

MEMO — May 1, 2025 **SUBJECT** — AAMPA Holdings – Ritner Highway

Response to 3rd Elevated Review Deficiency Letter

NPDES Permit App. No.: PAD210118

TO — Nathan Phillips, P.E.

CC — Vince McCollum, Mike Lubinsky

FROM — Colin Hurley, Project Engineer

REMARKS:

AAMPA Holdings – Ritner Highway is a Land Development Plan that proposes the construction of three (3) warehouses, the associated truck and vehicle parking, and the necessary stormwater management facilities. These stormwater management facilities are comprised of seven (7) surface bioretention ponds and seven (7) subsurface infiltration basins. Of those fourteen (14) total BMP's, seven (7) of them were designed using the Managed Release Concept (MRC).

The seven subsurface infiltration basins are designed to have a very large footprint and allow for the runoff generated within the associated watershed to be spread out and infiltrate over a large footprint and not centralize in one location. Built within these stormwater systems is a water quality treatment train, utilizing 3 different forms of water quality treatment. As the runoff is generated and enters the inlet, it will flow through an inlet filter bag. The final inlet located upstream from the subsurface BMP's will also have a snout and a sumped inlet that the runoff will have to flow through prior to entering the BMP. Lastly, two feet of soil media will be placed below the subsurface BMP where bedrock is encountered, as well as the native soil where bedrock is not encountered, acting as filter media within the BMP.

The first form of water quality treatment within the treatment train is the Flexstorm Inlet Filter Bags that will be installed in each inlet that is connected to a subsurface infiltration basin. It is noted on the Stormwater Utility Plans (Sheets C-201 – C208) which inlets are to have Inlet Filter Bags installed. A detail is also provided within the PCSM Plans. The inlet filter bags are rated with a removal efficiency of >85% of the pollutants and debris that flow through them, depending on the bag type installed. Multiple bags types are available targeting the removal of trash, litter, leaves, oil and grease. The Flexstorm Pure bags, as proposed on the plan, include an oil skimmer pouch that allows the bag to trap hydrocarbons in addition to the debris that it may collect. These types of inlet bags work below grade with a built in bypass that will allow for the inlet to drain with a full bag. Attached as Appendix A is more information by ADS on Flexstorm Pure Inlet Filter Bags.

Located at the end of the storm drain lines prior to the subsurface infiltration basins, the last inlet will have a snout installed with a sump. These are located downstream of the Inlet filter Bags, working as a second form of water quality treatment for what may not be collected by the filter bags. Snouts are used to improve water quality by capturing the pollutants within the inlet, not allowing the debris to flow further downstream. The sump in the inlet allows for the heavier debris to sink below the snout, trapping that debris within the inlet. Likewise, the snout traps the floatable debris and hydrocarbons like oil and gas on the surface, allowing the water to exit below the snout. Attached as Appendix B is more information by BMP Inc. on Snouts.

Lastly, soil media is to be installed at the base of the basin. Two (2) feet of bedrock (where bedrock is encountered) are to be excavated and replaced with soil media to allow for infiltration. This soil media will also filter the runoff during the infiltration process. As stated in Chapter 6.4.3 of the PA Best Management Practice Manual, these BMP's are designed to function with both connections to inlets as well as connection to roof leaders. Three (3) of the proposed subsurface basins manage just roof runoff while the other four (4) collect and manage both pavement and roof runoff. The water quality effectiveness of these proposed BMP's as stated in the manual is 85% of TSS, 85% of TP, and 30% of NO₃. The methodology for these percentages is located in Chapter 8 of the Manual. Chapter 6.4.3 is attached as Appendix C.

In addition to the multiple forms of water quality treatment and pre-treatment connected to the subsurface infiltration basins, the use of Pollution Protection Plans will be in place throughout the site. If an incident may happen, this plan will include steps and instructions to follow to prevent any pollution from entering the stormwater system. The owner and all drivers will be adhering to this onsite, as well as the in-truck Pollution Prevention Plan.

