow for recycling of engine blowdowns.
Replace Compressor Cylinder Unloaders	Not Applicable.
Install Electric Compressors	Not Feasible - Electric compressors are cost prohibitive even if electric supply is available. As stated in the NG Star fact sheet "The capital costs and the electricity costs, however, are higher for an electric motor compared to those for a gas driven engine. The savings from maintenance costs relative to the cost of energy would not be justified unless the engine is at the end of its economic life."
Wet Seal Degassing Recovery System for Centrifugal Compressors	Not applicable to CAT engines - units are reciprocating compressors.

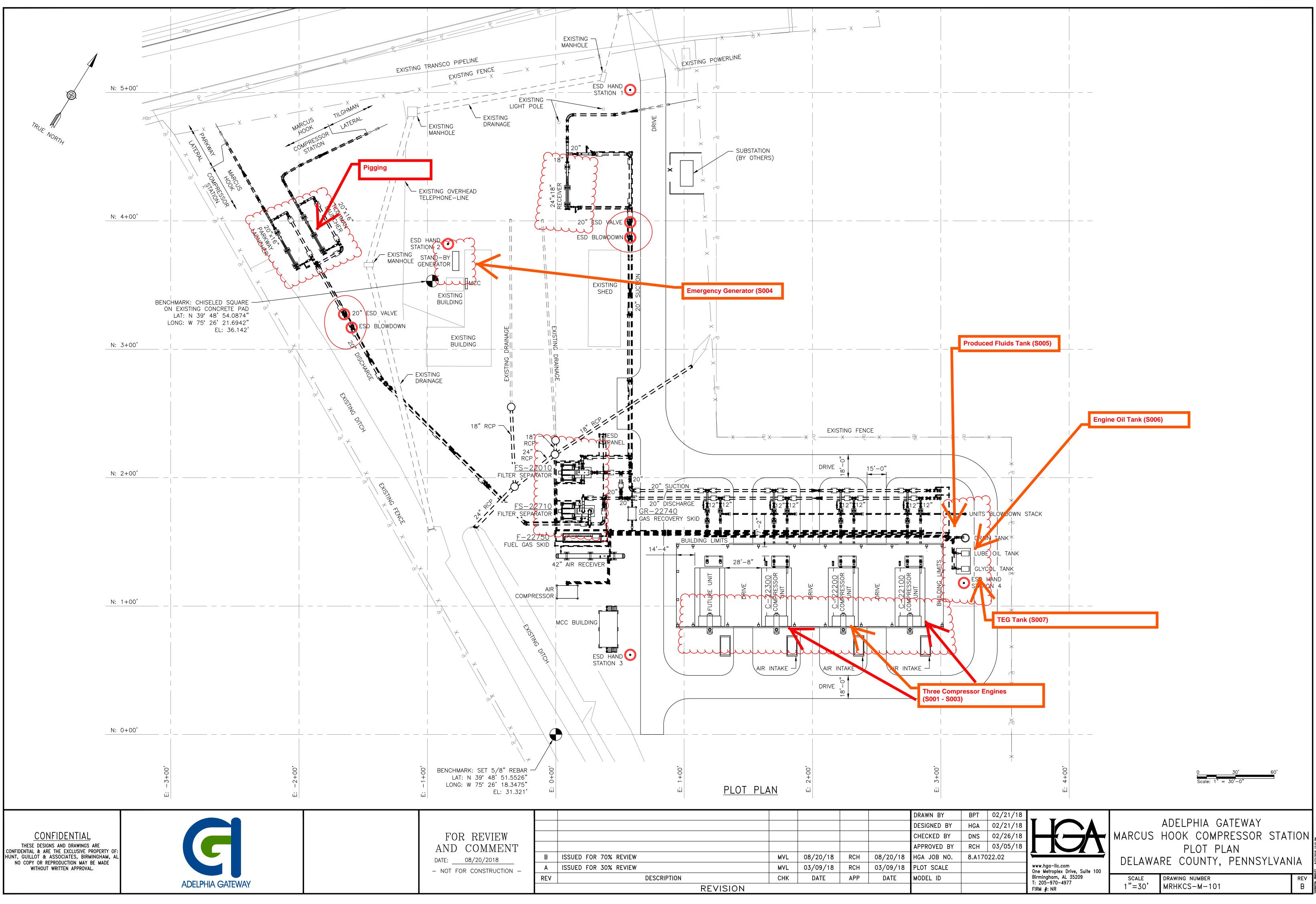
⁵ http://epa.gov/gasstar/tools/recommended.html#compressors Adelphia Pipeline Company | Marcus Hook Compressor Station Trinity Consultants

The characteristics of air emissions from the Marcus Hook CS, along with the methodology used for calculating emissions from the proposed sources, are described in narrative form below. Detailed supporting calculations are also provided in Appendix B.


Emissions from the Marcus Hook CS would result from natural gas combustion in the compressor and generator engines, and from flashing, working, and breathing losses from the produced fluid storage tank and other tanks. Finally, there would be fugitive emissions from process-related equipment. The methods by which emissions from each of these sources has been calculated are summarized below.


- Compressor Engines: Potential emissions of nitrogen oxides (NO_x), carbon monoxide (CO), non-methane/non-ethane hydrocarbon (NMNEHC), formaldehyde, and GHGs are calculated using factors provided by the engine manufacturer and the oxidation catalyst manufacturer where available. Potential emissions of other criteria pollutants and all other HAPs are calculated using U.S. EPA's AP-42 factors for natural gas-fired engines.⁶ When needed to estimate emissions, calculations assume a site-specific heat content of natural gas.
- Emergency Generator Engine: Potential emissions of nitrogen oxides (NO_x), carbon monoxide (CO), non-methane/non-ethane hydrocarbon (NMNEHC), and GHGs are calculated using factors provided by the engine manufacturer. Potential emissions of other criteria pollutants and all other HAPs are calculated using U.S. EPA's AP-42 factors for natural gas-fired engines. Potential GHG emissions from the engine have been calculated using the relevant emission factors for natural gas combustion from 40 CFR 98, Subpart C. When needed to estimate emissions, calculations assume a site-specific heat content of natural gas
- Process Fugitives: Potential emissions of VOC and HAPs from process fugitives are calculated using estimated component counts of valves, connectors, flanges, open-ended lines, pump seals, etc. along with U.S. EPA's equipment leak emission factors.⁷ In addition, potential VOC and HAP emissions from vented blowdown emissions have been estimated using the expected number of blowdown events and the volume of gas to be vented. Similarly, potential GHG emissions from process fugitives and blowdown events have been calculated using the relevant equations from 40 CFR 98, Subpart W.
- Storage Tanks: Potential emissions of VOC and HAP from the storage tanks have been estimated, although they are expected to be insignificant. Emissions from the TEG and oil tanks have been estimated using EPA's TANKS 4.0.9d software to evaluate working and breathing losses from the tanks. Emissions from the produced fluids tank have been estimated using E & P TANK software which includes flashing, working, and breathing losses.


EPA 453/R-95-017, November 1995. Emission factors based on average measured TOC from component types indicated in gas service at 0&G Production Operations.


⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, *Natural Gas-Fired Reciprocating Engine*, July 2000. ⁷ Table 2-4 :Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates,

APPENDIX A: AREA MAP AND PROCESS FLOW DIAGRAM

APPENDIX B: EMISSION CALCULATIONS & BAT CALCULATIONS

TABLE B-1. Internal Combustion (IC) Engine Emissions Calculations

Engine Information:

Source ID:	S001-S003
Manufacturer:	Caterpillar
Model No.:	G3606
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp) each:	1,875
Control Device:	Oxidation Catalyst
Stack Designation:	P001-P003
Number of Units:	3

Engine Fuel Information:

	Per Unit
Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Specific Fuel Consumption (Btu/bhp-hr):	7,666
Maximum Fuel Consumption at 100% Load (scf/hr):	13,955
Engine Exhaust flow rate (cfm)	11,972
Heat Input (MMBtu/hr):	14.37
Potential Fuel Consumption (MMBtu/yr):	125,914
Max. Fuel Consumption (MMscf/yr):	122.2
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Factor	Emission Factor Units	Potential Emissions Per Unit		Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
NO _X	0.30	g/bhp-hr	1.24	5.43	Manufacturer's Specifications	
NMNEHC (Excludes HCHO)	0.16	g/bhp-hr	0.66	2.90	Vendor Guarantee	
VOC (NMNEHC + Formaldehyde)			0.83	3.62	Vendor Guarantee (NMNEHC + HCHO)	
CO	0.17	g/bhp-hr	0.70	3.08	Vendor Guarantee	
SO _x	0.001	lb/MMBtu	0.01	0.04	AP-42, Table 3.2-2 (Aug-2000)	
PM ₁₀	0.01	lb/MMBtu	0.14	0.63	AP-42, Table 3.2-2 (Aug-2000)	
PM _{2.5}	0.01	lb/MMBtu	0.14	0.63	AP-42, Table 3.2-2 (Aug-2000)	
Formaldehyde (HCHO)	0.04	g/bhp-hr	0.17	0.72	Vendor Guarantee	
GHG (CO ₂ e)	See Tabl	e Below	2,359	10,333.13	Man. Specs. And 40 CFR 98, Table C-2	
Other (Total HAP)	See Tabl	e Below	0.44	1.95	AP-42, Table 3.2-2 (Aug-2000)	

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N_2O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type

4. Vendor/manufacturer data are based on preliminary design. Bidding is still in process and as such emissions are current estimate and will be at least equivalent to final specifications

Adelphia Pipeline Company, LLC Marcus Hook Compressor Station Plan Approval Emissions Calculations

TABLE B-1. Internal Combustion (IC) Engine Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor Units	Units	Potential Emissions s Per Unit		Estimation Basis / Emission Factor Source	
			lbs/hr	tpy	1	
GHGs:			·		·	
CO ₂	454	g/bhp-hr	1876.65	8219.74	Manufacturer's Specifications	
CH4	4.66	g/bhp-hr	19.26	84.37	Manufacturer's Specifications (THC-NMHC)	
N ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2	
GHG (CO ₂ e)			2,359	10,333		
			2,333	10,333		
Drganic HAPs:	4 005 05	11 /2 42 42	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
.,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
L,1,2-Trichloroethane	3.18E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
I,3-Butadiene	2.67E-04	lb/MMBtu	0.00	0.02		
I,3-Dichloropropene	2.64E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
P-Methylnaphthalene	3.32E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
2,2,4-Trimethlpentane	2.50E-04	lb/MMBtu	0.00	0.02	AP-42, Table 3.2-2 (Aug-2000)	
Acenaphthene	1.25E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Acenaphthylene	5.53E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
cetaldehyde	8.36E-03	lb/MMBtu	0.12	0.53	AP-42, Table 3.2-2 (Aug-2000)	
crolein	5.14E-03	lb/MMBtu	0.07	0.32	AP-42, Table 3.2-2 (Aug-2000)	
enzene	4.40E-04	lb/MMBtu	0.01	0.03	AP-42, Table 3.2-2 (Aug-2000)	
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Senzo(e)pyrene	4.15E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
senzo(g,h,i)perylene	4.14E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
liphenyl	2.12E-04	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-2 (Aug-2000)	
Carbon Tetrachloride	3.67E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Chlorobenzene	3.04E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Chloroform	2.85E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Chrysene	6.93E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
thylbenzene	3.97E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
thylene Dibromide	4.43E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
luoranthene	1.11E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
luorene	5.67E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Aethanol	2.50E-03	lb/MMBtu	0.04	0.16	AP-42, Table 3.2-2 (Aug-2000)	
Aethylene Chloride	2.00E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
h-Hexane	1.11E-03	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-2 (Aug-2000)	
Japhthalene	7.44E-05	lb/MMBtu	0.02	0.00	AP-42, Table 3.2-2 (Aug-2000)	
2AH	2.69E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
Phenanthrene	1.04E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug 2000)	
Phenol	2.40E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
lyrene	1.36E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
tyrene	2.36E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000)	
etrachloroethane	2.36E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
oluene	4.08E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
/inyl Chloride	4.08E-04 1.49E-05	lb/MMBtu	0.01	0.03	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
(ylene	1.49E-05 1.84E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-2 (Aug-2000) AP-42, Table 3.2-2 (Aug-2000)	
. yielie	1.046 04	ib/ WIWIDCu	0.60	1.95	/ 1 +2, Tubic 3.2 2 (Rug 2000)	

Adelphia Pipeline Company, LLC Marcus Hook Compressor Station Plan Approval Emissions Calculations

TABLE B-2. Generator Engine Emissions Calculations

Engine Information:

Source ID:	S004
Manufacturer:	Cummins
Model No.:	GTA28
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	701

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,030
Specific Fuel Consumption (Btu/bhp-hr):	8,373
Max. Fuel Consumption at 100% (scf/hr):	5,699
Heat Input (MMBtu/hr):	5.87
Potential Fuel Consumption (MMBtu/yr):	2,935
Max. Fuel Consumption at 100% (MMscf/hr):	0.0057
Max. Fuel Consumption (MMscf/yr):	2.8
Max. Annual Hours of Operation (hr/yr):	500

Engine Emissions Data:

Pollutant	Post-Contro	ol Emissions	Maximum Potential Emissions		Estimation Basis / Emission	
ronatant	Emission Factor	Units	lbs/hr	tpy	Factor Source	
NO _x	2.00	g/bhp-hr	3.09	0.77	Manufacturer's Specifications	
NMNEHC as propane (excludes HCHO)	1.00	g/bhp-hr	1.55	0.39	Manufacturer's Specifications	
VOC (NMNEHC + Formaldehyde)			1.67	0.42	Manufacturer Specification (NMNEHC) + HCHO(AP-42)	
CO	4.00	g/bhp-hr	6.18	1.55	Manufacturer's Specifications	
SO _x	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)	
PM ₁₀	0.02	lb/MMBtu	0.11	0.03	AP-42, Table 3.2-3 (Aug-2000)	
PM _{2.5}	0.02	lb/MMBtu	0.11	0.03	AP-42, Table 3.2-3 (Aug-2000)	
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.12	0.03	AP-42, Table 3.2-3 (Aug-2000)	
GHG (CO ₂ e)	See Table Below		781	195	40 CFR 98 and Manufacturer	
Other (Total HAP, incl. HCHO)	See Tab	le Below	0.19	0.05	AP-42, Table 3.2-3 (Aug-2000)	

 $\frac{\text{Notes:}}{1. \text{ PM}_{10} \text{ and PM}_{2.5} \text{ are total values (filterable + condensable).}}$

1. Fin₁₀ and price are total values (interactive contention). 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298). 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type. 4. Vendor/manufacturer data are based on preliminary design. Bidding is still in process and as such emissions are current estimate and will be at least equivalent to final specifications.

Greenhouse Gas (GHG) Emissions Calculations:

Pollutant	Emission	Units	Maximum Potential Emissions		Estimation Basis / Emission Factor Source
	Factor		lbs/hr tpy		
GHGs:					
CO ₂	53.06	kg/MMBtu	687	172	40 CFR 98, Table C-1
CH ₄	2.440	g/bhp-hr	3.77	0.94	Manufacturer's Specifications
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Table C-2
GHG (CO ₂ e)			781	195	

Adelphia Pipeline Company, LLC Marcus Hook Compressor Station Plan Approval Emissions Calculations

TABLE B-2. Generator Engine Emissions Calculations

Hazardous Air Pollutant (HAP) Emissions Calculations:

	Emission Maximum Potential		n Potential		
Pollutant	Factor	Units	Emis	sions	Estimation Basis / Emission Factor Source
	Tactor		lbs/hr	tpy	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	0.003	lb/MMBtu	0.02	0.00	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	0.003	lb/MMBtu	0.02	0.00	AP-42, Table 3.2-3 (Aug-2000)
Benzene	0.002	lb/MMBtu	0.01	0.00	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Methanol	0.003	lb/MMBtu	0.02	0.00	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
РАН	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Styrene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Toluene	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Xylene	0.000	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Total HAP (Excluding HCHO)			0.07	0.02	

Example Calculations:

Emission Rate (lbs/hr) = EF (g/bhp-hr) * Engine Power (hp) ÷ 453.592 (grams/lb)

Emission Rate (lbs/hr) = EF (lb/MMBtu) * Engine Heat Input (MMBtu/hr)

Emission Rate (lbs/hr) = EF (kg/MMBtu) * Engine Heat Input (MMBtu/hr) * 2.205 (lb/kg) Emission Rate (lbs/hr) = EF (kg/MMBtu) * (hrs/yr) ÷ 2,000 (lbs/ton)

TABLE B-3. Storage Tank Emissions Calculations - Produced Fluids Tank

Storage Tank Information:

Source ID:	S005
Tank Capacity (gallons):	1,000
Tank Contents:	Produced Fluids
Annual Throughput (gallons/year):	24,000
Daily Throughput (bbl/day)	2
Percent Condensate	5%
Condensate Throughput (bbl/day)	0.1
Control Type:	None
Control Efficiency:	N/A
Max. Annual Hours of Operation (hr/yr):	8,760

Tank Emissions Data:

Pollutant	Emis	Emissions Estimation Method	
	lbs/hr		
VOC	0.05	0.23	E&P TANK 2.0
HAPs	0.01	0.02	E&P TANK 2.0
GHG (CO2e)	0.03	0.15	E&P TANK 2.0

E & P Tanks Emissions Data:

Pollutant	Total Emissions (Working + Breathing + Flashing)				
	lbs/hr	lbs/yr	tpy		
voc	0.05	455.52	0.23		
HAPs	0.01	43.80	0.02		
GHG (CO ₂ e)	0.03	219.00	0.15		

Notes: 1. E & P TANK software estimates working, breathing, and flashing losses and reports as one total. Emissions

are based on a conservative estimate of 95 % water and 5% condensate 2. This tank does contain hydrocarbons that could be flashed off at tank operating conditions.