These water quality devices will receive routine inspections and maintenance following any large rainstorm, as well as before and after the winter seasons to ensure that they are operating correctly with improving the water quality. Sediment and debris will be removed and disposed of properly, as well as replacement of any torn or broken parts, including the skimmer pouch within the filter bags. Sumps will be cleaned using a vacuum truck when they are half full of debris. This allows the snout to function properly, as well as allowing more debris to be collected in the sump. These maintenance measures, as well as others that may be provided by the manufacturer will allow the sequence of water quality features to function properly in improving the water quality.

During the construction phase of the project, general contractors, site contractors and certain high risk 3rd party contractors (think drilling rigs) are required to have a Spill Prevention and Emergency Response Plan (SPERP) in place. The SPERP is a detailed plan that outlines all the steps to be followed and taken by a party to eliminate or reduce spill and leak likelihood, as well as protocol to follow should a spill or leak take place. The plan includes items such as emergency response contacts, on-site material data inventory, spill/leak prevention guidelines, emergency response plan, spill cleanup/disposal requirements, spill/leak cleanup kits and reporting procedures. Employees in roles that are potentially subject to spills and leaks receive training for assurance of proper plan implementation. It is also common practice for completed facilities to have a SPERP in place. Good housekeeping of the site, the equipment and the facility and following safety protocol is the primary goal when trying to prevent spills and leaks.

In conclusion, multiple forms of water quality treatment will be working in sequence to enhance and improve the water quality of all runoff generated by the site prior to any infiltration and downstream discharge. Other water quality devices did not provide the pollutant removal efficiencies as the selected devices, as well as the combination of these selected devices. With these multiple forms of water quality treatment, pollutants will be removed from the water to the maximum extent practicable to ensure that the quality of the runoff is improved prior to it beginning to infiltrate. Details and maintenance for these types of treatments are included on the PCSM Plans.

Attached:

- Appendix A: Flexstorm Pure Inlet Filter

Appendix B: The Snout

- Appendix C: PA BMP Manual Chapter 6.4.3

FlexStorm Pure[™] Inlet Filter

FlexStorm Pure inlet filters are the preferred choice for permanent inlet protection and stormwater runoff control. Constructed of stainless steel, FlexStorm Pure inlet filters will fit any drainage structure and are available with site-specific filter bags providing various levels of filtration.

Applications

- Car washes
- Commercial
- · Loading ramps
- Industrial

Features

- Custom stainless steel frames are configured to fit into any drainage structure
- Flow and bypass rates meet specific inlet requirements
- Works below grade with bypass to drain area if bag is full
- Installed and maintained by one worker, without additional equipment

- Gas stations
- Parking lots
- · Dock drains
- Maintenance

Benefits

- Stainless steel frame provides extended service life
- Easily replaceable filter bags
- Meets stringent removal requirements:
 - All bags rated >84% removal efficiency
 - Bag styles available to remove hydrocarbon oils when required

FlexStorm Pure Inlet Filters Specification

Material and Performance

The filter is comprised of a stainless steel frame and a replaceable geotextile filter bag attached to the frame with a stainless steel locking band. The filter bag hangs suspended below the grate that shall allow full bypass flow into the drainage structure if the bag is completely filled with sediment. The standard "FX" filter bags are rated for 200 gpm/sqft (21.44 liters/minute/cubic meter) with a removal efficiency of 85%. The post construction "PCP" filter bags are rated for 137 gpm/sqft (14.69 liters/minute/cubic meter) and have a removal efficiency of 97%.

Installation

- 1. Remove the grate from the inlet.
- 2. Clean debris from the ledges of the inlet.
- 3. Place the inlet filter onto the load bearing ledges of the structure.
- 4. Replace the grate and confirm it is not elevated more than 1/8" (3 mm).

Frequency of Inspections

- 1. Inspection should occur following rain events greater than ½" (13 mm).
- 2. Filter inspections should occur a minimum of three times per year, and in snowfall affected regions, inspections prior to and after snowfall season.
- 3. Industrial application site inspections (loading ramps, wash racks & maintenance facilities) to be scheduled on a recurring basis no less than four times per year or as needed.

Maintenance Guidelines

- 1. Empty the filter bag manually or by industrial vacuum taking care not to damage the geotextile bag when more than half filled or during scheduled inspection period.
- 2. Remove compacted silt from sediment bag and flush with medium spray.
- 3. "PCP" style bags should be pressed or wrung to recover retained oils.
- 4. Oil skimmer pouches solidify and darken when saturated, indicating time for replacement.
- 5. Dispose of all oil-contaminated products and recovered oils in accordance with EPA guidelines. Oil skimmer pouches, since a solidifier, will not leach and can be disposed of directly.
- 6. Inspect and replace bag if torn or punctured.

Filter Bag Replacement

- 1. Remove the bag by loosening or cutting off clamping band.
- 2. Take the new correctly sized sediment bag and secure hose clamping band to the frame channel as previously removed.
- 3. Ensure bag is secure and there is no slack around perimeter.

Build America, Buy America (BABA)

For any questions related to Build America, Buy America (BABA) Act compliance contact an ADS representative.

FlexStorm Pure™ Bag Options

APPENDIX A

FlexStorm Pure, for permanent applications, has three filter bag options available to meet your specific needs. They have varying degrees of TSS and hydrocarbon oil removal properties.

FlexStorm Filter Bags

Filter Bag Test Results

FX	TSS Filtration Efficiency = 85% ¹
РСР	TSS Filtration Efficiency = 97%¹

 $^{^{\}rm 1}$ Large scale, 3rd party testing per ASTM D 7351 modified for inlet filters

Filter Bag Specifications & Capabilites

Bag Type (P/N)	Geotextile Flow Rate (GPM/SqFt)	Min A.O.S. (US Sieve)	
Woven (FX/FXP)	200	40	
Post Construction (PCP)	137	140	

Total Bypass Capacity

Bypass capacity will vary with each size drainage structure. FlexStorm designs filter bypass to meet the minimum design flow of the particular drainage structure.

Standard Bag Sizes	Solids Storage Capacity ft³ (m³)	Filtered Flow Rate at 50% Max (CFS)		Oil Retention (Oz)	
(match frame sizes)		FX	PCP	FXP	PCP
Small	1.6 (0.5)	1.2	0.8	89	168
Medium	2.1 (0.6)	1.7	1.2	89	204
Large	3.8 (1.2)	2.7	1.8	89	262
XL	4.2 (1.3)	3.6	2.4	178	319

MORE =

The SNOUT®

Capturing Trash & Floatables At Their Source

The SNOUT® water quality device from Best Management Products, Inc., is a vented plastic composite outlet protection hood and stormwater trash screen that allows floatable and sinkable pollution to be removed from stormwater discharges. It is the keystone of BMPs stormwater quality system.

The SNOUT hood is a gross pollutant trap that forms a very simple hydrodynamic separator in a sumped stormwater structure that can reduce floatable trash and debris, free oils, and other solids from stormwater discharges. In its most basic application, a SNOUT hood is installed over the outlet of a catch basin or other stormwater quality structure with a deep sump.

The bottom of the hood extends well below the invert of the outlet pipe creating a separation layer on the surface. The SNOUT then forms a baffle that traps floatable debris and free oils on the surface, while permitting heavier solids to sink to the bottom of the sump. The clarified intermediate layer is forced out of the structure through the open bottom of the SNOUT by displacement from incoming flow.

The resultant discharge from this stormwater trash screen and gross pollutant trap contains considerably less unsightly trash and other gross pollutants and can also offer reductions of free-oils and finer solids.