TABLE B-4. Miscellaneous Storage Tank Emissions Calculations

Storage Tank Information:

Source ID:	S006	S007
Tank Capacity (gallons):	500	500
Tank Contents:	Engine Oil	TEG
Annual Throughput (gallons/year):	6,000	6,000
Control Type:	None	None
Control Efficiency:	N/A	N/A
Max. Annual Hours of Operation (hr/yr):	8,760	8,760

Emissions Data:

Pollutant		Total Emissions (Working + Breathing)		nissions Breathing)
	lbs/hr	tpy	lbs/hr	tpy
voc	3.42E-05	1.50E-04	2.28E-06	1.00E-05
HAPs	3.42E-05	1.50E-04	2.28E-06	1.00E-05

 Notes:

 1. EPA TANKS software run for engine oil is using properties of distillate fuel oil #2.

 2. EPA TANKS software run for TEG is using properties of propylene glycol.

Tank Emissions Data:

Pollutant	Total Er	nissions	Emissions Estimation	
	lbs/hr	tpy	Method	
VOC	3.65E-05	1.60E-04	EPA TANKS 4.0.9d	
HAPs	3.65E-05	1.60E-04	EPA TANKS 4.0.9d	
Methane	0.00	0.00	EPA TANKS 4.0.9d	

TABLE B-5. Fugitive Emissions Calculations

Fugitive Component Information:

	Estimated	Gas Leak		Average Gas Leak Rate	Max Gas	Potential VOC	Potential HAP
Component Type	Component Count	Emis	Emission Factor		Leak Rate	Emissions	Emissions
	component count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)
Connectors	1,596	0.0004	EPA Protocol, Table 2-4	0.70	3.39	0.27	0.00
Flanges	798	0.001	EPA Protocol, Table 2-4	0.69	3.31	0.26	0.00
Open-Ended Lines	45	0.004	EPA Protocol, Table 2-4	0.20	0.96	0.08	0.00
Pump Seals	6	0.005	EPA Protocol, Table 2-4	0.03	0.15	0.01	0.00
Valves	279	0.010	EPA Protocol, Table 2-4	2.77	13.34	1.05	0.00
Other	24	0.019	EPA Protocol, Table 2-4	0.47	2.24	0.18	0.00
Total				4.85	23.38	1.84	0.00

Notes:

1. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc

2. The component count is a preliminary estimate based on the proposed design of the station

3. Conservatively assumed that maximum leak rate is 10% greater than measured average leak rate for the purposes of establishing PTE

4. VOC and HAP emissions are based on fractions of these pollutants in the site-specific gas analysis

Rod Packing Emissions

	Number of Rods L Leak Rate L Total Volume NG		Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)	Potential CO ₂ Emissions (tpy)	Potential CH ₄ Emissions (tpy)	Potential CO ₂ e Emissions (tpy)		
	3	4	15	1,576,800	1.84	0.00	0.00	32.60	814.96
Total					1.84	0.00	0.00	32.60	814.96

1. Caterpillar does not publish specific crankcase and rodpacking emission leak rates. The leak rates are based on engineering estimates on the operation of the engines

Engine Crankcase Emissions

Number of Engines	Engine Rating (hp)	Leak Rate (scf/bhp-hr)	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HCHO Emissions (tpy)	Potential HAP Emissions (tpy)	Potential CO ₂ Emissions (tpy)	Potential CH ₄ Emissions (tpy)	Potential CO ₂ e Emissions (tpy)
3	1,875	0.5	24,637,500	0.04	0.01	0.02	32.18	0.33	40.44
Total				0.04	0.01	0.02	32.18	0.33	40.44

ft³/min Flow Rate of Engine¹ 11,972

1. From Vendor data sheet

Engine Crankcase Exhaust Composition

	Engine Exhaust	Composition of
Constituent	Emissions	Exhaust Gas
	(tpy)	(lb/MMscf)
VOC	9	2.93
НСНО	3	1.09
Total HAP	5	1.48
CO ₂	8,220	2,613
CH ₄	84	26.82

TABLE B-5. Fugitive Emissions Calculations

VOC and HAP Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)
Station ESD Vent	1,000,000	1	1,000,000	1.17	0.00
Pigging and Pipeline Blowdowns	4,000	2	8,000	0.01	0.00
Reciprocating Compressors	10,000	24	240,000	0.28	0.00
Total				1.46	0.00
Density of natural gas:	0.05	lb/ft ³ @ STP (www.e	engineeringtoolbox.com)		

GHG Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential CH ₄ Emissions ¹ (tpy)	Potential CO ₂ Emissions ¹ (tpy)	Potential CO ₂ e Emissions (tpy)
Station ESD Vent	1,000,000	1	1,000,000	20.67	0.00	517
Pigging and Pipeline Blowdowns	4,000	2	8,000	0.17	0.00	4
Reciprocating Compressors	10,000	24	240,000	4.96	0.00	124
Total				25.8	0.00	645

1. Calculated in accordance with Equations W-14 and W-35, and W-36 in Subpart W of 40 CFR 98

GHG Fugitive Emissions from Component Leaks:

Component Type	Estimated		nission Factor	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
	Component Count	(scf/hr/component)	Factor Source	(tpy)	(tpy)	(tpy)
Connectors	1,596	0.004	40 CFR 98, Table W-1A	1.16	0.000	28.90
Flanges	798	0.004	40 CFR 98, Table W-1A	0.58	0.000	14.45
Open-Ended Lines	45	0.061	40 CFR 98, Table W-1A	0.50	0.000	12.43
Pump Seals	6	13.3	40 CFR 98, Table W-1A	14.45	0.000	361.30
Valves	279	0.03	40 CFR 98, Table W-1A	1.36	0.000	34.11
Other	24	0.04	40 CFR 98, Table W-1A	0.17	0.000	4.35
Total				18.22	0.00	455.54

Notes:

The component count is a preliminary estimate based on the proposed design of the station
 CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis

3. Emissions are calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98

4. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CC₂ (GWP = 1) + CH₄ (GWP = 25) + N_2O (GWP = 298).

Fugitive Component Emissions Data:

Pollutant	Atmospher	ic Emissions	Emissions Estimation Method				
	lbs/hr tpy						
voc	1.18	5.18	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis				
нсно	0.00	0.01	Concentration and Vented Volume				
HAPs	0.00	0.02	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis				
CO ₂	7.35	32.18	40 CFR 98, Table W-1A and Site-Specific Gas Analysis				
CH ₄	17.57	76.95	40 CFR 98, Table W-1A and Site-Specific Gas Analysis				
GHG (CO ₂ e)	447	1,956	40 CFR 98, Table W-1A and Site-Specific Gas Analysis				

TABLE B-6. Liquid Loading Emissions Calculations

Liquid Loading Information:

Parameter	Value	Description
S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Collection Efficiency	0%	
Control Efficiency	0%	
Р	0.38	true vapor pressure of liquid loaded (psia) - TANKS Data
M	19.27	molecular weight of vapors (lb/lb-mol) - TANKS Data
Т	517.0	temperature of liquids loaded (deg R) - TANKS Data

Description	Loading Losses	Maximum Throughput ²	VOC Emissions					
	(lb/10 ³ gal) ¹	(gal)	(lb/hr)	(tpy)				
Liquids Hauling	0.3	24,000	0.001	0.003				

Notes: 1. Uncontrolled Loading Losses:

 L_{L} (lb/10³ gal) = 12.46 (SPM)/T

2. Produced fluids throughput.

TABLE B-7. Atmospheric Emissions from Each Source at the Station

	Pollutants																							
Source	VOC		NO _x		со		нсно		Total	HAPs	PN	1 ₁₀	PN	1 _{2.5}	so) _x	C	D ₂	CI	H ₄	N	N ₂ O GHG ((CO ₂ e)
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Caterpillar 3606 Engine 1 (S001)	0.83	3.62	1.24	5.43	0.70	3.08	0.17	0.72	0.44	1.95	0.14	0.63	0.14	0.63	0.01	0.04	1876.65	8219.74	19.26	84.37	0.00	0.01	2,359	10,333
Caterpillar 3606 Engine 2 (S002)	0.83	3.62	1.24	5.43	0.70	3.08	0.17	0.72	0.44	1.95	0.14	0.63	0.14	0.63	0.01	0.04	1876.65	8219.74	19.26	84.37	0.00	0.01	2,359	10,333
Caterpillar 3606 Engine 3 (S003)	0.83	3.62	1.24	5.43	0.70	3.08	0.17	0.72	0.44	1.95	0.14	0.63	0.14	0.63	0.01	0.04	1876.65	8219.74	19.26	84.37	0.00	0.01	2,359	10,333
Emegency Generator (S004)	1.67	0.42	3.09	0.77	6.18	1.55	0.12	0.03	0.19	0.05	0.11	0.03	0.11	0.03	0.00	0.00	686.59	171.65	3.77	0.94	0.00	0.00	781	195
Produced Fluids Tank (S005)	0.05	0.23							0.01	0.02									0.00	0.01			0.0	0.2
Misc Tanks Tank (S006-S007)	0.00	0.00							0.00	0.00														
Fugitive Leaks	1.18	5.18					0.00	0.01	0.00	0.02							7.35	32.18	17.57	76.95			447	1,956
Liquid Loading	0.00	0.00		-				1						-			-	-						
Facility-Wide	5.38	16.69	6.81	17.07	8.29	10.78	0.62	2.22	1.53	5.92	0.54	1.91	0.54	1.91	0.03	0.11	6,324	24,863	79	331	0.01	0.04	8,305	33,151

Notes: 1. PM₁₀ and PM_{2.5} emissions are filterable + condensable. 2. VOC emissions for the engines are conservatively estimated as: VOC=NMNEHC+HCHO (Formaldehyde)

TABLE B-8. Total Emissions from All Sources at the Station

	Estimated Site-Wide Emissions							
Pollutants	lb/hr	tpy						
VOC	5.38	16.69						
NO _x	6.81	17.07						
CO	8.29	10.78						
Formaldehyde (HCHO)	0.62	2.22						
Total HAPs	1.53	5.92						
SO _x	0.03	0.11						
PM ₁₀	0.54	1.91						
PM _{2.5}	0.54	1.91						
CO ₂	6323.90	24863.06						
CH ₄	79.13	331.01						
N ₂ O	0.01	0.04						
GHG (CO ₂ e)	8,305	33,151						

 $\label{eq:model} \frac{\text{Notes:}}{1.\ \text{PM}_{10}\ \text{and}\ \text{PM}_{2.5}\ \text{emissions}\ \text{are filterable}\ +\ \text{condensable}.}$ 2. Emissions from all sources at the facility are included above.

TABLE B-9. Site-Specific Gas Analysis

HHV (Btu/scf):

1,030

Constituent	Natural Gas Stream Speciation	Natural Gas Stream Speciation
Constituent	(Vol. %)	(Wt. %)
N2	0.19637	0.322
METHANE	97.6841	91.682
CO2	0.0000	0.000
ETHANE	0.07735	0.136
PROPANE	0.17483	0.451
I-BUTANE	0.00000	0.000
N-BUTANE	0.44425	1.511
I-PENTANE	0.0000	0.000
N-PENTANE	1.3971	5.898
N-HEXANE	0.0000	0.000
HEPTANES	0.0000	0.000
Totals	99.974	100.000

*Gas Analysis showed no detectable compounds above n-hexane.

TOC (Total)	99.78	99.68
VOC (Total)	2.02	7.86
HAP (Total)	0.00	0.00

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

User Identification:	Liquid Loading Parameters
City:	
State:	Pennsylvania
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Liquid loading parameter calculations for truck loading of produced liquids
nk Dimensions	
Shell Height (ft):	20.00
Diameter (ft):	12.00
Liquid Height (ft) :	20.00
Avg. Liquid Height (ft):	10.00
Volume (gallons):	16,800.00
Turnovers:	12.00
Net Throughput(gal/yr):	201,600.00
Is Tank Heated (y/n):	Ν
int Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
of Characteristics	
Туре:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.00
eather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Philadelphia, Pennsylvania (Avg Atmospheric Pressure = 14.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Liquid Loading Parameters - Vertical Fixed Roof Tank

			aily Liquid Su nperature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	62.79	53.49	72.09	57.36	0.2824	0.2104	0.3754	19.2672			18.16	
Benzene						1.2612	0.9722	1.6182	78.1100	0.0001	0.0004	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.5293	0.4449	0.6254	58.1200	0.0005	0.0009	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0356	0.0288	0.0440	142.2900	0.0045	0.0005	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1195	0.0862	0.1634	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.6645	0.5019	0.8712	100.2000	0.0008	0.0017	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.0565	1.6110	2.5985	86.1700	0.0010	0.0069	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						10.7095	8.6270	13.1168	72.1500	0.0003	0.0118	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Nonane (-n)						0.0702	0.0562	0.0878	128.2600	0.0009	0.0002	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1574	0.1239	0.1998	114.2300	0.0009	0.0005	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.2700	5.9048	8.8859	72.1500	0.0006	0.0155	72.15	Option 3: A=27691, B=7.558
Propane (-n)						112.6069	97.8828	128.9497	44.0956	0.0002	0.0602	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.3599	0.2687	0.4761	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2727	0.2021	0.3641	18.0150	0.9901	0.9013	18.02	Option 1: VP60 = .247 VP70 = .339

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Liquid Loading Parameters - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	27.3494
Vapor Space Volume (cu ft):	1,130.9734
Vapor Density (lb/cu ft):	0.0010
Vapor Space Expansion Factor:	0.0785
Vented Vapor Saturation Factor:	0.8698
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,130.9734
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	10.0000 20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0010
Vapor Molecular Weight (lb/lb-mole):	19.2672
Vapor Pressure at Daily Average Liquid	0.2824
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R):	522.4602
Daily Average Ambient Temp. (deg. F):	54.2792
Ideal Gas Constant R	0 1127 02
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	517.0292
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation Factor (Btu/sqft day):	1,263.2634
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0785
Daily Vapor Temperature Range (deg. R):	37.2105
Daily Vapor Pressure Range (psia):	0.1650
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2824
Vapor Pressure at Daily Minimum Liquid	0.0404
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.2104
Surface Temperature (psia):	0.3754
Daily Avg. Liquid Surface Temp. (deg R):	522.4602
Daily Min. Liquid Surface Temp. (deg R):	513.1576
Daily Max. Liquid Surface Temp. (deg R):	531.7629
Daily Ambient Temp. Range (deg. R):	18.2750
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8698
Vapor Pressure at Daily Average Liquid:	0.000
Surface Temperature (psia):	0.2824
Vapor Space Outage (ft):	10.0000
Vorking Losses (Ib):	26.1156
Vapor Molecular Weight (lb/lb-mole):	19.2672
Vapor Pressure at Daily Average Liquid	0.2824
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	201,600.0000
Annual Turnovers:	201,600.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	16,800.0000
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
otal Losses (lb):	53.4651

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Liquid Loading Parameters - Vertical Fixed Roof Tank

		Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions					
Produced Water	26.12	27.35	53.47					
Decane (-n)	0.01	0.01	0.03					
Nonane (-n)	0.01	0.01	0.01					
Ethylbenzene	0.00	0.00	0.00					
Octane (-n)	0.01	0.01	0.03					
Toluene	0.00	0.00	0.01					
Heptane (-n)	0.05	0.05	0.09					
Benzene	0.01	0.01	0.02					
Hexane (-n)	0.18	0.19	0.37					
Isopentane	0.31	0.32	0.63					
Pentane (-n)	0.41	0.42	0.83					
Water	23.54	24.65	48.19					
Propane (-n)	1.57	1.65	3.22					
Butane (-n)	0.02	0.02	0.05					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Marcus Hook - Oil
City:	
State:	Pennsylvania
Company:	
Type of Tank:	Horizontal Tank
Description:	One (1) 500 gallon storage vessels with lube oil
Tank Dimensions	
Shell Length (ft):	5.50
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	12.00
Net Throughput(gal/yr):	6,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Philadelphia, Pennsylvania (Avg Atmospheric Pressure = 14.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Marcus Hook - Oil - Horizontal Tank

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	60.92	52.86	68.99	56.52	0.0075	0.0053	0.0088	130.0000			188.00	Option 1: VP60 = .0074 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Marcus Hook - Oil - Horizontal Tank

Standing Losses (Ib):	0.1639
Vapor Space Volume (cu ft):	44.0223
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0581
Vented Vapor Saturation Factor:	0.9992
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	44.0223
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.2939
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	5.5000
Vapor Density	0.0000
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0075
Daily Avg. Liquid Surface Temp. (deg. R):	520.5926
Daily Average Ambient Temp. (deg. F):	54.2792
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.1892
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,263.2634
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0581
Daily Vapor Temperature Range (deg. R):	32.2585
Daily Vapor Pressure Range (psia):	0.0035
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0075
Vapor Pressure at Daily Minimum Liquid	0.0070
Surface Temperature (psia):	0.0053
Vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	0.0088
Daily Avg. Liquid Surface Temp. (deg R):	520.5926
Daily Min. Liquid Surface Temp. (deg R):	512.5280
Daily Max. Liquid Surface Temp. (deg R):	528.6573
Daily Ambient Temp. Range (deg. R):	18.2750
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.9992
Vapor Pressure at Daily Average Liquid:	0.3332
Surface Temperature (psia):	0.0075
Vapor Space Outage (ft):	2.0000
Vapor Space Outage (ii).	2.0000
Marking Langes (Ib):	0.4.400
Vorking Losses (Ib):	0.1402
Vapor Molecular Weight (Ib/Ib-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0075
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
	0.3041

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Marcus Hook - Oil - Horizontal Tank						
		Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions			
Distillate fuel oil no. 2	0.14	0.16	0.30			

	oject Setup Info	rmation * ***********************************
Project 1 Flowsheet	File t Selection	: P:\Client\NV5\Adelphia\04 Draft\Marcus Hook CS Plan Approval\Att B - Emission Calcs : Oil Tank with Separator
	ion Method	: RVP Distillation
	Efficiency	: 100.0%
	parator Stream	: Geographical Region
-	ical Region	: All Regions in US
Entering	Air Composition	: No
Filed Name		: Marcus Hook Compressor Station
Well Name Date	e	: Produced Fluids Tank : 2017.10.04
Date		: 201/.10.04
******	*****	***************************************
* Dat	ta Input	*
******	*****	***************************************
	r Pressure	: 50.00[psig]
-	r Temperature	: 125.00[F]
Ambient 1		: 14.70[psia] : 125.00[F]
C10+ SG	Temperature	: 125.00[F] : 0.8420
C10+ SG C10+ MW		: 287.00
010		. 207.00
Low Pr	ressure Oil	
No.	Component	mol %
1	H2S	1.2800
2	02	0.0000
3	C02	0.0300
4	N2	0.0000
5	C1	1.2700
67	C2	2.0800
7 8	C3 i-C4	4.5700 1.8900
8 9	n-C4	6.4800
10	i-C4	3.8800
10	n-C5	7.0400
12	C6	3.0500
13	C7	6.8200
14	C8	7.7800
15	C9	7.2300
16	C10+	37.9300
17	Benzene	0.8300
18	Toluene	1.0200
19	E-Benzene	0.0700
20 21	Xylenes n-C6	0.6500
21	n-Co 224Trimethylp	6.1000 0.0000
22	22111 1mg cm re	0.000
Sales	0il	
Productio		: 0.1[bbl/day]
Days of 2	Annual Operation	: 365 [days/year]
API Grav		: 49.0
Reid Vapo	or Pressure	: 8.90[psia]
*******	*****	**********
	lculation Result	
		~ ************************************
Emiss	ion Summary	
Item	Unco	ntrolled Uncontrolled
	[ton	/yr] [lb/hr]