SNOUTs are available for both flat wall structures (e.g., boxes or vaults) and for round wall structures like manholes. Pipes up to 60" ID can be accommodated, and models for up to 96" ID round structures are available as stock parts. Split SNOUTs for constrained access or retrofit applications and a series of NP SNOUTs for small round structures from 18-36" ID are available.

Since its introduction in 1999, nearly 100,000 SNOUTs have been installed. They are used by the largest municipalities in the country including New York City, Philadelphia and Chicago, by many state DOTs and on U.S. federal government and military facilities around the world. SNOUTs are also widely used in Canada.

This simple and affordable stormwater trash screen and stormwater quality improvement system has a full suite of accessories to enhance its pollution reducing capabilities. The popular Bio-Skirt@ skirted boom for increased hydrocarbon reductions is a quick add-on and highly effective where oils are a pollutant of concern.

Use of the <u>Turbo-Plate®</u> is growing quickly where quantifiable sediment and T.S.S. reductions are required. <u>The Stainless TrashScreen™</u> is also available for Full Trash Capture requirements or to target special solid pollutants of concern that can evade

typical stormwater trash screens and outlet protection systems. Please visit our <u>Spec-a-SNOUT</u> tool on the website to size a SNOUT for your application or contact a BMP application engineer for assistance.

SNOUT PRICING & SPECIFICATION DOWNLOAD PDFS

Contact us today.

LET'S TALK

ADDITIONAL RESOURCES

About

Resources

Installation Help

How to Buy

On-Demand PDH Webinar

Virtual Lunch & Learn Sign-up Form

MORE FROM BMP

Stormwater Design

Specialty SNOUTs

Made in the USA

GET IN TOUCH

Headquarters

East Haddam Industrial Park

9 Matthews Drive, Unit A1-A2

East Haddam, CT 06423

) (888) 434-0277

3 (860) 434-0277

(877) 434-3197

Sales & Engineering Office

506 Beck Avenue

Essex, MD 21221

(800) 504-8008

(410) 687-6256

l (410) 687-6757

Sign-up for our newsletter to get up-to-date news on all of our BMP products.

Email Address

SUBMIT

© 2025 Best Management Products, Inc. All Rights Reserved.

BMP 6.4.3: Subsurface Infiltration Bed

Subsurface Infiltration Beds provide temporary storage and infiltration of stormwater runoff by placing storage media of varying types beneath the proposed surface grade. Vegetation will help to increase the amount of evapotranspiration taking place.

Key Design Elements

- Maintain a minimum 2-foot separation to bedrock and seasonally high water table, provide distributed infiltration area (5:1 impervious area to infiltration area - maximum), site on natural, uncompacted soils with acceptable infiltration capacity, and follow other guidelines described in Protocol 2: Infiltration Systems Guidelines
- Beds filled with stone (or alternative) as needed to increase void space
- Wrapped in nonwoven geotextile
- Level or nearly level bed bottoms
- Provide positive stormwater overflow from beds
- Protect from sedimentation during construction
- Provide perforated pipe network along bed bottom for distribution as necessary
- Open-graded, clean stone with minimum 40% void space
- Do not place bed bottom on compacted fill
- Allow 2 ft. buffer between bed bottom and seasonal high groundwater table and 2 ft. for bedrock.

Potential Applications

Residential: Yes Commercial: Yes Ultra Urban: Yes Industrial: Yes Retrofit: Yes Highway/Road: Limited

Stormwater Functions

Volume Reduction: High Recharge: High Peak Rate Control: Med./High Water Quality: High

Water Quality Functions

TSS: 85% TP: 85% NO3: 30%

Other Considerations

Protocol 1. Site Evaluation and Soil Infiltration Testing and Protocol 2. Infiltration Systems
 Guidelines should be followed, see Appendix C