Tot	al HAPs	0.020	0.005					
Tot	al HC	0.254	0.058					
voc	s, C2+	0.247	0.056					
voc	s, C3+	0.229	0.052					
Unc	ontrolled Recover	-						
	Vapor	10.6600 x1E-3	[MSCFD]					
	HC Vapor	9.9100 x1E-3	[MSCFD]	_				
	GOR	106.60	[SCF/bbl]				
	-							
	Emission Composit Component	Uncontrolled	Uncontro					
No	Component	[ton/yr]	[lb/hr]	IIea				
1	H2S	0.012	0.003					
2	02	0.000	0.000					
3	CO2	0.000	0.000					
4	N2	0.000	0.000					
5	Cl	0.006	0.001					
6	C2	0.018	0.004					
7	C3	0.049	0.011					
8	i-C4	0.020	0.005					
9	n-C4	0.059	0.013					
10	i-C5	0.026	0.006					
11	n-C5	0.039	0.009					
12	C6	0.008	0.002					
13	C7	0.008	0.002					
14	C8	0.004	0.001					
15	C9	0.002	0.000					
16	C10+	0.000	0.000					
17	Benzene	0.002	0.000					
18	Toluene	0.001	0.000					
19 20	E-Benzene Xylenes	0.000 0.000	0.000 0.000					
21	n-C6	0.013	0.003					
22	224Trimethylp	0.000	0.000					
	Total	0.267	0.061					
	Stream Data							
No.	Component	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
			mol %	mol %	mol %	mol %	mol %	mol %
1	H2S	34.80	1.2800	0.2130	0.2130	6.8990	0.0000	6.8990
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0300	0.0021	0.0021	0.1768	0.0000	0.1768
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2700	0.0369	0.0369	7.7635	0.0000	7.7635
67	C2	30.07	2.0800	0.2466	0.2466	11.7345	0.0000	11.7345
7 8	C3	44.10 58.12	4.5700 1.8900	1.3445 0.9750	1.3445 0.9750	21.5554 6.7085	0.0000	21.5554 6.7085
° 9	i-C4 n-C4	58.12	6.4800	3.9279	3.9279	19.9192	0.0000	19.9192
10	i-C5	72.15	3.8800	3.2983	3.2983	6.9431	0.0000	6.9431
11	n-C5	72.15	7.0400	6.3906	6.3906	10.4595	0.0000	10.4595
12	C6	86.16	3.0500	3.2895	3.2895	1.7886	0.0000	1.7886
13	C7	100.20	6.8200	7.8112	7.8112	1.6004	0.0000	1.6004
14	C8	114.23	7.7800	9.1297	9.1297	0.6724	0.0000	0.6724
15	C9	128.28	7.2300	8.5561	8.5561	0.2466	0.0000	0.2466
16	C10+	166.00	37.9300	45.1329	45.1329	0.000	0.0000	0.0000
17	Benzene	78.11	0.8300	0.9150	0.9150	0.3821	0.0000	0.3821
18	Toluene	92.13	1.0200	1.1834	1.1834	0.1596	0.0000	0.1596
19	E-Benzene	106.17	0.0700	0.0825	0.0825	0.0041	0.0000	0.0041
20	Xylenes	106.17	0.6500	0.7670	0.7670	0.0341	0.0000	0.0341
21	n-C6	86.18	6.1000	6.6977	6.6977	2.9524	0.0000	2.9524
22	224Trimethylp	114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	MW		150 21	179 60	179 60	51.88	0 00	51.88
	MW Stream Mole Rat:	io	159.21 1.0000	179.60 0.8404	179.60 0.8404	51.88 0.1596	0.00 0.0000	0.1596
	Heating Value	IO [BTU/SCF]		0.0104	0.0104	2822.40	0.0000	2822.40
	Gas Gravity	[Gas/Air]				1.79	0.00	1.79
	Bubble Pt. @ 10		76.98	12.70	12.70			
	DUDDIE FL. W .I.O.							

RVP @	100F	[psia]	27.72	8.66	8.66
Spec.	Gravity @ 100F		0.690	0.698	0.698

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identifica	ation		
User	Identification:	Marcus Hook - TEG	
City:			
State	:	Pennsylvania	
Com	bany:		
Туре	of Tank:	Horizontal Tank	
Desc	ription:	One (1) 500 gallon st	orage vessel with TEG
Diam Volur Turno Net T Is Ta	hensions Length (ft): eter (ft): ne (gallons): overs: 'hroughput(gal/yr): nk Heated (y/n): nk Underground (y/n):	N N	5.50 4.00 500.00 12.00 6,000.00
Paint Ch	aracteristics		
Shell	Color/Shade:	Gray/Light	
Shell	Condition	Good	
Vacu	Vent Settings um Settings (psig): sure Settings (psig)		-0.03 0.03

Meterological Data used in Emissions Calculations: Philadelphia, Pennsylvania (Avg Atmospheric Pressure = 14.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Marcus Hook - TEG - Horizontal Tank

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	60.92	52.86	68.99	56.52	0.0010	0.0006	0.0015	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Marcus Hook - TEG - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0126
Vapor Space Volume (cu ft):	44.0223
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0580
Vented Vapor Saturation Factor:	0.9999
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	44.0223
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.2939
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	5.5000
/apor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
	70.1100
Vapor Pressure at Daily Average Liquid	0.0010
Surface Temperature (psia):	0.0010
Daily Avg. Liquid Surface Temp. (deg. R):	520.5926
Daily Average Ambient Temp. (deg. F):	54.2792
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.1892
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,263.2634
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0580
Daily Vapor Temperature Range (deg. R):	32.2585
Daily Vapor Pressure Range (psia):	0.0009
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0010
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0006
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0015
Daily Avg. Liquid Surface Temp. (deg R):	520.5926
Daily Min. Liquid Surface Temp. (deg R):	512,5280
Daily Max. Liquid Surface Temp. (deg R):	528.6573
Daily Ambient Temp. Range (deg. R):	18.2750
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0010
Vapor Space Outage (ft):	2.0000
Working Losses (lb):	0.0108
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0010
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0234

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Marcus Hook - TEG - Horizontal Tank								
	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Propylene glycol	0.01	0.01	0.02					

Cost Evaluation of Selective Catalytic Reduction (SCR) for NOx Control of One Compressor Engine

 Pollutant:
 NO_X

 Technology:
 SCR

 Source:
 RICE - CAT3606

CAPITAL COSTS	2	2010 Dollars	Footnote Reference
Direct & Indirect Capital Costs			
<u>Purchased Equipment</u>			
Delivered vendor equipment cost	\$	380,000	1
Freight (5% of control device cost)	\$	19,000	2
Instrumentation (10% of control device cost)	\$	38,000	2
Total Direct Capital Costs	\$	437,000	-
Installation			
Installation Costs	\$	342,000	3
Commissioning Labor (SCR Vendor)	\$	55,000	1
Engineering and Home Office Fees (10% of purchased equipment costs)	\$	43,700	4
Process Contingency (5% of purchased equipment costs)	\$	21,850	4
Total Indirect Capital Costs	\$	462,550	-
Project Contingency (15% of purchased equipment costs plus process contingency)	\$	68,828	4
Preproduction Cost (2% of direct & indirect capitol cost plus project contingencies)	\$	19,368	4
Inventory Capital (cost of initial reactant tank fill - 550 gallons)	\$	1,375	4
FOTAL CAPITAL INVESTMENT (TCI)	\$	989,120	
ANNUAL OPERATING COSTS			
Direct Annual Costs			
Annual Operating and Supervisory Labor (\$)	\$	65,000	
Annual Maintenance Costs (1% of TCI)	\$	9,891.20	4
Annual Cost of Reactant Solution (\$2.50/gal at a rate of 1 gal/hr)	\$	21,900	3
Annual Electricity Costs (\$)	\$	5,000	
Annual Water Costs (\$)	\$ \$ \$	-	
Annual Catalyst Costs		90,000	
Total Direct Annual Operating Costs	\$	191,791	
Indirect Annual Costs			
Fractional Interest Rate for Capital		7.00%	
Equipment Lifetime (yrs)		15	
Capital Recovery Factor		0.1098	
Total Indirect Annual Operating Costs	\$	108,600	
FOTAL ANNUAL COST (TAC)	\$	300,391	
Pre-controlled emission rate of (tons/yr)		5.43	6
Control Efficiency		90%	7
Pollutant Removed - (tons/yr)		4.89	
AVERAGE ANNUAL CONTROL COST EFFECTIVENESS (\$/ton removed)	\$	61,467	NOx

Footnotes:

1. Purchased equipment costs based on historical quotes and engineering knowledge. Includes reactant storage tank and recommended spare parts.

2. Based on data in EPA's Pollution Control Cost Manual, Section 2, Table 2.4. http://www.epa.gov/ttn/catc/dir1/cs1ch2.pdf

3. Installation costs are estimates.

4. Based on data in EPA's Pollution Control Cost Manual, Section 4, Table 2.5. http://www.epa.gov/ttn/catc/dir1/cs4-2ch2.pdf

5. Based on data from EPA Air Pollution Control Technology Fact Sheet (EPA -452/F-03-032)

6. Emissions based on a pre-controlled emission rate of 0.3 g/bhp-hr for an engine rated at 1,875 hp operated at 8760 hrs/yr.

7. Control efficiency based on experience with vendor estimates. Note that is the high range for this technology.

EXPANDED BACT FOR COMPRESSOR ENGINES

The Best Available Technology (BAT) discussion that follows applies to the proposed new compressor engines at the Quakertown Compressor Station and Marcus Hook Compressor Station. Under Pennsylvania Department of Protection (PADEP) air permitting regulations in 25 Pa Code §127.1, new sources of air emissions must implement Best Available Technology (BAT). As noted previously in the regulatory discussion, the proposed compressor engines are 4-stroke, lean burn compressor engines that will be subject to NSPS Subpart JJJJ.

In the preparation of this analysis, numerous sources were consulted to identify potential technologies and to evaluate their technical and economic feasibility. The following is a list of references used in preparing this analysis:

- EPA's Reasonably Available Control Technology (RACT)/Best Available Control Technology (BACT)/Lowest Achievable Emission Reduction (LAER) Clearinghouse (RBLC) database for similar source types;
- Determinations of BAT by PADEP for other similar sources, including the technical support document for PADEP's GP-5 BAT evaluation in 2018;
- NSPS and NESHAP standards for similar sources;
- Information provided by air pollution control equipment vendors;
- Previous engineering experience with similar sources and control applications; and/or
- Review of literature from industrial technical or trade organizations.

Based on the analysis described in the following sections, the proposed BAT levels for the compressor engines at the Quakertown Compressor Station and Marcus Hook Compressor Station are summarized below. Proposed BAT levels for the new compressor engines are at least as stringent as the presumptive BAT levels that PADEP established in the current (August 2018) GP-5 permit conditions.

Process		Step	1. IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	STEP 2. Eliminate Technically Infeasible Options	Step 3. Rank Remaining Control Technologies	STEP 4. Evaluate and Document Most Cost- Effective Controls		
ID	Process	PSD Pollutant	Control Technology	Control Technology Description	Technical Feasibility	Typical Overall Standard Emission Rate (Rank)	Cost Effectiveness, \$/ton	STEP 5. Select BAT
S001-S003	Caterpillar Compressor Engines	NOx	Operating per Manufacturer's Recommendation for Air Fuel/Ratio	NO _x from reciprocating engines are primarily due to thermal NO _x generation. NO _x formed in the high-temperature, post-flame region of the combustion equipment is "thermal NO _x ." NO _x can also be formed as a result of fuel NO _x . "Fuel NO _x " forms when fuels containing nitrogen are burned. When these fuels are burned, the nitrogen bonds break and some of the resulting free nitrogen oxidizes to form NO _x . With excess air, the degree of fuel NO _x formation is primarily a function of the nitrogen content of the fuel. Operating the compressor engine based on the manufacturer's recommended air to fuel ratio will limit the formation of NO _x for lean burn engines.	Feasible . The compressor engines would be equipped with air/fuel ratio control to reduce NO _X emissions. Caterpillar's specifications for this engine indicate an emission rate of 0.3 g/bhp-hr, which is much lower than the current applicable limit of 1.0 g/bhp-hr required by NSPS Subpart JJJJ for engines of this size, type, and use. Furthermore, this emission rate would be compliant with PADEP's BAT limit for compressor engines in the production/gathering segment of the industry authorized under GP-5 effective starting in August 2018. As such, Adelphia believes that the potential NO _X emissions rate of 0.3 g/bhp-hr complies with the BAT requirement in 25 Pa Code § 127.1 and as such, Adelphia would propose a limit of 0.3 g/bhp-hr.	1	N/A (Selected as BAT)	Selected as BAT
			Selective Catalyst Reduction (SCR)	The SCR process chemically reduces the NO _x molecule into molecular nitrogen and water vapor. A nitrogen-based reagent such as ammonia or urea is injected into the turbine exhaust upstream of a catalyst bed. The exhaust gas mixes with the reagent and enters a reactor module containing catalyst. The hot flue gas and reagent diffuse through the catalyst. The reagent reacts selectively with the NO _x within a specific temperature range and in the presence of the catalyst and oxygen. The rate of reaction will depend on the type of catalyst, reagent, and the temperature. The reaction requires an optimum temperature range of 480 to 800°F and fairly constant exhaust temperatures for best performance.	Infeasible (Cost) - SCR is not a widely used technology for natural gas-fired combustion engines like those (e.g., size) proposed for this project. Although potentially technically feasible and very effective, SCR is also very costly. Capital costs are significantly higher than other types of NOx controls due to the volume of catalyst that is requiredThe Operating & Maintenance (O&M) costs of using SCR are driven by the reagent usage, catalyst replacement, and increased electrical power usage.The compressor engines being proposed are estimated with potential emissions at approximately 5.43 tpy each. At an estimated NOx control efficiency of 90%, the cost effectiveness of SCR on the engines would be estimated to be greater than \$60,000 per ton. Therefore, SCR is determined to be economically infeasible for this application. As such, Adelphia believes that the proposed NOx emission rate of 0.3 g/bhp-hr complies with the BAT requirement in 25 Pa Code § 127.1	2	\$60,000 (see initial application for details), cost ineffective	N/A
S001-S003	Caterpillar Compressor Engines	NOx	Good Combustion Practice	Good combustion practices include properly operating and maintaining the engine in accordance with manufacturer specifications. Such practices would help minimize NO _x emissions.	Feasible -Good combustion practices are technically feasible methods for controlling NO _x emissions from the Compressor engines. These methods have been cited in the RBLC as BACT for NO _x control for natural gas fired compressor engines. Adelphia is required by NSPS Subpart JJJJ to operate and maintain the engine per manufacture's emission related written instruction.	3	N/A	Base Case Selected as BAT

Table 1 Natural Gas Fired (Lean-Burn) Compressor Engines - Top-Down BAT Analysis for NO_x

	PSD		Step	1. IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	STEP 2. ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Step 3. Rank Remaining Control Technologies Typical Overall Standard Emission Rate	STEP 4. EVALUATE AND DOCUMENT MOST COST- EFFECTIVE CONTROLS Cost Effectiveness,	STEP 5.
ID	Process	Pollutant	Control Technology	Control Technology Description	Technical Feasibility	(Rank)	\$/ton	SELECT BAT
S001-S003	Caterpillar Compressor Engines	CO, VOC, HCHO	Oxidation Catalyst	Oxidation catalysts are widely used on lean-burn gas engines to reduce hydrocarbon and carbon monoxide emissions. Specifically, oxidation catalysts are effective for the control of CO, VOCs, formaldehyde and other HAPs from lean-burn gas engines. Oxidation catalysts consist of a substrate made up of thousands of small channels. Each channel is coated with a highly porous layer containing precious metal catalysts, such as platinum or palladium. As exhaust gas travels down the channel, hydrocarbons and carbon monoxide react with oxygen within the porous catalyst layer to form carbon dioxide and water vapor. The resulting gases then exit the channels and flow through the rest of the exhaust system.	Feasible. The oxidation catalyst vendor has guaranteed a CO removal resulting in an emission rate of 0.17 g/bhp-hr. This emission rate is well below the current limit of 2.0 g/bhp-hr required by NSPS Subpart JJJJ for non-emergency lean burn natural gas engines ≥ 1,350 HP manufactured after July 1, 2010, and is also less than the recently established PADEP's BAT level for compressor engines under GP-5 (0.25 g/bhp-hr). As such, Adelphia believes that the potential CO emissions rate complies with the BAT requirement in 25 Pa Code § 127.1 The efficiency of the oxidation catalyst proposed for the compressor engines is guaranteed by the vendor to result in a NMNEHC emissions rate of 0.16 g/bhphr, and at least 75% for formaldehyde emissions resulting in an emission rate of 0.04 g/bhp-hr. The engines' NMNEHC emission rate is well below the current limit of 0.7 g/bhp-hr required by NSPS Subpart JJJJ for nonemergency lean burn natural gas engines ≥ 1,350 HP manufactured after July 1, 2010, and the proposed NMNEHC and formaldehyde emission limits are compliant with PADEP's BAT limits in the recently finalized GP-5 (0.25 g/bhp-hr). Similar to CO and NO _x , Adelphia believes that the potential NMNEHC and formaldehyde emission rates comply with the BAT requirement in 25 Pa Code § 127.1	1	N/A (Selected as BAT)	Selected as BAT
			Good Combustion Practice	Good combustion practices include properly operating and maintaining the engine in accordance with manufacturer specifications. Such practices would help minimize CO emissions.	Feasible -Good combustion practices are technically feasible methods for controlling CO emissions from the emergency Compressor engine. These methods have been cited in the RBLC as BACT for CO control for natural gas fired compressor engines. Adelphia is required by NSPS Subpart JJJJ to operate and maintain the engine per manufacture's emission related written instruction.	2	N/A	Base Case Selected as BAT

Table 2 Natural Gas Fired (Lean-Burn) Compressor Engines - Top-Down BAT Analysis for CO, VOC, and HCHO

Table 3 Natural Gas Fired (Lean-Burn) Compressor Engine- Top-Down BAT Analysis for PM, SO_2