Description

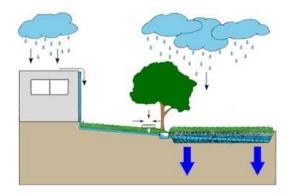
A Subsurface Infiltration Bed generally consists of a vegetated, highly pervious soil media underlain by a uniformly graded aggregate (or alternative) bed for temporary storage and infiltration of stormwater runoff. Subsurface Infiltration beds are ideally suited for expansive, generally flat open spaces, such as lawns, meadows, and playfields, which are located downhill from nearby impervious areas. Subsurface Infiltration Beds can be stepped or terraced down sloping terrain provided that the base of the bed remains level. Stormwater runoff from nearby impervious areas (including rooftops, parking lots, roads, walkways, etc.) can be conveyed to the subsurface storage media, where it is then distributed via a network of perforated piping.

The storage media for subsurface infiltration beds typically consists of clean-washed, uniformly graded aggregate. However, other storage media alternatives are available. These alternatives are generally variations on plastic cells that can more than double the storage capacity of aggregate beds, at a substantially increased cost. Storage media alternatives are ideally suited for sites where potential infiltration area is limited.

If designed, constructed, and maintained as per the following guidelines, Subsurface Infiltration features can stand-alone as significant stormwater runoff volume, rate, and quality control practices. These systems can also maintain aquifer recharge, while preserving or creating valuable open space and recreation areas. They have the added benefit of functioning year-round, given that the infiltration surface is typically below the frost line.

Variations

As its name suggests, Subsurface Infiltration is generally employed for temporary storage and infiltration of runoff in subsurface storage media. However, in some cases, runoff may be temporarily stored on the surface (to depths less than 6 inches) to enhance volume capacity of the system. The overall system design should ensure that within the criteria in Chapter 3, the bed is completely empty.


Applications

Connection of Roof Leaders

Runoff from nearby roofs may be directly conveyed to subsurface beds via roof leader connections to perforated piping. Roof runoff generally has relatively low sediment levels, making it ideally suited for connection to an infiltration bed. However, cleanout(s) with a sediment sump are still recommended between the building and infiltration bed.

Connection of Inlets

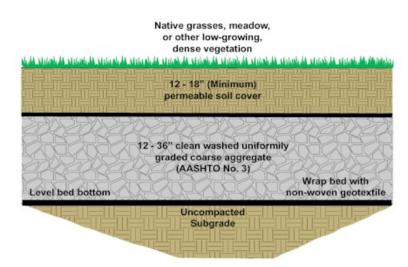
Catch Basins, inlets, and area drains may be connected to Subsurface Infiltration beds. However, sediment and debris removal should be provided. Storm structures should therefore include sediment trap areas below the inverts of discharge pipes to trap solids and debris. In areas of high traffic or excessive generation of sediment, litter, and other similar materials, a water quality insert or other pretreatment device may be needed.

Under Recreational Fields

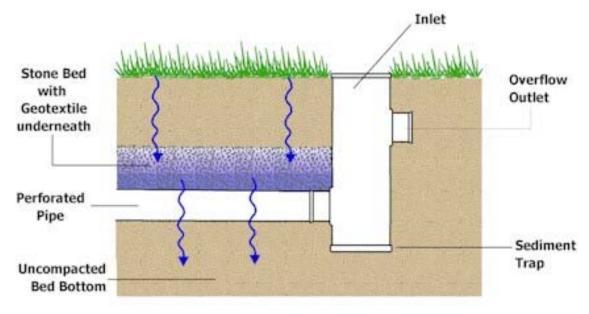
Subsurface Infiltration is very well suited below playfields and other recreational areas. Special consideration should be given to the engineered soil mix in those cases.

Under Open Space

Subsurface Infiltration is also appropriate in either existing or proposed open space areas. Ideally, these areas are vegetated with native grasses and/or vegetation to enhance site aesthetics and landscaping. Aside from occasional clean-outs or outlet structures, Subsurface Infiltration systems are essentially hidden stormwater management


features, making them ideal for open space locations (deed-restricted open space locations are especially desirable because such locations minimize the chance that Subsurface Infiltration systems will be disturbed or disrupted accidentally in the future).

Other Applications


Other applications of Subsurface Infiltration beds may be determined by the Design Professional as appropriate.

Design Considerations

- 1. Soil Investigation and Infiltration Testing is needed (Appendix C).
- 2. Guidelines for Infiltration Systems should be met (Appendix C).
- 3. The overall site should be evaluated for potential Subsurface Infiltration areas early in the design process, as effective design requires consideration of existing site characteristics (topography, natural features/drainage ways, soils, geology, etc.).
- 4. Control of Sediment is critical. Rigorous installation and maintenance of erosion and sediment control measures is needed to prevent sediment deposition within the stone bed. Nonwoven geotextile may be folded over the edge of the bed until the site is stabilized.
- The Infiltration bed should be wrapped in non-woven geotextile filter fabric.
- Subsurface Infiltration areas should not be placed on areas of recent fill or compacted fill. Any grade adjustments requiring fill should be done using the stone subbase material, or alternative. Areas of historical fill (>5 years) may be considered if other criteria are met.

7. The subsurface infiltration bed is typically comprised of a 12 to 36 inch section of aggregate, such as AASHTO No.3, which ranges 1-2 inches in gradation. Depending on local aggregate availability, both larger and smaller size aggregate has been used. The critical requirements are that the aggregate be uniformly graded, clean-washed, and contain at least 40% void space. The depth of the bed is a function of stormwater storage requirements, frost depth considerations, and site grading. Infiltration beds are typically sized to mitigate the increased runoff volume from the design storm.

- 8. Water Quality Inlet or Catch Basin with Sump is needed for all surface inlets, should be designed to avoid standing water for periods greater than the criteria in Chapter 3.
- 9. Infiltration beds may be placed on a slope by benching or terracing infiltration levels. The slope of the infiltration bed bottom should be level or with a slope no greater than 1%. A level bottom assures even water distribution and infiltration.
- 10. Perforated pipes along the bottom of the bed can be used to evenly distribute runoff over the entire bed bottom. Continuously perforated pipes may connect structures (such as cleanouts and inlet boxes). Pipes should lay flat along the bed bottom and provide for uniform distribution of water. Depending on size, these pipes may provide additional storage volume.
- 11. Cleanouts or inlets should be installed at a few locations within the bed and at appropriate intervals to allow access to the perforated piping network and or storage media.
- 12. All infiltration beds should be designed with an overflow for extreme storm events. Control in the beds is usually provided in the form of an outlet control structure. A modified inlet box with an internal concrete weir (or weir plate) and low-flow orifice is a common type of control structure. The specific design of these structures may vary, depending on factors such as rate and storage requirements, but it must always include positive overflow from the system. The overflow structure is used to maximize the water level in the stone bed, while providing sufficient cover for overflow pipes. Generally, the top of the outlet pipe should be 4 inches below the top of the aggregate to prevent saturated soil conditions in remote areas of the bed. As with all