				STEP 4.	
				EVALUATE AND	
			STEP 3. RANK	DOCUMENT	
			REMAINING	MOST COST-	
			CONTROL	EFFECTIVE	
	Step 1. Identify Air Pollution Control Technologies	STEP 2. ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	TECHNOLOGIES	CONTROLS	
			Typical		
			Standard	Cost	
SD			Emission Rate	Effectiveness,	STEP 5.
lutant Control Te	chnology Control Technology Description	Technical Feasibility	(Rank)	\$/ton	SELECT BAT
M ₁₀ /PM _{2.5} Good Combu	stion Good combustion practices include properly operating and maintaining	Feasible . Potential BAT options for both PM/PM ₁₀ /PM _{2.5} and SO ₂	1	N/A (Selected as	Selected as
SO ₂ Practices and	low- the engine in accordance with manufacturer specifications, as well as	emissions, based on a search in the EPA's Reasonably Available		BAT)	BAT
sulfur fuels	burning low sulfur fuels. Such practices would help minimize SO2 and P				
	emissions.				
		combustion practices and low-sulfur fuels.			
		are considered base case and are equally encenve.			
		Adelphia concludes that the combination of good combustion			
		BAT for the proposed engine.			
N	M ₁₀ /PM _{2.5} Good Combus SO ₂ Practices and	PSD lutantControl TechnologyControl Technology DescriptionM10/PM2.5 SO2Good Combustion Practices and low- 	PSD lutant Control Technology Control Technology Description Technical Feasibility Min/PM2.5 SO2 Good Combustion Practices and low- sulfur fuels Good combustion practices include properly operating and maintaining the engine in accordance with manufacturer specifications, as well as burning low sulfur fuels. Such practices would help minimize SO2 and PM emissions. Feasible. Potential BAT options for both PM/PMin/PM2.5 and SO2 emissions, based on a search in the EPA's Reasonably Available Control Technology (RACT)/Best Available Control Technology (BACT)/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC) database, indicate that the only technologies used to reduce these pollutants from natural gas burning engines are good combustion practices and low-sulfur fuels. Pipeline quality natural gas will be used in the engines in accordance with the manufacturer's recommended practice to minimize emissions of particulate matter and SO2. Both technologies are considered base-case and are equally effective. Adelphia concludes that the combination of good combustion practices and the firing of pipeline quality natural gas be considered	REMAINING CONTROL REMAINING CONTROL STEP 1. IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES STEP 2. ELIMINATE TECHNICALLY INFEASIBLE OPTIONS TECHNOLOGIES PSD Control Technology Control Technology Description Typical Overall Standard Mu/PM25 Good Combustion Practices and low- sulfur fuels Good combustion practices include properly operating and maintaining the engine in accordance with manufacturer specifications, as well as burning low sulfur fuels. Such practices would help minimize SO2 and PM emissions. Feasible. Potential BAT options for both PM/Mio/PM2s and SO2 (BACT)/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC) database, indicate that the only technologies used to reduce these pollutants from natural gas burning engines are good combustion practices and low-sulfur fuels. 1 Pipeline quality natural gas will be used in the engines, which has a recondance with the manufacturer's recommended practice to minimize emissions of particulate matter and SO2. Both technologies are considered base-case and are equally effective. Pipeline quality natural gas be considered	PSD Control Technology Description Technical Feasibility STep 3. Rawk REMAINING Step 4. Cluidant Technology Description Technology Description Technology Overall Standard Step 3. Rawk REMAINING Typical Overall Typical Standard Typical Description Typical Overall Typical Standard Typical Description Standard Cost Effectiveness, Cost SO2 Practices and low- sulfur fuels Good combustion practices include properly operating and maintaining the engine in accordance with manufacturer specifications, as well as burning low sulfur fuels. Such practices would help minimize SO2 and Pl emissions. Suffur fuels Feasible. Potential BAT options for both PM/PMio/PMs: and SO2 emissions, based on a search in the EPA's Reasonably Available Control Technology (RACT)/Best Available Control Technology (RACT)/Best Available Control Technology (RACT)/Best Available Control Technology (RACT)/Best Available Control Technology (RACT)/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBCL) database, indicate that the only technologies used to reduce these pollutants from natural gas will and goards the engines in accordance with the manufacturer's recommended practice to minimize emissions of particulate matter and SO2. Both technologies are considered base-case and are equally effective. Adelphia oncludes that the combination of good combustion practices and the fining of pipeline quality natural gas be considered Image Sum 3. Image Sum 3. Imag

APPENDIX C: MANUFACTURER'S SPECIFICATIONS

G3606

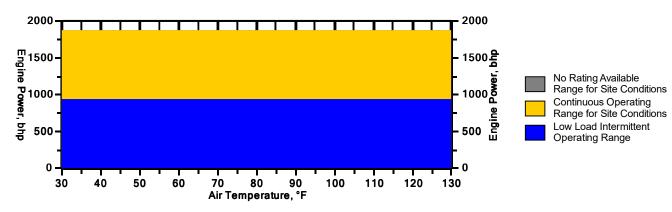
GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA OP0756-Q-0701

ENGINE SPEED (rpm):	1000	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	7.6	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	GAV
AFTERCOOLER - STAGE 2 INLET (°F):	130		WITH AIR FUEL RATIO CONTROL
AFTERCOOLER - STAGE 1 INLET (°F):	174	SITE CONDITIONS:	
JACKET WATER OUTLET (°F):	190	FUEL:	Gas Analysis
ASPIRATION:	ТА	FUEL PRESSURE RANGE(psig): (See note 1)	58.0-70.3
COOLING SYSTEM:	JW+1AC, OC+2AC	FUEL METHANE NUMBER:	84.9
CONTROL SYSTEM:	ADEM4	FUEL LHV (Btu/scf):	949
EXHAUST MANIFOLD:	DRY	ALTITUDE(ft):	50
COMBUSTION:	LOW EMISSION	MAXIMUM INLET AIR TEMPERATURE(°F):	77
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.3	STANDARD RATED POWER:	1875 bhp@1000rpm
SET POINT TIMING:	18		

			MAXIMUM	SITE RAT	FING AT N	IAXIMUM
			RATING	INLET A	R TEMPE	RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE		°F	77	77	77	77
	1					
	(0)		0040	0040	7400	7770
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6913	6913	7193	7770
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7666	7666	7976	8616
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(.,,,-,	ft3/min	4701	4701	3572	2452
AIR FLOW (WET)	(4)(5)	lb/hr	20846	20846	15837	10873
FUEL FLOW (60ºF, 14.7 psia)		scfm	228	228	178	128
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	102.1	102.1	78.8	56.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	822	822	893	971
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(-/(-)	ft3/min	11972	11972	9609	6994
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	21454	21454	16311	11215
	1					
EMISSIONS DATA - ENGINE OUT		1				
NOx (as NO2)	(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
СО	(9)(10)	g/bhp-hr	2.49	2.49	2.50	2.49
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	5.22	5.22	5.38	5.72
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.56	0.56	0.57	0.61
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.32	0.32	0.33	0.36
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.19	0.19	0.20	0.22
CO2	(9)(10)	g/bhp-hr	437	437	453	491
EXHAUST OXYGEN	(9)(12)	% DRY	11.0	11.0	10.9	10.5
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	22827	22827	18357	15212
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5971	5971	5730	5496
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	11668	11668	10790	9350
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	13688	13688	6929	1996
HEAT REJ. TO A/C - STAGE 1 (130)	(13)(14)	Btu/min	6860	6860	4293	2178
	(13)(14)		0000	0000	4230	2110
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	39482			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	21204			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

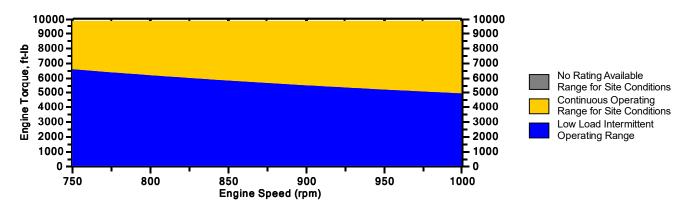
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA OP0756-Q-0701

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 50 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 50 ft and 77 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 50 ft and 77 °F

Note: At site conditions of 50 ft and 77°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

PREPARED BY: Alan Halbert, Bidell Gas Compression Data generated by Gas Engine Rating Pro Version 6.07.00 Ref. Data Set EM1402-04-001, Printed 06Apr2018

G3606

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA OP0756-Q-0701

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Fuel consumption tolerance is ± 2.5% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	94.2280	94.2290	Fuel Makeup:	Gas Analysis
Ethane	C2H6	4.8290	4.8291	Unit of Measure:	English
Propane	C3H8	0.3690	0.3690		5
Isobutane	iso-C4H1O	0.0310	0.0310	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0450	0.0450	• • •	84.9
Isopentane	iso-C5H12	0.0100	0.0100	Caterpillar Methane Number:	84.9
Norpentane	nor-C5H12	0.0070	0.0070		
Hexane	C6H14	0.0119	0.0119	Lower Heating Value (Btu/scf):	949
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1053
Nitrogen	N2	0.2620	0.2620	WOBBE Index (Btu/scf):	1240
Carbon Dioxide	CO2	0.2060	0.2060		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	212.68
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.47%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.91
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.92
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.586
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.308
TOTAL (Volume %)		99.9989	100.0000		1.300

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Proposal Prepared For:	Prepared By:			Proposal		
Alan Halbert		O: (307)675		Revision:		
Bidell		jstinson@en	mittechnologies.com	Expires:	October 12, 2018	
APPLICATION INFORMATION DRIVER			EMISSIONS AND SILENCING INFORMATION HOUSING INFORMATION (Standard Offering)			
Make:	Caterpillar		HOUSING			
Model:	G3606 A4		Make:	Hospital Grade Cooler Mount Cataly	st/Silencer	
Horsepower:	1875		Insertion Loss:	35-40 dBA		
RPM:	1000		Model:	ELH-5000-1820F-4CE0-362-C		
Compression Ratio:	7.6		Element Capacity:	4		
Exhaust Flow Rate (CFM):	11972		Weight:	2167 Lbs		
Exhaust Temperature (°F):	822		-			
Allowable Backpressure:	12" WC		CATALYST			
Reference:	EM1402-04-001		Catalyst Model:	RT-3615-Z		
Fuel:	Marcus Hook Fu	iel	Catalyst Type:	Oxidation, Standard Precious Metals	s Group	
Annual Operating Hours:	8760		Catalyst Size:	Rectangle, 36" x 15" x 3.5"		
			Catalyst Qty:	3		
GAS COOLER			Blank Qty:	1		
Make:	N/A					
Model:	N/A		POST CATALYS	T EMISSIONS - Marcus Hook En	nissions	
Orientation:	Horizontal			g/bhp-hr		
			NO _x :	Unaffected by Oxidation Catalyst		
UNCONTROLLED EMISS	ONS DATA		CO:	<0.17		
	g/bhp-hr		VOC:	<0.16		
NO _x :	0.30		HCHO:	<0.04		
CO:	2.49					
THC:	5.22					
NMHC:	0.56		SYSTEM BACKE	PRESSURE (Standard Offering)		
NMNEHC:	0.32			kpressure <9.80" WC		
HCHO:	0.19		Total Oystelli Dae			
Oxygen:	11.00%					
CAygon.	11.0070					

ALLE A	Engine Emissions Data Cummins Inc		Power Generation	701 hp (523 kWm) @ 1800 rpm		
CUT			GTA28	2045 lb-ft (2773 N-m) @ 1800 rpm		
€ Contraction of the second s	Columbus	s, Indiana 47202-3005	GTAZO	Configuration	CPL Code	Revision
	http://w	ww.cummins.com	FR 995060	TBD	TBD	20-May-15
Compre	ssion Ratio:	8.5:1	Displac	ement: 1711 c	u. in. (28 L)	
Fuel Sys	stem:	Natural Gas	Cylinde	rs: 12		
Combus	stion:	Stoichiometric	Bore x	Stroke: 5.5 x 6	0 in (140 x 152 mm)	
Emissio	n Certification:	US EPA NSPS Complian	t Aspirat	ion: Turboo	harged and Afterco	oled
		Upgradable/Capable				

Engine Speed	Standby Power		75%	Load	50% Load	
rpm	hp	kWm	hp	kWm	hp	kWm
1,800	701	523	526	392	351	262

Exhaust Emissions Data @ 1800 rpm

	St	andby Powe	ər		75% Load			50% Load	
Component	g/hp-hr	mg/nm ³ *	ppm	g/hp-hr	mg/nm ³ *	ppm	g/hp-hr	mg/nm ³ *	ppm
Total Hydrocarbons (Wet)	2.6	N/A	1385	2.5	N/A	1269	2.4	N/A	1092
Non Methane Hydrocarbons (Wet)	0.16	N/A	110	0.18	N/A	93	0.21	N/A	74
NOx (Dry)	10.0	N/A	2308	9.0	N/A	1958	8.9	N/A	1763
CO (Dry)	10.9	N/A	4107	15.5	N/A	5556	5.6	N/A	1814
CO2 (Dry)	461	N/A	N/A	479	N/A	N/A	551	N/A	N/A
HCHO (Formaldehyde)	N/A	N/A	28	N/A	N/A	25	N/A	N/A	22
Volatile Organic Compounds (VOC)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
O2 (Dry)		0.4%			0.4%			0.3%	
BSFC	83	373 BTU/hp-ł	۱r	88	858 BTU/hp-ł	hr	96	658 BTU/hp-l	nr
Ignition timing (BTDC)		24°		24°		24°			

* mg/nm³ is measured @ 5% O_2

Test Methods and Conditions:

Steady-State emissions recorded per ISO 8178-1 during operation at rated engine speed (+/- 2%) and stated constant load (+/- 2%) with engine temperatures, pressures and emission rates stabilized.

Fuel Specifications:

Dry processed natural gas fuel with 905 BTU per standard cubic foot lower heating value.

Reference Conditions:

25 °C (77 °F) Air Inlet Temperature, 99.5 kPa (29.39 in-Hg) Barometric Pressure [152 m (500 ft) altitude], and relative humidity of 50%.

Data was taken for a single engine test with the Test Method, Fuel Specification and Reference Conditions stated above. Field tests using alternate Test Methods, Fuel or Reference Conditions may yield different results.

Emissions Data Tolerances:

CHIEF ENGINEER: Kendra Eads (Application)

NOx - +/- 5%, Hydrocarbons - +/- 5%, CO - +/- 5%

Lynn Zopff (Base Engine)

CO2 - +/- 5%, O2 - +/- 5%

Cummins Confidential

Innovative Emission Solutions

April 7, 2017

Attention: Dave Ciha Cummins NPower, LLC. 875 Lawrence Drive DePere, WI.

Subject: Emissions Guarantee - MIRATECH Catalysts

Dave,

The following emissions guarantee from MIRATECH references these specific engine/catalyst combinations (or any MIRATECH engineer sized solutions) to perform at equal or below the 2009 EPA SI NSPS regulations for standby engines of (2 g/hp/hr NOx, 4 g/hp/hr CO, 1 g/hp/hr NMNEHC) when operating on dry processed pipeline natural gas at the END of the stated warranty period.

**Specific emissions targets can be achieved and documented for projects and applications with different requirements.

Engine Model		Catalyst Part Number	Qty per Engine
GTA 855		SP -NX-12-06F-EN1 *	1
GTA 19	SP	SP-NX-12-08F-EN1*	1
GTA 28		SP-NX-12-08F-EN1*	2
GTA 38		SP-NX-14-08F-EN1*	2
GTA 50		SP-NX-14-08F-EN1*	2

*Part Numbers or arrangement for specific projects may be different. But any MIRATECH engineer sized solution will carry the same performance guarantee unless specifically stated in the product proposal.

The MIRATECH standard warranty shall apply to all products. Products installed and operated in accordance with the application guidelines carry a 2 year warranty, with no hour limitation. See attached warranty documentation for details.

Sincerely,

Greg Laemmer cc. Michael Wilson

GENERAL TERMS AND CONDITIONS OF SALE

- 1. <u>Integration</u> The General Terms and Conditions of Sale contained herein shall be deemed a material part of any sale or proposed sale by MIRATECH Group, LLC ("Seller") to _________ ("Purchaser") and, unless and only to the extent specifically excluded therein, shall be a material part of any subsequent letter of authorization, contract, purchase order, sale or other agreement between Seller and Purchaser, with respect to all products, equipment, services and/or parts relating thereto (hereinafter referred to as the "Product").
- 2. Compliance To Seller's knowledge, Seller has complied with all applicable laws and regulations including, but not limited to, the Fair Labor Standards Act, the Civil Rights Act of 1964, the Equal Employment Opportunity Act of 1972, as respectively amended, Executive Orders 11246, 11375 and 11141 (Title 41, Chapter 60, Code of Federal Regulations), the Vietnam Era Veterans Readjustment Act of 1974, and all amendments thereto and regulations, rules and orders there under, as amended or superseded and all of the foregoing are made a part hereof by reference and incorporated herein as though fully set forth herein. Purchaser understands and agrees that the foregoing sentence is for Purchaser's information stating that which Seller strives to achieve and is not made as a covenant, warranty or representation and is not meant to create or permit, nor shall it be construed as creating or permitting any enforceable rights hereunder for Purchaser or any other person or entity. All standards promulgated with respect to noise or air control are specifically excluded hereunder.
- 3. <u>Title, Risk of Loss, Security Interest</u> Title and risk of loss or damage to the Product shall pass to Purchaser under tender of delivery Ex-Works (Incoterms 2010) manufacturing facility unless expressly stipulated otherwise, regardless of when partial or final payment is to be made by Purchaser. Notwithstanding the foregoing, a purchase money security interest in the Product or any replacement thereof shall remain in Seller, regardless of mode of attachment to realty or other property, until full payment has been made therefore and collected by Seller.
- 4. Inspection, Rejection, Remedy Purchaser shall have the right to reasonable inspection of the Product after delivery to destination, which inspection shall be completed within ten (10) days of the date of delivery to such destination. Any rejection by Purchaser as to part or all of the Product shall be in writing, specifically stating the non-conformities thereof. In such event, Seller shall have a reasonable period of time to determine the validity of and, if necessary, to correct the non-conformities forming the basis of the Purchaser's rejection or, at Seller's option and if appropriate, to replace part or all of the Product. Purchaser's failure to make rejection as herein stated, or to allow Seller to cure Purchaser's objections, shall be deemed to conclusively establish acceptance by Purchaser of the Product.
- 5. <u>Time, Force Majeure</u> Seller may, from time to time, quote delivery dates to Purchaser. Such dates shall be interpreted as estimated and in no event shall such dates be construed as falling within the meaning of "time is of the essence." Seller shall not be liable for loss, damage, detention, or delay due to war, riots, civil insurrection or acts of the common enemy, fire, flood, severe weather conditions at Seller's premises or outside fabrication sites, strikes or other labor difficulties, acts of civil or military authority including governmental law, orders, priorities or regulations, acts of Purchaser, embargo, car shortage, wrecks or delay in transportation, inability to obtain necessary labor, materials or manufacturing facilities from usual sources, faulty forgings or castings, or other causes beyond the reasonable control of Seller. In the event of delay in performance due to any such cause, the date of delivery or time for completion shall be adjusted to reflect the actual length of time necessary to properly reflect the delay without change to the purchase price. In the event of such delay or default in delivery, Seller shall complete work in progress and/or make delivery as soon as reasonably practicable. Upon completion and delivery of the Product to Purchaser, after such delay in delivery, the obligation of Purchaser for payment shall be completely reinstated.
- 6. <u>Taxes</u> Prices quoted by Seller do not include any federal, state or local property, license, privilege, sales, use, excise, gross receipts or other like taxes which may now or hereafter be applicable to, measured by, or imposed upon this transaction, the Product, its sale, its value, its use or any services performed in connection therewith. Purchaser, by agreeing to purchase product from Seller, agrees to be responsible for payment of any and all taxes it may owe as a result of such purchase and to hold harmless and indemnify Seller from any such tax liability.
- 7.1 <u>Limited Warranty</u> Products have different warranty periods and are subject to the exclusions contained herein. Seller warrants that the:

Next and Vortex Substrates utilizing catalyst formulations other than "EU" and "XU" and "XJ" formulation designations shall be free of defects in material and workmanship for a period of twenty-four (24) months from the date the Product is complete and ready for shipment;

Next and Vortex Substrates utilizing "EU" or "XU" or "XJ" catalyst formulation designations shall be free of defects in material and workmanship for: <u>gas fueled engine applications</u> - for a period of twelve (12) months from the date the Product is complete and ready for shipment, or eighty eight hundred (8,800) hours of operation, whichever shall first occur; <u>NESHAP applications</u> - for a period of twenty-four (24) months from the date the Product is complete and ready for shipment, or eighteen hundred (1,800) hours of operation, whichever shall first occur;

SCR Products shall be free of defects in material and workmanship, unless other terms are specified in the proposal which provides the basis for these General Terms and Conditions, for a period of twenty-four (24) months from the date the Product is placed in operation or twenty-six (26) months from the date the Product is complete and ready for shipment, whichever shall first occur;

Passive Diesel Particulate Filter Products shall be free of defects in material and workmanship for a period of 8,000 hours of operation or twenty-four (24) months from the date the Product is ready for shipment, whichever shall first occur;

Active Diesel Particulate Filter Products included with AT-IV shall be free of defects in material and workmanship for a period of 2,600 hours of operation, twelve (12) months from the date the Product is commissioned by an authorized MIRATECH field service representative or eighteen (18) months from the date the Product is ready for shipment to Purchaser, whichever shall first occur;

Service shall be free of defects of workmanship for a period of ninety (90) days from the date the final Service is provided by Seller to Purchaser;

Silencer Only Products shall be free of defects in material and workmanship for a period of twelve (12) months from the date the Silencer Only Product is placed in operation or eighteen (18) months from the date the Silencer Only Product is complete and ready for shipment, whichever shall first occur;

Vaporphase Products shall be free of defects in material and workmanship for a period of twelve (12) months from the date the Vaporphase Product is placed in operation or eighteen (18) months from the date the Vaporphase Product is complete and ready for shipment, whichever shall first occur;

Replacement Parts for use on previously installed Products, ("Spare Parts") shall be free of defects in material and workmanship for a period of twelve (12) months from the date the Spare Part is placed in operation or eighteen (18) months from the date the Spare Part is complete and ready for shipment, whichever shall first occur;

Exhaust Accessories shall be free of defects in material and workmanship for a period of twelve (12) months from the date the Exhaust Accessory Product is placed in operation;

All other Products shall be free of defects in material and workmanship for a period of twelve (12) months from the date the Product is placed in operation or eighteen (18) months from the date the Product is complete and ready for shipment, whichever shall first occur;

provided Purchaser shall, within such period, notify Seller in writing of such defect(s) and fully cooperate with Seller in pursuing the remedying thereof. Should any failure to conform to this warranty be reported to Seller within said period, Seller shall, upon Purchaser promptly notifying Seller in writing thereof, correct such nonconformity by suitable repair to the Product or, at Seller's option, furnish replacement parts F.C.A. Seller's point of shipment, provided Purchaser has restored the Product to the "as shipped" condition prior to installation and has installed, maintained and operated the Product in accordance with standard industry practices, article 7.2 of these Terms and Conditions of Sale and has complied with the specific recommendations of Seller respecting the Product. In the event Seller deems the Service to be defective, Seller's obligation shall be to correct non-conformities in the manner and for the remaining period of time of the Service warranty period.

Accessories or other parts of the Product furnished by Seller, but manufactured by others, shall carry whatever warranty, if any, the manufacturers thereof have given to Seller and which can be passed on to Purchaser. Purchaser agrees to look solely to such other manufacturers or suppliers of such accessories or parts for any warranty, repair or product liability claims arising out of the performance, condition or use of such accessories or parts. Seller agrees to cooperate in furnishing assignments of its rights thereto to Purchaser from such manufacturers and suppliers. Seller shall not be liable for any repairs, replacements or adjustments to the Product or any costs of labor performed by Purchaser without Seller's prior written approval. Seller's warranty shall expire in the event the Product is misused, neglected or operated other than for its intended purpose. Except as specifically stated herein, Seller makes no performance warranty of any kind respecting the Product except as contained in this document. The effects of corrosion, erosion and normal wear and tear are specifically excluded from Seller's warranty.

For all emissions related products, Seller's warranty shall expire in the event: an A-36 carbon steel housing provided by Seller is insulated, or has a heat shield or similar product adjustment installed, and operated with an inlet operating temperature to the housing greater than 900 deg F; or a component supplied by others that is upstream of the Seller's provided scope, damages the Seller provided scope.

For all standalone silencers, exhaust accessories or piping, Seller's warranty shall expire in the event of either: (1) an A-36 carbon steel silencer provided by Seller is insulated (external to housing) or has a heat shield or similar product adjustment installed and operated with an inlet operating temperature to the housing greater than 1100 deg F for a period of greater than 500 hours per year; (2) an A-36 carbon steel silencer with internal insulation is operated with inlet temperature to the housing greater than 1100 deg F; or (3) an Aluminized steel silencer with internal or external insulation, a heat shield or similar product adjustments installed and operated with an inlet operating temperature to the housing greater than 1100 deg F.

Any damage or defects to the Products caused by the acts or omissions of others after receipt of the Product but prior to commissioning or during the warranty period are not warrantable events and are specifically excluded from this warranty.

Correction by Seller of non-conformities, whether patent or latent, in the manner and for the period of time provided above, shall constitute fulfillment of all liabilities of Seller for such non-conformities, whether based on contract, warranty, negligence, indemnity, strict liability or otherwise with respect to or arising out of the Product. Seller shall in no event be liable for consequential damages.

- 7.2 <u>Limited Warranty, Conditions</u> Throughout the Warranty Period, Seller warrants that the Product will achieve the emissions levels set forth in the Proposal referenced in and attached to the Contract between Seller and Purchaser, subject to the conditions that:
 - a. the Product is operated and maintained at all times in accordance with MIRATECH's written instructions;
 - b. the Purchaser's equipment is operated and maintained at all times in accordance with all manufacturer's instructions and guidelines;
 - c. the Purchaser's equipment, during operation, shall never exceed the raw emission rate set forth in the Proposal;
 - d. the Purchaser's equipment shall be operated within the temperature limits stated in the Proposal after startup;
 - e. the Purchaser will operate the equipment so the engine emissions & temperature are as stated in the proposal and:
 - 1. the NO_x, CO, VOC/NMNEHC, O₂, and PM_{2.5} will not fluctuate more than 2% from the Proposal value and,
 - 2. the Exhaust flow rate will not fluctuate more than 2% from the Proposal value and,
 - 3. the Exhaust temperature into the catalyst will not fluctuate more than 10°F from the Proposal value.

Diesel Particulate Filter Products shall be operated and maintained at all times in accordance with the Seller's written instructions including:

- i. for Passive Diesel Particulate Filter Product the most recent version of the MIRATECH "Guidelines for the Successful Operation of Diesel Particulate Filters"; or
- ii. for Active Diesel Particulate Filter Components included with AT-IV the most recent version of the AT-IV Operations and Maintenance Manual.

Vaporphase Products shall be installed, operated, and maintained at all times in accordance with Seller's written instructions. Performance levels listed in the Proposal are expected values and are not warranted, unless expressly noted as "warranted performance".

Emissions levels, temperature and flow rates from Purchaser's equipment and the Product discharge point shall be tested at the Purchaser's expense, in accordance with a mutually agreed test procedure and protocol consistent with accepted industry practices.

Purchaser will operate the engine, or cause the engine to be operated by others, other than the Seller, at no cost to and for the benefit of the Seller in order for the Seller to make adjustments and modifications to the Product.

If the above conditions are met and the Product fails to achieve the output performance stated in the Proposal within the Warranty Period, Seller will replace or modify and adjust its Product as needed to meet such output performance standards. Purchaser is required to notify the Seller in writing of the specific defect and provide Seller with complete documentation of the defect and satisfaction of all conditions, a - e, of this article.

- 7.3 <u>Warranty Disclaimer</u> SELLER MAKES NO OTHER WARRANTY OR REPRESENTATION OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF GOOD TITLE TO THE PRODUCT, AND ALL IMPLIED WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED.
- 8. <u>Remedies Exclusive</u> The remedies of Purchaser set forth herein are exclusive. The total liability of Seller with respect to the performance and other matters related to the manufacture, sale, delivery, installation, repair or technical direction thereof, whether based on contract, warranty, negligence, indemnity, strict liability or otherwise, shall in no event exceed the purchase price of the particular Unit of Product upon which such liability is based, and not the aggregate of all Products covered by any agreement or document between Seller and Purchaser. Seller shall, in no event, be liable to Purchaser, any successors in interest or any beneficiary or assignee of Purchaser, for any consequential, incidental, indirect, special or punitive damages or any defect in, or failure or malfunction of, the Product, whether based upon lost goodwill, lost profits or revenue, interest, work stoppage, impairment of other goods, loss by reason of shutdown or non-operation, increased expenses of operation of Product, loss of use of power system, costs of purchase of replacement power or claims of Purchaser or customers of Purchaser for service interruption, whether or not such loss or damage is based on contract, warranty, negligence, indemnity, strict liability or otherwise. Purchaser warrants that the Product is purchased for, and will be used for, business purposes only by qualified and properly trained personnel.
- 9. <u>Set-off</u> Purchaser shall not have the right to retain, back charge, or set off against any amounts which may be or become payable by it to Seller or otherwise, for amounts which Seller may allegedly or in fact owe Purchaser whether arising hereunder or otherwise.
- 10. <u>Performance, Governing Law, Jurisdiction and Venue</u> The Purchaser and Seller agree that the purchase and sale of products under this Agreement shall be performed in the State of Oklahoma, and the rights and obligations of Purchaser and Seller shall be construed in accordance with and governed by the laws of Oklahoma, notwithstanding any conflict of law provisions which would have the effect of making the laws of another state applicable. The Purchaser and Seller agree that the sole and exclusive jurisdiction and venue respecting any and all disputes between Purchaser and Seller with regard to the purchase and sale of Product hereunder shall be in Tulsa County, Oklahoma.
- 11. <u>No Waiver</u> No waiver by Seller of any breach of any obligation of Purchaser set forth in the General Terms and Conditions herein shall be construed as a waiver of any succeeding breach of the same or of any covenant or condition, and in no event shall this provision itself be waived.
- 12. <u>Invoicing and Payment</u> Invoicing and payment terms shall be as stated in the purchase order or other agreement between Seller and Purchaser. Terms of payment are net thirty (30) days from date of invoice, unless otherwise agreed in writing.

- 13.1 Cancellation of Contract before Delivery for other than SCR or Diesel Particulate Filter Products For standard products, a cancellation charge equal to, in the sole discretion of the Seller, not more than 50% of the original purchase price may be made for any cancellation of the Contract by Purchaser prior to Seller's delivery of the Product to Purchaser. For custom products, a cancellation of the Contract by Purchaser prior to Seller's delivery of the original purchase price may be made for any cancellation of the Seller, not more than 100% of the original purchase price may be made for any cancellation of the Contract by Purchaser prior to Seller's delivery of the Product to Purchaser. The parties agree that such cancellation charges represent Seller's liquidated damages arising out of cancellation of the Contract in lieu of actual damages, it being understood and agreed between the parties that Seller's actual damages would be impractical or extremely difficult, time consuming and expensive to ascertain. Seller's failure to impose a cancellation charge with respect to one or more cancellations by Purchaser and/or other customers shall not be deemed in any case a waiver of its right under the Contract to impose such a charge in connection with any other cancellation by Purchaser, and Purchaser may not rely on any representation of any person to the contrary.
- 13.2 **Cancellation of Contract Before Delivery for SCR or Diesel Particulate Filter Products** In the event the Purchaser cancels the Contract after the date of such Contract, Purchaser agrees to pay the following charge as liquidated damages in lieu of actual damages, it being understood and agreed between the parties that actual damages to Seller would be impractical or extremely difficult, time consuming and expensive to ascertain:

% of Quoted Manufacturing Period Elapsed From Date of Contract to <u>Time of Cancellation</u>	% of Sales Price Not Including <u>Shipping Costs</u>
0 to 33 1/3%	50%
33 1/3 to 50%	75%
50 to 66 2/3%	85%
66 2/3 to 80%	95%
80% to 100%	100%

- 14. **<u>Returns</u>** Subject to Purchaser's payment in advance of a restocking fee, plus any associated shipping and handling costs, Seller will accept return of a standard Product (other than SCR or Diesel Particulate Filter Products) within 90 days following delivery of the Product to Purchaser if the Product is returned to Seller complete and uninstalled in new condition. The amount of such restocking fee will be determined in accordance with Seller's then current Return Material Authorization policy. Any return of a Product more than 90 days following delivery, including the terms thereof, shall be within the sole and absolute discretion of the Seller.
- 15. **Conflicting Provisions** In case of any conflict, the General Terms and Conditions contained herein shall supersede any and all specifications and/or other terms and conditions previously supplied by Purchaser in connection with or upon a letter of authorization, purchase order or any other agreement, as well as any custom, prior conduct or course of dealing. No agreement, oral representation or other understanding any way modifying or amending the General Terms and Conditions, or having the effect of enlarging the obligations of Seller hereunder, shall be binding upon the Seller unless such modification is clear, certain and in writing in the form of an amended letter of authorization, purchase order or other written agreement duly executed by Purchaser and an authorized representative of Seller.

APPENDIX D: PLAN APPROVAL APPLICATION FORMS

Adelphia Pipeline Company | Marcus Hook Compressor Station Trinity Consultants

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

PROCESSES

Application for Plan Approval to Construct, Modify or Reactivate an Air Contamination Source and/or Install an Air Cleaning Device

This application must be submitted with the General Information Form (GIF).

Before completing this form, read the instructions provided for the form.

Section A - Fac	ility Name, Checklist An	d Certification			
Organization Name or Registered Fictitious Na Station	ame/Facility Name: <u>Adelphia P</u>	ipeline Company - Marcus Hook Compressor			
DEP Client ID# (if known):					
Type of Review required and Fees:					
 Source which is not subject to NSPS, Source requiring approval under NSP Source requiring approval under NSR Source requiring the establishment of Source requiring approval under PSD 	S or NESHAPS or both: regulations: a MACT limitation:	\$ <u>1,700</u> \$ \$\$			
	Applicant's Checklist				
Check the following list to n	nake sure that all the require	d documents are included.			
⊠ General Information Form (GIF)					
Processes Plan Approval Applica	ntion				
Compliance Review Form or provi submitting on a periodic basis:		submitted compliance review form for facilities			
Copy and Proof of County and M					
Permit Fees					
Addendum A: Source Applicable I	Requirements (only applicable	to existing Title V facility)			
Certification of Truth, Accu					
I, Mark F. Valori	, certify under penalty of lav	w in 18 Pa. C. S. A. §4904, and			
35 P.S. §4009(b) (2) that based on information		able inquiry, the statements and information in			
this application are true, accurate and complete	Э.				
(Signature):	Date:				
Name (Print): Mark F. Valori		e President, Adelphia Gateway, LLC			
OFFICIAL USE ONLY					
Application No.	Unit ID	Site ID			
DEP Client ID #:	APS. ID	AUTH. ID			
Date Received	Date Assigned	Reviewed By			
Date of 1 st Technical Deficiency Comments:	Date of 1 st Technical Deficiency Date of 2 nd Technical Deficiency				

2700-PM-AQ0007 Rev.	7/2004				
	S	ection B - Pro	ocesses Informat	ion	
1. Source Infor	mation – Compress	or Engines (S00	1 to S003)		
Source Description	(give type, use, raw	materials, produc	t, etc). Attach additio	nal sheets as	necessary.
Three (3) Caterpilla	r G3606 spark ignitic	on 4-stroke lean b	ourn engines (1,875 H	P each), <u>or e</u>	quivalent, that combust
pipeline quality natu	ural gas. The engines	s are used to boo	st the pressure for the	pipeline tran	smission of natural gas
Manufacturer		Model	No.		per of Sources
Caterpillar		G3606		3	d Conceitu
Source Designation S001- S003			um Capacity IP (each)		d Capacity 5 HP (each)
Type of Material Pro	ocessed	1,0701		1,070	
Natural Gas					
Maximum Operatii	ng Schedule				
Hours/Day	Days/We	ek	Days/Year		Hours/Year
24 Operational restricti	7	octod if any (o.g.	365 , bottlenecks or volunt	any roctriction	8760
Operational restrict	ions existing of reque	ested, il any (e.g.,		ary restriction	
Capacity (specify			1		
Per Hour	Per Day		Per Week		Per Year
Operating Schedu					
Hours/Day	Days/We	ek	Days/Year		Hours/Year
24 Seasonal variations	(Months) From		365 to		8760
	st, describe them		10		
	,				
2. Fuel – Comp	ressor Engines (S0	01 to \$002) Eo	ab		
z. ruer-comp	Quantity	01 (0 3003) - Ea		% Ash	
Туре	Hourly	Annually	Sulfur	(Weight)	BTU Content
Oil Number	GPH @				Btu/Gal. &
	60°F	X 10 ³ Gal	% by wt		Lbs./Gal. @ 60 °F
Oil Number	GPH @	Gai			Btu/Gal. &
	60°F	X 10 ³	% by wt		Lbs./Gal. @ 60 °F
		Gal			
Natural Gas	13,955 SCFH	122 X 106 SCF	NA grain/100	NA	1,030 Btu/SCF
	13,955 30711	122 × 10° 30F	SCF	INA	1,030 Blu/3CF
Gas (other)					
	SCFH	X 10 ⁶			Btu/SCF
Coal	TPH	SCF Tons	SCF % by wt		Btu/lb
Juai	IFA	TONS	70 Dy Wt		DIU/ID
Other *					

*Note: D	Describe an	nd furnish information	n separately for oth	ner fuels in Addendur	n B.

	S	ection B - Pro	cesses Informat	ion			
1. Source Info	ormation – Emerge	ncy Generator E	ngine (S004)				
Source Description	(give type, use, raw	materials, produc	t, etc). Attach additio	nal sheets as	necessary.		
One (1) Caterpillar (the facility.	G3412C emergency	generator engine	(rated 670 hp), <u>or eq</u>	uivalent , to p	provide emergency power at		
Manufacturer		Model N	lo.	Numb	per of Sources		
Cummins Source Designation		GTA28 Maximu	m Capacity	1 Rated	d Capacity		
S004			watt (kW)	523 k			
Type of Material Pro Natural Gas	ocessed						
Maximum Operatir	ng Schedule						
Hours/Day As needed	Days/We As neede		Days/Year As needed		Hours/Year 500		
			bottlenecks or volunt				
		,					
Capacity (specify u					D V		
Per Hour	Per Day		Per Week		Per Year		
Operating Schedul			1				
Hours/Day	Days/We		Days/Year Hours/Year				
As needed As needed As needed 500 Seasonal variations (Months) From to							
2 Eucl Emore	anna Canaratar (S	204)					
2. Fuel – Emerg	ency Generator (Se Quantity	004)		% Ash			
Туре	Hourly	Annually	Sulfur	(Weight)	BTU Content		
Oil Number	GPH @ 60°F	X 10³ Gal	% by wt		Btu/Gal. & Lbs./Gal. @ 60 °F		
Oil Number	GPH @	Cui			Btu/Gal. &		
	60°F	X 10 ³ Gal	% by wt		Lbs./Gal. @ 60 °F		
Natural Gas	5,699 SCFH	2.8 X 10 ⁶ SCF	NA grain/100 SCF	NA	1,030 Btu/SCF		
Gas (other)		V 406	araia (100				
	SCFH	X 10 ⁶ SCF	grain/100 SCF		Btu/SCF		
Coal	TPH	Tons	% by wt		Btu/lb		
Other *							
*Note: Describe and	d furnish information	separately for oth	l ner fuels in Addendun	n B.			