- infiltration practices, multiple discharge points are recommended. These may discharge to the surface or a storm sewer system.
- 13. Adequate soil cover (generally 12 18 inches) should be maintained above the infiltration bed to allow for a healthy vegetative cover.
- 14. Open space overlying infiltration beds can be vegetated with native grasses, meadow mix, or other low-growing, dense vegetation. These plants have longer roots than traditional grass and will likely benefit from the moisture in the infiltration bed, improving the growth of these plantings and, potentially increasing evapotranspiration.
- 15. Fertilizer use should be minimized.
- 16. The surface (above the stone bed) should be compacted as minimally as possible to allow for surface percolation through the engineered soil layer and into the stone bed.
- 17. When directing runoff from roadway areas into the beds, measures to reduce sediment should be used.
- 18. Surface grading should be relatively flat, although a relatively mild slope between 1% and 3% is recommended to facilitate drainage.
- 19. In those areas where the threat of spills and groundwater contamination exists, pretreatment systems, such as filters and wetlands, may be needed before any infiltration occurs. In Hot Spot areas, such as truck stops and fueling stations, the suitability of Subsurface Infiltration must be considered.
- 20. In areas with poorly-draining soils, Subsurface Infiltration areas may be designed to slowly discharge to adjacent wetlands or bioretention areas.
- 21. While most Subsurface Infiltration areas consist of an aggregate storage bed, alternative subsurface storage products may also be employed. These include a variety of proprietary, interlocking plastic units that contain much greater storage capacity than aggregate, at an increased cost.
- 22. The subsurface bed and overflow may be designed and evaluated in the same manner as a detention basin to demonstrate the mitigation of peak flow rates. In this manner, detention basins may be eliminated or significantly reduced in size.
- 23. During Construction, the excavated bed may serve as a Temporary Sediment Basin or Trap. This can reduce overall site disturbance. The bed should be excavated to at least 1 foot above the final bed bottom elevation for use as a sediment trap or basin. Following construction and site stabilization, sediment should be removed and final grades established. In BMPs that will be used for infiltration in the future, use of construction equipment should be limited as much as possible.

Detailed Stormwater Functions

Infiltration Area

Loading rate guidelines in Appendix C should be consulted.

The Infiltration Area is the bottom area of the bed, defined as:

Length of bed x Width of bed = Infiltration Area (if rectangular)

Volume Reduction Calculations

Volume = Depth* (ft) x Area (sf) x Void Space

*Depth is the depth of water stored during a storm event, depending on the drainage area and conveyance to the bed.

Infiltration Volume = Bed Bottom Area (sf) x Infiltration design rate (in/hr) x Infiltration period* (hr) x (1/12)

*Infiltration Period is equal to 2 hours or the time of concentration, whichever is larger.

Additional storage/volume reduction can be calculated for the overlying soil as appropriate.

Peak Rate Mitigation Calculations

See in Chapter 8 for Peak Rate Mitigation methodology which addresses link between volume reduction and peak rate control.

Water Quality Improvement: See in Chapter 8 for Water Quality Improvement methodology, which addresses pollutant removal effectiveness of this BMP.

Construction Sequence

- 1. Due to the nature of construction sites, Subsurface Infiltration should be installed toward the end of the construction period, if possible. (Infiltration beds may be used as temporary sediment basins or traps as discussed above).
- 2. Install and maintain adequate Erosion and Sediment Control Measures (as per the Pennsylvania Erosion and Sedimentation Control Program Manual) during construction.
- 3. The existing subgrade under the bed areas should <u>NOT</u> be compacted or subject to excessive construction equipment traffic prior to geotextile and stone bed placement.
- 4. Where erosion of subgrade has caused accumulation of fine materials and/or surface ponding, this material should be removed with light equipment and the underlying soils scarified to a minimum depth of 6 inches with a York rake (or equivalent) and light tractor. All fine grading should be done by hand. All bed bottoms should be at level grade.
- 5. Earthen berms (if used) between infiltration beds should be left in place during excavation. These berms do not require compaction if proven stable during construction.

- 6. Install upstream and downstream control structures, cleanouts, perforated piping, and all other necessary stormwater structures.
- 7. Geotextile and bed aggregate should be placed immediately after approval of subgrade preparation and installation of structures. Geotextile should be placed in accordance with manufacturer's standards and recommendations. Adjacent strips of geotextile should overlap a minimum of 16 inches. It should also be secured at least 4 feet outside of bed in order to prevent any runoff or sediment from entering the storage bed. This edge strip should remain in place until all bare soils contiguous to beds are stabilized and vegetated. As the site is fully stabilized, excess geotextile along bed edges can be cut back to the edge of the bed.
- 8. Clean-washed, uniformly graded aggregate should be placed in the bed in maximum 8-inch lifts. Each layer should be lightly compacted, with construction equipment kept off the bed bottom as much as possible.
- 9. Approved soil media should be placed over infiltration bed in maximum 6-inch lifts.
- 10. Seed and stabilize topsoil.
- 11. Do not remove inlet protection or other Erosion and Sediment Control measures until site is fully stabilized.