Section B - Processes Information (Continued)					
3. Burner N/A					
Manufacturer	Type and N	lodel No.		Number of Burners	
Description:					
Deted Conscitu		Mawimum Canaaitu			
Rated Capacity		Maximum Capacity			
4. Process Storage Vessels – Prod	uced Fluids Tanl	k (S005)			
A. For Liquids:		· · ·			
Name of material stored Produced Fluids (from the pipeline)					
Tank I.D. No.		Date Instal	led		
S005	Tank Builders Ind	c (TBL)	TBD		
Maximum Pressure ~0.28 psia		Capacity (gallons/M 1,000 gallons	leter ³)		
Type of relief device (pressure set vent/o Pressure set vent	conservation vent/	emergency vent/open v	ent)		
Relief valve/vent set pressure (psig) 0.75		Vapor press. of liqu < 1.5 psia	Vapor press. of liquid at storage temp. (psia/kPa) < 1.5 psia		
Type of Roof: Describe:		Ι			
Vertical Fixed Roof					
Total Throughput Per Year		Number of fills per of	day (fill/day):	varies	
24,000 gallons/year		Filling Rate (gal./mi Duration of fill hr./fil	,		
4. Process Storage Vessels – Engi	ne Oil Tank (S00	6)			
A. For Liquids:					
Name of material stored Engine Oil					
Tank I.D. No.	Manufacturer		Date Instal	led	
S006	TBD		TBD		
Maximum Pressure		Capacity (gallons/M	leter ³)		
~0.0075 psia		500 gallons			
Type of relief device (pressure set vent/o Pressure set vent	conservation vent/	emergency vent/open v	ent)		
Relief valve/vent set pressure (psig)		Vapor press. of liqu	id at storage	e temp. (psia/kPa)	
Est. < 1 psig		Negligible			
Type of Roof: Describe: Horizontal Tank					
Total Throughput Per Year		Number of fills per of	day (fill/day)	varies	
6,000 gallons		Filling Rate (gal./mi	n.): varies		
		Duration of fill hr./fill	l): varies		

2700-PM-AQ0007 Rev. 7/2004					
4. Process Storage Vessels – TEG	i Tank (S007)				
A. For Liquids:					
Name of material stored					
Triethylene Tank					
Tank I.D. No.	Manufacturer		Date Installed		
S007	TBD		TBD		
Maximum Pressure	L	Capacity (gallons/M	eter ³)		
~0.001 psia		500 gallons			
Type of relief device (pressure set vent/	conservation vent/en	nergency vent/open ve	ent)		
Pressure set vent					
Relief valve/vent set pressure (psig)		Vapor press. of liquid at storage temp. (psia/kPa)			
Est. < 1 psig		Negligible			
Type of Roof: Describe:					
Horizontal Tank					
Total Throughput Per Year		Number of fills per c			
6,000 gallons		Filling Rate (gal./min.): varies			
		Duration of fill hr./fill): varies		
5. Request for Confidentiality					
Do you request any information on this	application to be trea	ited as "Confidential"?	Yes 🛛 No		
If yes, include justification for confidentia	ality. Place such info	ormation on separate	pages marked "confidential".		

Section B - Processes Information (Continued)

6. Miscellaneous Information

Attach flow diagram of process giving all (gaseous, liquid and solid) flow rates. Also, list all raw materials charged to process equipment, and the amounts charged (tons/hour, etc.) at rated capacity (give maximum, minimum and average charges describing fully expected variations in production rates). Indicate (on diagram) all points where contaminants are controlled (location of water sprays, collection hoods, or other pickup points, etc.). Describe collection hoods location, design, airflow and capture efficiency. Describe any restriction requested and how it will be monitored. See process flow diagram

Describe fully the facilities provided to monitor and to record process operating conditions, which may affect the emission of air contaminants. Show that they are reasonable and adequate.

Hours of operation will be monitored for all engines. Engine operating parameters such as RPM, percent load and fuel usage may be monitored for normal operating ranges while the station is manned.

Describe each proposed modification to an existing source. NA

Identify and describe all fugitive emission points, all relief and emergency valves and any by-pass stacks. Based on preliminary estimates, there will be a total of 186 valves, 1,064 connectors, 532 flanges, 30 open ended lines and 20 other miscellaneous fugitive emission points in the entire facility following the completion of this proposed project. The emissions from these points have been estimated in the site-wide emissions calculations.

Describe how emissions will be minimized especially during start up, shut down, process upsets and/or disruptions. As the catalyst must be heated to a certain temperature before it reaches its rated reduction efficiency, emissions may be greater during startup of reciprocating engines. To ensure emissions will be minimized, the engines will be operated in accordance with manufacturer's specifications or recommendations.

There is no reason to anticipate excess emissions during shutdown of engines. The only reasonably anticipated upset condition would be malfunction of the catalyst. If such an upset were to occur, the engine would be shutdown until the catalyst was repaired or replaced.

In addition, all sources at the station will be operated in accordance with good engineering practices, according to manufacturer's specifications and in a manner which minimizes air pollution.

Anticipated Milestones:

- i. Expected commencement date of construction/reconstruction/installation: Q4 2018
- ii. Expected completion date of construction/reconstruction/installation:
- iii. Anticipated date of start-up:

Q4 2018 As soon as possible 2019

1. Precontrol Emis	sions* – Compress				
		Maximum Emis	sion Rate - (each)	_	Calculation/
Pollutant	Specify Units	Pounds/Hour	Hours/Year	Tons/Year	Estimation Method
PM	0.01 Ib/MMBtu	0.14	8,760	0.63	AP-42
PM ₁₀	0.01 Ib/MMBtu	0.14	8,760	0.63	AP-42
SO _x	0.001 lb/MMBtu	0.01	8,760	0.04	AP-42
СО	2.49 g/bhp-hr	10.29	8,760	45.08	Manufacturer
NO _x	0.3 g/bhp-hr	1.24	8,760	5.43	Manufacturer
VOC (NMNEHC)	0.32 g/bhp-hr	1.32	8,760	5.79	Manufacturer
Others: (e.g., HAPs)					
Formaldehyde	0.19 g/bhp-hr	0.79	8,760	3.44	Manufacturer
Emissions are based o	n current design. Fi	nal specifications wil	l be at least equivale	ent.	
				1	

I

Section C - Air Cleaning Device (Continued)						
10. Selective Cataly	Catalytic Redu	ction (SNCR)				
Equipment Specification	S					
Manufacturer		Туре		Model N	0.	
Miratech		Catalyst		SP-NX-1	2-08F-EN1, or equivalent	
Design Inlet Volume (SCF 3,513 (actual)	Design Inlet Volume (SCFM) 3,513 (actual)			emperature	୬ (°F)	
Is the system equipped w details.	ith process cor	trols for proper m	ixing/control of the red	lucing age	nt in gas stream? If yes, give	
Nonselective catalytic redu water, carbon dioxide, and		atalyst reaction to s	imultaneously reduce	NOx, CO,	and hydrocarbon (HC) to	
Attach efficiency and other Attached the generator set	•	mation (e.g., ammo	onia slip)			
Operating Parameters						
Volume of gases handled	<u>3,513 (</u> ACFM)	@ <u>1,227</u> °F				
Operating temperature rat	nge for the SCI	R/SNCR/NSCR sy	stem (°F) From <u>850</u>	1	_°F To <u>1250</u> °F	
Reducing agent used, if ar None	у		Oxidation catalyst used, if any Yes			
State expected range of us	sage rate and c	oncentration.				
Catalyst reaction is continu	uously.					
Service life of catalyst			Ammonia slip (ppm)		
~2 years			N/A	N/A		
Describe fully with a sketch	h giving locatior	ns of equipment, co	ontrols systems, import	ant param	eters and method of operation.	
	eduction uses a	a catalyst reaction	to simultaneously redu		streams with low O2 content. O, and hydrocarbon (HC) to	
Describe the warning/alarr	n system that p	rotects against op	eration when unit is not	t meeting o	design requirements.	
The unit is guaranteed to r	meet the remov	al efficiency below	throughout the unit's li	fetime.		
Emissions Data						
Pollutant	ļ	nlet	Outlet		Removal Efficiency (%)	
NOx	~10.0 g/bhp-h	r	2.0 g/bhp-hr		~80%	
CO	~10.9 g/bhp-h	r	4.0 g/bhp-hr		~60%	

11. Oxidizer/Afterburners – Oxidation Catalysts for Compressor Engines (S001 through S003)					
		Calarysis IOI			
Equipment Specifications					
Manufacturer		Туре 🗌	The	ermal 🛛 Catalytic	Model No.
Emit Technologies, Inc. (or e	equivalent)				RT-3615-Z
					(or equivalent)
Design Inlet Volume (SCFM))				ength, cross-sectional area, effective
~11,972 CFM		chamber vo	olum	ne, etc.) NA	
Describe design features, wh	nich will ensure	mixing in co	mhi	ustion chamber	
•		-			ach channel is coated with a highly
					exhaust gas travels down the channel,
hydrocarbons and carbon m	onoxide react v	with oxygen w	vithi	n the porous catalyst laye	er to form carbon dioxide and water
vapor. The resulting gases the	nen exit the cha	annels and flo	ow t	hrough the rest of the ex	haust system.
Describe method of preh	neating incom	ing gases	(if		ger system used for heat recovery (if
applicable). NA applicable). NA					
Catalyst used	Life of catalys	et .	Fv	pected temperature rise	Dimensions of bed (in inches).
See above	•			ross catalyst (°F)	Height: $\sim 36^{\circ}$
	e above 1 year or 8,760 operating hours			known	Diameter or Width: ~15"
					Depth: \sim 3.5"
Are temperature sensing dev	vices being pro	vided to mea	sur	e the temperature rise ac	ross the catalyst? 🗌 Yes 🛛 No
If yes, describe.					
	ensing and/or r	ecording devi	ices	(including specific locati	on of temperature probe in a drawing or
sketch.					
Burner Information					
Burner Manufacturer		Model No.			Fuel Used
NA					
Number and capacity of burr	hers	Rated cana	Rated capacity (each)		Maximum capacity (each)
	1613	Rated capacity (each)		(each)	Maximum capacity (each)
Describe the operation of the	e burner			Attach dimensioned dia	gram of afterburner
Operating Parameters					
Inlet flow rate (ACFM) 11,97	′ 2 @ 822	°F		Outlet flow rate (ACFM) <u>11,972 @ 822 (design</u>
				ongoing)	°F
State pressure drop range a	cross catalytic	bed (in of		Describe the method ar	dopted for regeneration or disposal of
water). <9.8 (backpressure)	oross outarytic				yst may be cleaned periodically, or
, , , ,				when performance decl	
Describe the warning/alarm	system that pro	otects against	t op	eration when unit is not n	neeting design requirements.
_		-	-		
operator should the inlet exh					hut the engine down or warn the critical temperature.

Emissions Data			
Pollutant	Inlet	Outlet	Removal Efficiency (%)
со	2.49 g/bhp-hr	0.17 g/bhp-hr	<u>></u> 93%
NMNEHC (Non-methane non-ethane hydrocarbons excluding HCHO)	0.32 g/bhp-hr	0.16 g/bhp-hr	~50%
НСНО	0.19 g/bhp-hr	0.04 g/bhp-hr	~80%

Section C - Air Cleaning Device (Continued)						
12. Flares N/A						
Equipment Specification	S					
Manufacturer			vated flare er	🗌 Groui		Model No.
Design Volume (SCFM)		Dimensions of s	. ,	Height		
Residence time (sec.) and temperature (°F) (n	outlet ninimum)	Turn down ratio			Burner details	
Describe the flare design (air/steam-assisted or nonassisted), essential auxiliaries including pilot flame monitor of proposed flare with a sketch.						
Describe the operation of the flare's ignition system.						
Describe the provisions to introduce auxiliary fuel to the flare.						
Operation Parameters						
Detailed composition of th	ne waste gas	Heat content	Exit velocity			
Maximum and average ga	s flow burned ((ACFM)	Operating temperature (°F)			
Describe the warning/alarr	m system that p	protects against o	peration wl	nen unit is not	meeting design requi	rements.
Emissions Data						
Pollutant	Inle	et (tpy)	Ou	itlet (tpy)	Removal Ef	ficiency (%)

	Section C - Air Cleaning Device (Continued)						
13. Other Control Equi	oment <mark>N/A</mark>						
Equipment Specification	s						
Manufacturer		Туре		Model No.			
Design Volume (SCFM)			Capacity				
Describe pH monitoring an	d pH adjustme	nt, if any.					
Indicate the liquid flow rate	and describe e	equipment provide	ed to measure pressure d	rop and flow rate, if any.			
Attach efficiency curve and	l/or other efficie	ency information.					
Attach any additional date	including auxilia	ary equipment an	d operation details to thor	oughly evaluate the control equipment.			
	-						
Operation Parameters							
Volume of gas handled							
volume of gas nanuleu	ACFM @°F% Moisture						
-	FM @	°F	% M	oisture			
-				oisture			
AC				oisture			
AC				oisture			
AC				oisture			
AC Describe fully giving import	tant parameters	s and method of c	peration.	oisture neeting design requirements.			
AC Describe fully giving import	tant parameters	s and method of c	peration.				
AC Describe fully giving import	tant parameters	s and method of c	peration.				
AC Describe fully giving import	tant parameters	s and method of c	peration.				
AC Describe fully giving import Describe the warning/alarn Emissions Data	tant parameters	s and method of c	peration.	neeting design requirements.			
AC Describe fully giving import Describe the warning/alarn Emissions Data	tant parameters	s and method of c	peration.	neeting design requirements.			

Section C - Air Cleaning Device (Continued)

14. Costs N/A

Indicate cost associated with air cleaning device and its operating cost (attach documentation if necessary)

Device	Direct Cost	Indirect Cost	Total Cost	Annual Operating Cost

15. Miscellaneous

Describe in detail the removal, handling and disposal of dust, effluent, etc. from the air cleaning device including proposed methods of controlling fugitive emissions.

Non Applicable.

Attach manufacturer's performance guarantees and/or warranties for each of the major components of the control system (or complete system).

See Attached Specifications and Guarantees under Attachment C.

Attach the maintenance schedule for the control equipment and any part of the process equipment that if in disrepair would increase air contaminant emissions.

Adelphia will conduct maintenance on all control equipment as recommended by the respective manufacturer.

Section D - Additional Information

Will the construction, modification, etc. of the sources covered by this application increase emissions from other sources at the facility? If so, describe and quantify.

No - this is a greenfield construction project

If this project is subject to any one of the following, attach a demonstration to show compliance with applicable standards.

a.	Prevention of Significant Deterioration permit (PSD), 40 CFR 52?	🗌 YES	🛛 NO
b.	New Source Review (NSR), 25 Pa. Code Chapter 127, Subchapter E?	☐ YES	NO 🛛
C.	New Source Performance Standards (NSPS), 40 CFR Part 60? (If Yes, which subpart) JJJJ, OOOOa	🛛 YES	□ NO
d.	National Emissions Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 61? (If Yes, which subpart)	☐ YES	NO NO
e.	Maximum Achievable Control Technology (MACT) 40 CFR Part 63? (If Yes, which subpart) ZZZZ	🛛 YES	

Attach a demonstration showing that the emissions from any new sources will be the minimum attainable through the use of best available technology (BAT).

Please see Section 4 of Application Report.

Provide emission increases and decreases in allowable (or potential) and actual emissions within the last five (5) years for applicable PSD pollutant(s) if the facility is an existing major facility (PSD purposes). N/A

Section D - Additional Information (Continued)

Indicate emission increases and decreases in tons per year (tpy), for volatile organic compounds (VOCs) and nitrogen oxides (NOx) for NSR applicability since January 1, 1991 or other applicable dates (see other applicable dates in instructions). The emissions increases include all emissions including stack, fugitive, material transfer, other emission generating activities, quantifiable emissions from exempted source(s), etc.

		Indicate Yes)Cs	N	Ox
		or No if		Emission			
		emission		increases	Creditable	Emission	Creditable
		increases and		in	emission	increases	emission
		decreases		potential	decreases	in	decreases
Permit		were used		to emit	in actual	potential	in actual
number	Date	previously for			emissions	to emit	emissions
(if applicable)	issued	netting	Source I. D. or Name	(tpy)	(tpy)	(tpy)	(tpy)
N/A							

If the source is subject to 25 Pa. Code Chapter 127, Subchapter E, New Source Review requirements,

- a. Identify Emission Reduction Credits (ERCs) for emission offsets or demonstrate ability to obtain suitable ERCs for emission offsets. N/A
- b. Provide a demonstration that the lowest achievable emission rate (LAER) control techniques will be employed (if applicable). N/A
- c. Provide an analysis of alternate sites, sizes, production processes and environmental control techniques demonstrating that the benefits of the proposed source outweigh the environmental and social costs (if applicable). N/A

Attach calculations and any additional information necessary to thoroughly evaluate compliance with all the applicable requirements of Article III and applicable requirements of the Clean Air Act adopted thereunder. The Department may request additional information to evaluate the application such as a standby plan, a plan for air pollution emergencies, air quality modeling, etc.

Section E - Compliance Demonstration (Compressor Engines - S001 and S003) Note: Complete this section if source is not a Title V facility. Title V facilities must complete Addendum A. Method of Compliance Type: Check all that apply and complete all appropriate sections below Monitoring Testing Reporting Recordkeeping Work Practice Standard Monitoring: a. Monitoring device type (Parameter, CEM, etc): Adelphia will track hours of operation of the compressor engines with a SCADA system as well as fuel using gas meters. Monitoring device location: Fuel will be monitored via a master gas meter (for the site) as well as individual b. compressor engine meters. c. Describe all parameters being monitored along with the frequency and duration of monitoring each parameter: Fuel and operation will be continuously monitored using the instrumentation noted above. **Testing:** a. Reference Test Method: Citation 40 CFR 60.4243(b)(2)(ii) requires initial performance testing as well as subsequent compliance testing every 8,760 hours or three years, whichever comes first. Testing to be conducted in accordance with 40 CFR 60.4244. b. Reference Test Method: Description EPA approved test methods - 7E (NOx concentration), 10 (CO concentration), 25A/320 (NMHC concentration), and 19 (exhaust mass emissions rate) **Recordkeeping:** Describe what parameters will be recorded and the recording frequency: Records of all notifications submitted to comply with NSPS Subpart JJJJ, records of maintenance conducted on the engine and performance testing reports maintained in accordance with 40 CFR 60.4245(a). Compressor engine fuel and hours of operation will be recorded on a calendar month basis. **Reporting:** a. Describe what is to be reported and frequency of reporting: Initial Notification of the date construction commences no later than 30 days after such date in accordance with 40 CFR 60.7(a)(1) and 60.4245 (c) and performance testing results within 60 days of test completion in accordance with 40 CFR 60.4245(d). b. Reporting start date: 60 days after first performance test Work Practice Standard:

2700-PM-AQ0007 Rev. 7/2004

Describe each: Prepare and adhere to a maintenance plan to maintain and operate the engine, to the extent practicable, in a manner consistent with good air pollution control practices for minimizing emissions as required by 40 CFR 60.4243(b)(2)(ii).

Section F - Flue and Air Contaminant Emissions – Compressor Engine (S001 through S003)							
1. Estimated Atmos	pheric Emiss	ions* Post-	Control @ 87	′60 hrs/yr (E	ach Engine)		
		Ma	ximum emiss	sion rate			Calculation/
Pollutant	specify u	nits	lbs/hr		tons/yr.	E	Estimation Method
PM	0.01	0.1	4	0.63		AP-	42
	lb/MMBtu						
PM10	0.01	0.1	4	0.63		AP-	42
	lb/MMBtu						
SOx	0.001	0.0)1	0.04		AP-	42
	lb/MMBtu						
СО	0.17 g/bhp-h	nr 0.7	0	3.08		Ven	dor Guarantee
NOx	0.30 g/bhp-h	nr 1.2	24	5.43		Ven	dor Guarantee
VOC (including	0.20 g/bbp b	ur 0.8	3	3.62		Ven	dor Guarantee
formaldehyde)	0.20 g/bhp-h			3.02			
Others: (e.g., HAPs)							
Formaldehyde	0.04 g/bhp-hr	0.1	7	0.72		Ven	dor Guarantee
Final design specificat	• •	t loast og	uvalant to the	neo listod bo			
i inai design specificat	ions win be, a	it least, equ			<i>.</i>		
* These emissions mus schedule for maximum values were determine	n limits or restr	ricted hours					
2. Stack and Exhaus	ster						
Stack Designation/Num	ber P001 – P0	03					
List Source(s) or source	ID exhausted	to this stac	:k: %	% of flow exh	austed to sta	ick: 100	
Three (3) CAT G3606 C engine)	Compressor Er	ngines (one	stack per				
Stack height above grad		5	Stack diamete	er (ft) or Outle	et duct area (sq. ft.)	f. Weather Cap
Grade elevation (ft.) ~38			-2.5				🗌 YES 🖾 NO
Distance of discharge to		•			•		
~75 ft (see site plan drawin		-		plemental mat	eriais)		
Does stack height meet Yes	Good Enginee	ning Practice	e(GEP)?				
If modeling (estimating) and other obstructions.		r quality im	pacts is need	ed, attach a	site plan wit	h buildings	and their dimensions
Location of stat			1 - 64 - 1				11 J.
Latitude/Longite	ude		Latitude	1		Long	itude
Point of Origi	in	Degrees	Minutes	Seconds	Degrees	Minutes	Seconds

Stack exhaust Volume 11,972 ACFM

Temperature 822 °F

Moisture TBD, Design ongoing %

Indicate on an attached sheet the location of sampling ports with respect to exhaust fan, breeching, etc. Give all necessary dimensions.

TBD, design ongoing

Exhauster (attach fan curves) in. of water HP @ RPM.

** If the data and collection method codes differ from those provided on the General Information Form-Authorization Application, provide the additional detail required by that form on a separate form.

Section F - Flue and Air Contaminant Emissions – Emergency Generator (S004)

1. Estimated Atmospheric Emissions* Emergency Generator @ 500 hrs/yr

	Ма	ximum emission ra	ate	Calculation/		
Pollutant	specify units	lbs/hr	tons/yr.	Estimation Method		
PM	9.50E-3 lb/MMbtu	0.11	0.03	AP-42		
PM ₁₀	9.50E-3 lb/MMbtu	0.11	0.03	AP-42		
SOx	0.003 lb/MMBtu	<0.01	<0.01	AP-42		
СО	4.0 g/bhp-hr	6.18	1.55	Manufacturer's Spec		
NO _x	2.0 g/bhp-hr	3.09	0.77	Manufacturer's Spec		
VOC (including formaldehyde)	1.0 g/bhp-hr + formaldehy de	1.67	0.42	Manufacturer's Spec and AP-42		
Others: (e.g., HAPs)						
Formaldehyde	2.05E-02 lb/MMBtu	0.12	0.03	AP-42		

Final design specifications will be, at least, equivalent to those listed here.

* These emissions must be calculated based on the requested operating schedule and/or process rate e.g., operating schedule for maximum limits or restricted hours of operation and /or restricted throughput. Describe how the emission values were determined. Attach calculations.

2. Stack and Exhauster

Stack Designation/Number P-004

-				
List Source(s) or source ID exhausted to this stack: One (1) Emergency Generator (S004)		% of flow exhausted to stack: 100		
Stack height above grade (ft.) ~6 Grade elevation (ft.) ~35	Stack diameter (ft) or Outlet duct area (sq. ft.)		f.	Weather Cap
Distance of discharge to nearest property line (ft.). Locate o	n topographic map.		
~130				
Does stack height meet Good Engineering Pract	tice (GEP)?			

Yes

If modeling (estimating) of ambient air quality impacts is needed, attach a site plan with buildings and their dimensions and other obstructions. NA

Location of stack** Latitude/Longitude	Latitude			Longitude			
Point of Origin	Degrees	Minutes	Seconds	Degrees	Minutes	Seconds	
Stack exhaust Volume <u>3,513</u> ACFM	Temperatur	Temperature <u>1,227</u> °F Moisture <u>TBD, Design ongoing</u> %					
Indicate on an attached sheet the loo dimensions. TBD, design ongoing	cation of sampl	ing ports with	respect to e	xhaust fan, b	reeching, etc	. Give all necessary	
Exhauster (attach fan curves)		in. of	water		HP @	RPM.	
** If the data and collection method codes differ from those provided on the General Information Form-Authorization Application, provide the additional detail required by that form on a separate form.							

Section G - Attachments

Number and list all attachments submitted with this application below:

- > Narrative Report
 - Section 2: Project Description
 - Section 3: Applicable Regulations Review (Includes Aggregation Analysis)
 - Section 4: Best Available Technology (BAT) Analysis
 - Section 5: Sample Emission Source Calculations
- > Appendix A : Area Maps and Process Flow Diagram
- > Appendix B : Detailed Emission Calculations and BAT Analysis
- > Appendix C : Manufacturer's Specifications
- > Appendix D: Plan Approval Application Forms
- > Appendix E: General Information Form (GIF)
- > Appendix F: Compliance Review Form
- > Appendix G: County & Municipal Notifications
- > Appendix H: Application Fee

APPENDIX E: GENERAL INFORMATION FORM (GIF)

Adelphia Pipeline Company | Marcus Hook Compressor Station Trinity Consultants

GENERAL INFORMATION FORM – AUTHORIZATION APPLICATION

Before completing this General Information Form (GIF), read the step-by-step instructions provided in this application package. This version of the General Information Form (GIF) must be completed and returned with any program-specific application being submitted to the Department.

Related ID#s (DEP USE ONLY					
Client ID#	APS ID#		Date Receiv	ed & Gen	eral Note	S	
Site ID#	Auth ID#						
Facility ID#							
	CLIENT INFORM	ATION					
DEP Client ID# C	Client Type / Code						
	LC						
Organization Name or Registered F	ictitious Name	Employer	ID# (EIN)	Dun & I	Bradst	reet ID#	
Adelphia Pipeline Company, LLC							
Individual Last Name	First Name	MI	Suffix	SSN			
N/A							
Additional Individual Last Name	First Name	MI	Suffix	SSN			
N/A							
Mailing Address Line 1		ing Address L					
Adelphia Gateway, LLC		Wyckoff Road					
Address Last Line – City	State	ZIP+4		untry			
Wall	NJ	07719	US	A			
Client Contact Last Name	First Name		MI		Su	uffix	
Valori	Mark		F				
Client Contact Title			Phone	4400	E	ct	
Vice President			(732) 938	-1169			
Email Address			FAX				
mvalori@NJResources.com			N/A				
	SITE INFORMA	TION					
DEP Site ID# Site Name Marcus Hook Co	mpressor Station						
	Estimated Number of Emp	lovees to be	Present at S	ite	0 (unn	nanned)	
Description of Site					o (ann	lainioa)	
•							
A natural gas compression facility	icipality		City	Boro	Twp	State	
A natural gas compression facility County Name Mun	icipality er Chichester		City	Boro	Twp	State PA	
A natural gas compression facility County Name Mun	er Chichester	ocation Line		Boro			
A natural gas compression facility County Name Delaware Lowe	er Chichester	ocation Line		Boro			
A natural gas compression facility County Name Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City	er Chichester Site L State	ocation Line ZIP+4		Boro			
A natural gas compression facility County Name Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook	er Chichester Site L			Boro			
A natural gas compression facility County Name Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site	er Chichester Site L State PA	ZIP+4 19061	2			ΡΑ	
A natural gas compression facility County Name Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chiche	er Chichester Site L State PA ester Avenue (then travel 02	ZIP+4 19061 miles). Turn le	2 2 eft onto Plea	sant Ave	e (trave	PA I 300 feet).	
A natural gas compression facility County Name Delaware County Name County Name Delaware County Name C	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co	ZIP+4 19061 miles). Turn k blumbia Ave (t	2 2 eft onto Plea ravel 0.3 mile	sant Ave	e (trave	PA I 300 feet). the 1st	
A natural gas compression facility County Name Delaware Mun Delaware Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chiche Turn left onto Chichester Ave (travel cross street onto Blueball Ave (travel	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co	ZIP+4 19061 miles). Turn k blumbia Ave (t	2 2 eft onto Plea ravel 0.3 mile	sant Ave	e (trave	PA I 300 feet). the 1st	
A natural gas compression facility County Name Delaware Mun Delaware Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chiche Turn left onto Chichester Ave (travel 0 cross street onto Blueball Ave (travel 0 The station will be on your left.	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co 0.4 miles). Turn right at the	ZIP+4 19061 miles). Turn k blumbia Ave (t	2 2 eft onto Plea ravel 0.3 mile t onto Ridge	sant Ave	e (trave n left at vel 0.6	PA I 300 feet). the 1st miles).	
A natural gas compression facility County Name Delaware Mun Delaware Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chiche Turn left onto Chichester Ave (travel C cross street onto Blueball Ave (travel C The station will be on your left. Site Contact Last Name	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co 0.4 miles). Turn right at the First Name	ZIP+4 19061 miles). Turn k blumbia Ave (t	2 2 eft onto Plea ravel 0.3 mile t onto Ridge MI	sant Ave	e (trave n left at vel 0.6	PA I 300 feet). the 1st	
A natural gas compression facility County Name Mun Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chich Turn left onto Chichester Ave (travel or cross street onto Blueball Ave (travel or cross st	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co 0.4 miles). Turn right at the First Name Mark	ZIP+4 19061 miles). Turn le blumbia Ave (t 1st cross stree	2 2 eft onto Plea ravel 0.3 mile t onto Ridge	sant Ave	e (trave n left at vel 0.6	PA I 300 feet). the 1st miles).	
A natural gas compression facility County Name Mun Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chicher Turn left onto Chichester Ave (travel or cross street onto Blueball Ave (travel or the station will be on your left. Site Contact Last Name Valori Site Contact Title	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co 0.4 miles). Turn right at the First Name Mark Site C	ZIP+4 19061 miles). Turn le blumbia Ave (t 1st cross stree contact Firm	2 eft onto Plea ravel 0.3 mile t onto Ridge MI F	sant Ave	e (trave n left at vel 0.6	PA I 300 feet). the 1st miles).	
A natural gas compression facility County Name Mun Delaware Lowe Site Location Line 1 West Ridge Rd Site Location Last Line – City Marcus Hook Detailed Written Directions to Site From I-95 South take exit 1 for Chich Turn left onto Chichester Ave (travel or cross street onto Blueball Ave (travel or cross st	er Chichester Site L State PA ester Avenue (then travel 02 0.2 miles). Turn right onto Co 0.4 miles). Turn right at the First Name Mark Site C Adelp	ZIP+4 19061 miles). Turn le blumbia Ave (t 1st cross stree	2 eft onto Pleas ravel 0.3 mile t onto Ridge MI F	sant Ave	e (trave n left at vel 0.6	PA I 300 feet). the 1st miles).	

Maili	ng Address Last Line – City	,		State	ZIP+4					
Wall				NJ	07719					
Phon (732)	1e Ext 938-1169	FAX			Address i@NJResour	ces.com				
	S Codes (Two- & Three-Digit C	Codes – List A	All That A	vpply)	6	-Digit Code	(Optional)			
Clien	t to Site Relationship									
Owne	er/Operator	EA								
Modi	fightion of Existing Easility	FA		Y INFORM	ATION		Yes	No		
	fication of Existing Facility	ovicting fo		watam ara	ativity 2			No		
1. 2.	Will this project modify an					r ootivity?	님			
۷.	Will this project involve an									
	If "Yes", check all relevant fa					ation number				
	Facility Type Air Emission Plant	DI	EP Fac I		acility Type dustrial Minerals	Mining Operati		DEP Fac ID#		
H	Beneficial Use (water)				aboratory Location		<u> </u>			
H	Blasting Operation				and Recycling C					
H	Captive Hazardous Waste Operation	<u> </u>			ineDrainageTrm					
H	Coal Ash Beneficial Use Operation	<u> </u>			unicipal Waste (
H	Coal Mining Operation				il & Gas Encroa		. —			
H	Coal Pillar Location				il & Gas Locatio		·			
H	Commercial Hazardous Waste Ope	eration			il & Gas Water F		litv			
Н	Dam Location				ublic Water Sup		· _			
П	Deep Mine Safety Operation -Anth	acite			Radiation Facility					
П	Deep Mine Safety Operation -Bitun			— П R	esidual Waste C	peration				
П	Deep Mine Safety Operation -Ind N				torage Tank Loc					
П	Encroachment Location (water, we				ater Pollution C					
	Erosion & Sediment Control Facility				ater Resource					
	Explosive Storage Location			c	ther:					
	Latitude/Longitude			Latitude			Longitude)		
	Point of Origin	De	grees	Minutes	Seconds	Degrees	Minutes	Seconds		
			39	48	53.82	-75	26	19.56		
Horiz	contal Accuracy Measure	Fee	et		0r	- Me	eters			
	contal Reference Datum Co	de 🗌	Nort	th American	Datum of 192	27				
			Nort	th American	Datum of 198	33				
		$\overline{\boxtimes}$	Wor	ld Geodetic	System of 19	84				
Horiz	contal Collection Method Co	de			, ,					
	rence Point Code									
Altitu		Fee	et ~3	35	or	- Me	ters			
	Ide Datum Name				odetic Vertica					
					can Vertical			1		
Altitu	de (Vertical) Location Datu	m Collectio					, I			
Geor	netric Type Code									
	Collection Date									
	ce Map Scale Number			Inch(es)	=		Feet			
		0r		Centimete			Meter	rs		
			OJEC							
Proie	ect Name			-						
	us Hook Compressor Station									
Proie	ect Description									

Adelphia Pipeline Company, LLC plans to construct a new natural gas compression facility consisting of three (3) Caterpillar G3606 reciprocating internal combustion compressor engines (1,875 hp each) equipped with oxidation catalysts for air pollution control, one (1) Caterpillar G3412C emergency-use reciprocating internal combustion generator engine (670 hp) equipped with a non-selective catalytic reduction (NSCR or "three-way") catalyst for air pollution control, one (1) 1,000 gallon produced fluid tank, two (2) miscellaneous storage tanks (each 500 gallons or less); and miscellaneous associated piping and components.

Project Consultant Las	st Name	First Name	MI		S	uffix	
Donaldson		lan O a securiti a securiti					
Project Consultant Title	e	Consulting Fir					
Managing Consultant		Trinity Consulta					
Mailing Address Line 1	l	Mailing Addre	ss Line 2				
4500 Brooktree Rd.		Suite 103					
Address Last Line – Ci	ity	State		ZIP+4			
Wexford		PA		5090			
Phone	Ext FAX	Email Addre					
(724) 935-2611	3		trinityconsulta	ants.co	m		
Time Schedules	Project Milestone (O						
Upon Approval	Proposed start of cons	truction (4 th Quarter 2018)					
1. Have you infor	med the surrounding	g community and addr	essed anv		Yes	\boxtimes	No
		ation to the Department?	· · · · · · ·				
2. Is your project fu	unded by state or federa	al grants?			Yes	\boxtimes	No
		pject is related to the grant and	provide the ar	ant sou	rce. cor	ntact pe	erson
	expiration date.		1		,		
	Project Related to Grant						
Grant Sour	rce:						
Grant Cont	tact Person:						
	ration Date:						
		n on Appendix A of the	Land Use	\boxtimes	Yes		No
		dix A of the Land Use Polic		<u> </u>			
to GIF instruction			oy allaonoa				
		s not subject to the Land Use F	Policy				
		is subject to this policy and the		uld ansv	wer the	additio	nal
	in the Land Use Informatio					adamo	nai
		USE INFORMATION					
		ies of local land use appro	vals or other	eviden	ce of c	complia	ance with
	ins and zoning ordinance						
		inty comprehensive plan?			Yes		No
	ted municipal or multi-r	nunicipal comprehensive	plan?	_	Yes		No
3. Is there an add	opted county-wide zo	ning ordinance, munici	pal zoning	\boxtimes	Yes		No
ordinance or joir	nt municipal zoning ord	linance?					
		r Questions 1, 2 <u>or</u> 3, <u>the prov</u>	visions of the P	A MPC	are not	t applic	able and
the Applica	ant does not need to respon	d to questions 4 and 5 below.					
		tions 1, 2 and 3, the Applicant				4 and 5	below.
4. Does the propos	ed project meet the pr	ovisions of the zoning or	dinance or	\boxtimes	Yes		No
does the propos	ed project have zoning	approval? If zoning appro	val has been				
received, attach doo	cumentation.	· · ·					
Note: FOT will encu	ure that the proposed projec	t meets all applicable zoning r	equiremente				
	are mar me proposed projec	an applicable zoriling i	equiremento.				
5. Have you attache	ed Municipal and Coun	tv Land Use Letters for th	e project?		Yes	\boxtimes	No

COORDINATION INFORMATION

<u>Note</u>: The PA Historical and Museum Commission must be notified of proposed projects in accordance with DEP Technical Guidance Document 012-0700-001 and the accompanying Cultural Resource Notice Form.