Maintenance Issues

Subsurface Infiltration is generally less maintenance intensive than other practices of its type. Generally speaking, vegetation associated with Subsurface Infiltration practices is less substantial than practices such as Recharge Gardens and Vegetated Swales and therefore requires less maintenance. Maintenance activities required for the subsurface bed are similar to those of any infiltration system and focus on regular sediment and debris removal. The following represents the recommended maintenance efforts:

- All Catch Basins and Inlets should be inspected and cleaned at least 2 times per year.
- The overlying vegetation of Subsurface Infiltration features should be maintained in good condition, and any bare spots revegetated as soon as possible.
- Vehicular access on Subsurface Infiltration areas should be prohibited, and care should be taken to avoid excessive compaction by mowers. If access is needed, use of permeable, turf reinforcement should be considered.

Cost Issues

The construction cost of Subsurface Infiltration can vary greatly depending on design variations, configuration, location, desired storage volume, and site-specific conditions, among other factors. Typical construction costs are about \$5.70 per square foot, which includes excavation, aggregate (2.0 feet assumed), non-woven geotextile, pipes and plantings.

Specifications

The following specifications are provided for information purposes only. These specifications include information on acceptable materials for typical applications, but are by no means exclusive or limiting. The designer is responsible for developing detailed specifications for individual design projects in accordance with the project conditions.

- 1. <u>Stone</u> for infiltration beds shall be 2-inch to 1-inch uniformly graded coarse aggregate, with a wash loss of no more than 0.5%, AASHTO size number 3 per AASHTO Specifications, Part I, 19th Ed., 1998, or later and shall have voids 40% as measured by ASTM-C29.
- 2. <u>Non-Woven Geotextile</u> shall consist of needled non-woven polypropylene fibers and meet the following properties:

a. Grab Tensile Strength (ASTM-D4632)
b. Mullen Burst Strength (ASTM-D3786)
c. Flow Rate (ASTM-D4491)
120 lbs
225 psi
95 gal/min/ft²

- d. UV Resistance after 500 hrs (ASTM-D4355) 70%
- e. Heat-set or heat-calendared fabrics are not permitted Acceptable types include Mirafi 140N, Amoco 4547, and Geotex 451.
- 3. <u>Topsoil</u> may be amended with compost (See soil restoration BMP 6.7.2)
- 4. <u>Pipe</u> shall be continuously perforated, smooth interior, with a minimum inside diameter of 6-inches. High-density polyethylene (HDPE) pipe shall meet AASHTO M252, Type S or AASHTO M294, Type S.
- 5. Storm Drain Inlets and Structures
 - a. Concrete Construction: Concrete construction shall be in accordance with Section 1001, PennDOT Specifications, 1990 or latest edition.
 - b. Precast Concrete Inlets and Manholes: Precast concrete inlets may be substituted for cast-in-place structures and shall be constructed as specified for cast-in-place.

Precast structures may be used in only those areas where there is no conflict with existing underground structures that may necessitate revision of inverts. Type M standard PennDOT inlet boxes will be modified to provide minimum 12 inch sump storage and bottom leaching basins, open to gravel sumps in sub-grade, when situated in the recharge bed.

- c. All PVC Catch Basins/Cleanouts/Inline Drains shall have H-10 or H-20 rated grates, depending on their placement (H-20 if vehicular loading).
- d. Steel reinforcing bars over the top of the outlet structure shall conform to ASTM A615, grades 60 and 40.
- e. Permanent turf reinforcement matting shall be installed according to manufacturers' specifications.
- 6. <u>Alternative storage media:</u> Follow appropriate Manufacturers' specifications.
- 7. <u>Vegetation</u> see Local Native Plant List and Appendix B.