If the activity will be a mining project (i.e., mining of coal or industrial minerals, coal refuse disposal and/or the operation of a coal or industrial minerals preparation/processing facility), respond to questions 1.0 through 2.5 below.

If the activity will not be a mining project, skip questions 1.0 through 2.5 and begin with question 3.0.

1.0	Is this a coal mining project? If "Yes", respond to 1.1-1.6. If "No", skip to Question 2.0.	Yes	\boxtimes	No
1.1	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be equal to or greater than 200 tons/day?	Yes		No
1.2	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be greater than 50,000 tons/year?	Yes		No
1.3	Will this coal mining project involve coal preparation/ processing activities in which thermal coal dryers or pneumatic coal cleaners will be used?	Yes		No
1.4	For this coal mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters?	Yes		No
1.5	Will this coal mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet?	Yes		No
1.6	Will this coal mining project involve underground coal mining to be conducted within 500 feet of an oil or gas well?	Yes		No
2.0	Is this a non-coal (industrial minerals) mining project? If "Yes", respond to 2.1-2.6. If "No", skip to Question 3.0.	Yes	\boxtimes	No
2.1	Will this non-coal (industrial minerals) mining project involve the crushing and screening of non-coal minerals other than sand and gravel?	Yes		No
2.2	Will this non-coal (industrial minerals) mining project involve the crushing and/or screening of sand and gravel with the exception of wet sand and gravel operations (screening only) and dry sand and gravel operations with a capacity of less than 150 tons/hour of unconsolidated materials?	Yes		No
2.3	Will this non-coal (industrial minerals) mining project involve the construction, operation and/or modification of a portable non-metallic (i.e., non-coal) minerals processing plant under the authority of the General Permit for Portable Non-metallic Mineral Processing Plants (i.e., BAQ-PGPA/GP-3)?	Yes		No
2.4	For this non-coal (industrial minerals) mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters?	Yes		No
2.5	Will this non-coal (industrial minerals) mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet?	Yes		No
3.0	Will your project, activity, or authorization have anything to do with a well related to oil or gas production, have construction within 200 feet of, affect an oil or gas well, involve the waste from such a well, or string power lines above an oil or gas well? If "Yes", respond to 3.1-3.3. If "No", skip to Question 4.0.	Yes		No

3.1	Does the oil- or gas-related project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a watercourse, floodway or body of water (including wetlands)?	Yes		No
3.2	Will the oil- or gas-related project involve discharge of industrial wastewater or stormwater to a dry swale, surface water, ground water or an existing sanitary sewer system or storm water system? If "Yes", discuss in <i>Project Description</i> .	Yes		No
3.3	Will the oil- or gas-related project involve the construction and operation of industrial waste treatment facilities?	Yes		No
4.0	Will the project involve a construction activity that results in earth disturbance? If "Yes", specify the total disturbed acreage.4.0.1Total Disturbed Acreage~1 acres	Yes		No
5.0	Does the project involve any of the following? If "Yes", respond to 5.1-5.3. If "No", skip to Question 6.0.	Yes	\boxtimes	No
5.1	Water Obstruction and Encroachment Projects – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a watercourse, floodway or body of water?	Yes		No
5.2	Wetland Impacts – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a wetland?	Yes		No
5.3	Floodplain Projects by the commonwealth, a Political Subdivision of the commonwealth or a Public Utility – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a floodplain?	Yes		No
6.0	Will the project involve discharge of stormwater or wastewater from an industrial activity to a dry swale, surface water, ground water or an existing sanitary sewer system or separate storm water system?	Yes	\boxtimes	No
7.0	Will the project involve the construction and operation of industrial waste treatment facilities?	Yes	\boxtimes	No
8.0	 Will the project involve construction of sewage treatment facilities, sanitary sewers, or sewage pumping stations? If "Yes", indicate estimated proposed flow (gal/day). Also, discuss the sanitary sewer pipe sizes and the number of pumping stations/treatment facilities/name of downstream sewage facilities in the <i>Project Description</i>, where applicable. 8.0.1 Estimated Proposed Flow (gal/day) 	Yes		No
9.0	Will the project involve the subdivision of land, or the generation of 800 gpd or more of sewage on an existing parcel of land or the generation of an additional 400 gpd of sewage on an already-developed parcel, or the generation of 800 gpd or more of industrial wastewater that would be discharged to an existing sanitary sewer system?	Yes		No
	9.0.1 Was Act 537 sewage facilities planning submitted and approved by DEP? If "Yes" attach the approval letter. Approval required prior to 105/NPDES approval.	Yes		No
10.0	Is this project for the beneficial use of biosolids for land application within Pennsylvania? If "Yes" indicate how much (i.e. gallons or dry tons per year). 10.0.1 Gallons Per Year (residential septage) 10.0.2 Dry Tons Per Year (biosolids)	Yes		No
11.0	Does the project involve construction, modification or removal of a dam? If "Yes", identify the dam. 11.0.1 Dam Name	Yes		No
12.0	Will the project interfere with the flow from, or otherwise impact, a dam?If "Yes", identify the dam.12.0.1Dam Name	Yes	\boxtimes	No

13.0	 Will the project involve operations (excluding during the construction period) that produce air emissions (i.e., NOX, VOC, etc.)? If "Yes", identify each type of emission followed by the amount of that emission. 13.0.1 Enter all types & amounts of see attached emission calculations emissions; separate each set with semicolons. 		Yes		No
14.0	Does the project include the construction or modification of a drinking water supply to serve 15 or more connections or 25 or more people, at least 60 days out of the year? If "Yes", check all proposed sub-facilities. 14.0.1 Number of Persons Served		Yes		No
	14.0.2 Number of Employee/Guests 14.0.3 Number of Connections				
	14.0.3Number of Connections14.0.4Sub-Fac: Distribution System		Yes		No
	14.0.5 Sub-Fac: Water Treatment Plant	Н	Yes	H	No
	14.0.6 Sub-Fac: Source		Yes		No
	14.0.7 Sub-Fac: Pump Station		Yes		No
	14.0.8 Sub Fac: Transmission Main		Yes		No
	14.0.9 Sub-Fac: Storage Facility		Yes		No
15.0	Will your project include infiltration of storm water or waste water to		Yes	\boxtimes	No
	ground water within one-half mile of a public water supply well, spring or infiltration gallery?				
16.0	Is your project to be served by an existing public water supply? If "Yes",		Yes	\boxtimes	No
	indicate name of supplier and attach letter from supplier stating that it will serve				
	the project.				
	16.0.1 Supplier's Name				
	16.0.2 Letter of Approval from Supplier is Attached	<u> </u>	Yes		No
17.0	Will this project involve a new or increased drinking water withdrawal from		Yes	\boxtimes	No
	a stream or other water body? If "Yes", should reference both Water Supply and Watershed Management.				
	17.0.1 Stream Name				
18.0	Will the construction or operation of this project involve treatment,		Yes	\boxtimes	No
	storage, reuse, or disposal of waste? If "Yes", indicate what type (i.e.,				
	hazardous, municipal (including infectious & chemotherapeutic), residual) and				
	the amount to be treated, stored, re-used or disposed.				
	18.0.1 Type & Amount				
19.0	Will your project involve the removal of coal, minerals, etc. as part of any earth disturbance activities?		Yes	\boxtimes	No
20.0	Does your project involve installation of a field constructed underground		Yes	\boxtimes	No
	storage tank? If "Yes", list each Substance & its Capacity. <u>Note</u> : Applicant				
	may need a Storage Tank Site Specific Installation Permit.				
	20.0.1 Enter all substances &				
	capacity of each; separate each set with semicolons.				
21.0	Does your project involve installation of an aboveground storage tank		Yes	\boxtimes	No
21.0	greater than 21,000 gallons capacity at an existing facility? If "Yes", list				
	each Substance & its Capacity. Note: Applicant may need a Storage Tank Site				
	Specific Installation Permit.				
	21.0.1 Enter all substances &				
	capacity of each; separate				
	each set with semicolons.		Vee		Ne
22.0	Does your project involve installation of a tank greater than 1,100 gallons which will contain a highly hazardous substance as defined in DEP's		Yes	\boxtimes	No
	Regulated Substances List, 2570-BK-DEP2724? If "Yes", list each				
	Substance & its Capacity. <u>Note</u> : Applicant may need a Storage Tank Site				
	Specific Installation Permit.				
	22.0.1 Enter all substances &				
	capacity of each; separate				
	each set with semicolons.				

23.0	Does your project involve installation of a storage tank at a new facility Yes Now with a total AST capacity greater than 21,000 gallons? If "Yes", list each Substance & its Capacity. <u>Note</u> : Applicant may need a Storage Tank Site Specific Installation Permit.							
	23.0.1 Enter all substances & See Attached Emission Calculations for storage tank capacity of each; separate capacities and contents each set with semicolons.							
24.0	Will the intended activity involve the use of a radiation source?							
CERTIFICATION								
I certify that I have the authority to submit this application on behalf of the applicant named herein and that								

I certify that I have the authority to submit this application on behalf of the applicant named herein and that the information provided in this application is true and correct to the best of my knowledge and information.

Type or Print Name Mark F. Valori

Vice President

Signature

Title

Date

APPENDIX F: COMPLIANCE REVIEW FORM

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

AIR POLLUTION CONTROL ACT COMPLIANCE REVIEW FORM

Fully and accurately provide the following information, as specified. Attach additional sheets as necessary.								
Type of Compliance Review Form Submittal (check all that apply)								
Original Filing Date of Last Compliance Review Form Filing:								
Amended Filing//								
Type of Submittal								
New Plan Approval New Operating Permit Renewal of Operating Permit								
Extension of Plan Approval Change of Ownership Periodic Submission (@ 6 mos)								
Other:								
SECTION A. GENERAL APPLICATION INFORMATION								
Name of Applicant/Permittee/("applicant")								
(non-corporations-attach documentation of legal name)								
Adelphia Gateway, LLC								
Address 1415 Wyckoff Rd								
Wall, NJ 07719								
Telephone 732.938.1000 Taxpayer ID# 82-3224011								
Permit, Plan Approval or Application ID#								
Identify the form of management under which the applicant conducts its business (check appropriate box								
Individual Syndicate Government Agency								
Municipality Municipal Authority Joint Venture								
Proprietorship Fictitious Name Association								
Public Corporation Partnership Other Type of Business, specify below:								
Private Corporation Limited Partnership								
Describe below the type(s) of business activities performed. Natural Gas Transmission								

SECTION B. GENERAL INFORMATION REGARDING "APPLICANT"

If applicant is a corporation or a division or other unit of a corporation, provide the names, principal places of business, state of incorporation, and taxpayer ID numbers of all domestic and foreign parent corporations (including the ultimate parent corporation), and all domestic and foreign subsidiary corporations of the ultimate parent corporation with operations in Pennsylvania. Please include all corporate divisions or units, (whether incorporated or unincorporated) and privately held corporations. (A diagram of corporate relationships may be provided to illustrate corporate relationships.) Attach additional sheets as necessary.

Unit Name	Principal Places of Business	State of Incorporation	Taxpayer ID	Relationship to Applicant
NJR Pipeline Company	1415 Wyckoff Road, Wall NJ 07719	NJ	22-2950247	Immediate Parent
NJR Midstream Holdings Corporation	1415 Wyckoff Road, Wall NJ 07719	NJ	22-3377110	Parent of NJR Pipeline Company
NJR Energy Investments Corporation	1415 Wyckoff Road, Wall NJ 07719	NJ	22-3164424	Parent of NJR Midstream Holdings Corporation
New Jersey Resources Corporation	1415 Wyckoff Road, Wall NJ 07719	NJ	22-2376465	Ultimate Parent
Ringer Hill Wind, LLC	1415 Wyckoff Road, Wall NJ 07719	DE	27-3785821	Affiliate (100% common ownership)
Steckman Ridge, LP	5400 Westheimer Court, Houston, TX 77056	DE	20-8631129	Affiliate (50% common ownership)
NJR Energy Services Company	1415 Wyckoff Road, Wall NJ 07719	NJ	22-3486298	Affiliate (100% common ownership)

SECTION C. SPECIFIC INFORMATION REGARDING APPLICANT AND ITS "RELATED PARTIES"

Pennsylvania Facilities. List the name and location (mailing address, municipality, county), telephone number, and relationship to applicant (parent, subsidiary or general partner) of applicant and all Related Parties' places of business, and facilities in Pennsylvania. Attach additional sheets as necessary.

Unit Name	Street Address	County and Municipality	Telephone No.	Relationship to Applicant
Ringer Hill Wind, LLC	118 Baxter Street, Confluence, PA 15424	Somerset County, Confluence	732-403- 5193	Affiliate (100% common ownership)
Steckman Ridge, LP	1809 Rock Hill Church Road, Clearville, PA	Bedford County, Clearville	713-627- 5415	Affiliate (50% common ownership)
NJR Energy Services Company	835 Hamilton Street, Suite 150, Allentown, PA 18101	Lehigh County, Allentown	610-601- 0115	Affiliate (100% common ownership)

subsidiary corporat		esses of a			and parent and
Nai	me		Busi	ness Address	
None					
List the names and	business address of	persons w	ith overall manag	ement responsibilit	ty for the process
being permitted (i.e.	. plant manager).				
Nai	me		Busi	ness Address	
Mark F. Valori, Vice F	President	1415 Wycko	off Road, Wall NJ ()7719	
Keith Edmonds, Proje	ect Manager		off Road, Wall NJ (
	g				
Department or an a parties that are curr form is notarized.	Operating Permits. pproved local air pol rently in effect or hav This list shall inclu ation dates. Attach ac	lution contr e been in ef de the plan	ol agency under fect at any time 5 approval and o	the APCA to the ap years prior to the d perating permit nu	plicant or related late on which this
Air Contamination	Plan Approval/			Issuance	Expiration
Source	Operating Permit#		ocation	Date	Date

Compliance Background. (Note: Copies of specific documents, if applicable, must be made available to the Department upon its request.) List all documented conduct of violations or enforcement actions identified by the Department pursuant to the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. Attach additional sheets as necessary. See the definition of "documented conduct" for further clarification. Unless specifically directed by the Department, deviations which have been previously reported to the Department in writing, relating to monitoring and reporting, need not be reported.

Date	Location	Plan Approval/ Operating Permit#	Nature of Documented Conduct	Type of Department Action	Status: Litigation Existing/Continuing or Corrected/Date	Dollar Amount Penalty
						\$
						\$
						\$
						\$
						\$
						\$
						\$
						\$
						\$
						\$

List all incidents of deviations of the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. This list must include items both currently known and unknown to the Department. Attach additional sheets as necessary. See the definition of "deviations" for further clarification.

Date	Location	Plan Approval/ Operating Permit#	Nature of Deviation	Incident Status: Litigation Existing/Continuing Or Corrected/Date
CONTINUING (DBLIGATION. Applica	nt is under a continuing	g obligation to upo	date this form using the
Compliance R	eview Supplemental	Form if any additiona	I deviations occu	r between the date o

submission and Department action on the application.

2700-PM-AQ0004 Rev. 6/2006

VERIFICATION STATEMENT

Subject to the penalties of Title 18 Pa.C.S. Section 4904 and 35 P.S. Section 4009(b)(2), I verify under penalty of law that I am authorized to make this verification on behalf of the Applicant/Permittee. I further verify that the information contained in this Compliance Review Form is true and complete to the best of my belief formed after reasonable inquiry. I further verify that reasonable procedures are in place to ensure that "documented conduct" and "deviations" as defined in 25 Pa Code Section 121.1 are identified and included in the information set forth in this Compliance Review Form.

Signature

Mark F. Valori

Name (Print or Type)

4/17/2018

Date

Vice President

Title

APPENDIX G: COUNTY & MUNICIPAL NOTIFICATIONS

May 9, 2018

Delaware County Council 201 W Front St, Media, PA 19063

USPS Tracking No. 7017 2400 0000 1529 3960

Dear County Council Members:

Adelphia Gateway, LLC (Adelphia) has submitted an application to the Pennsylvania Department of Environmental Protection's (PADEP) Air Quality Program to construct a new natural gas compressor station (Marcus Hook Compressor Station) in Lower Chichester Township, Delaware County, PA.

Specifically, the application requests authorization to install and operate the following sources:

- Three (3) Caterpillar G3606 reciprocating internal combustion compressor engines (1,875 hp each) equipped with oxidation catalysts for air pollution control;
- One (1) Caterpillar G3412C emergency-use reciprocating internal combustion generator engine (670 hp) equipped with a non-selective catalytic reduction (NSCR or "three-way") catalyst for air pollution control;
- One (1) 1,000 gallon produced fluid tank;
- Two (2) miscellaneous storage tanks (each 500 gallons or less); and
- Miscellaneous associated piping and components.

Pennsylvania Code Title 25 (Environmental Protection – Air Resources) Section 127.413 requires municipal notification including a 30-day comment period regarding the permit application, which begins upon receipt of this formal notification. During this comment period, DEP will accept such comments. Comments are to be sent to:

Air Quality Program PADEP – Southeast Regional Office 2E Main Street Norristown, PA 19401

If you have any questions or need any additional information, please contact me directly by phone at (484) 775-0485 or by email at Jonathan.Hess@nv5.com.

Respectfully,

Jonathan Hess Project Manager – NV5

May 9, 2018

Board of Commissioners Lower Chichester Township 1410 Market Street Linwood, PA 19061

USPS Tracking No. 7017 2400 0000 1529 3953

Dear Commissioners:

Adelphia Gateway, LLC (Adelphia) has submitted an application to the Pennsylvania Department of Environmental Protection's (PADEP) Air Quality Program to construct a new natural gas compressor station (Marcus Hook Compressor Station) in Lower Chichester Township, Delaware County, PA.

Specifically, the application requests authorization to install and operate the following sources:

- Three (3) Caterpillar G3606 reciprocating internal combustion compressor engines (1,875 hp each) equipped with oxidation catalysts for air pollution control;
- One (1) Caterpillar G3412C emergency-use reciprocating internal combustion generator engine (670 hp) equipped with a non-selective catalytic reduction (NSCR or "three-way") catalyst for air pollution control;
- One (1) 1,000 gallon produced fluid tank;
- Two (2) miscellaneous storage tanks (each 500 gallons or less); and
- Miscellaneous associated piping and components.

Pennsylvania Code Title 25 (Environmental Protection – Air Resources) Section 127.413 requires municipal notification including a 30-day comment period regarding the permit application, which begins upon receipt of this formal notification. During this comment period, DEP will accept such comments. Comments are to be sent to:

Air Quality Program PADEP – Southeast Regional Office 2E Main Street Norristown, PA 19401

If you have any questions or need any additional information, please contact me directly by phone at (484) 775-0485 or by email at Jonathan.Hess@nv5.com.

Respectfully,

Jonathan Hess Project Manager – NV5

APPENDIX H: APPLICATION FEE