ANNEX A

TITLE 25. ENVIRONMENTAL PROTECTION PART I. DEPARTMENT OF ENVIRONMENTAL PROTECTION Subpart C. PROTECTION OF NATURAL RESOURCES ARTICLE II. WATER RESOURCES

CHAPTER 93. WATER QUALITY STANDARDS

GENERAL PROVISIONS

C	20
O	CC.

- 93.1. Definitions.
- 93.2. Scope.
- 93.3. Protected water uses.
- 93.4. Statewide water uses.

ANTIDEGRADATION REQUIREMENTS

- 93.4a. Antidegradation.
- 93.4b. Qualifying as High Quality or Exceptional Value Waters.
- 93.4c. Implementation of antidegradation requirements.
- 93.4d. Processing of petitions, evaluations and assessments to change a designated use.
- 93.5. [Reserved].

WATER QUALITY CRITERIA

- 93.6. General water quality criteria.
- 93.7. Specific water quality criteria.
- [93.8. Development of site-specific water quality criteria for the protection of aquatic life.]
- 93.8[a]. Water Quality Criteria for Toxic substances.
- 93.8a. Metals criteria.
- 93.8b. Human health and aquatic life criteria for toxic substances
- 93.8c. Development of site-specific water quality criteria.
- 93.8d. Special provisions for the Great Lakes System

* * * * *

§ 93.1. Definitions.

The following words and terms, when used in this chapter, have the following meanings, unless the context clearly indicates otherwise:

* * * * *

Clean Water Act—The Federal Water Pollution Control Act (33 U.S.C.A. §§ 1251-1376).

Conventional treatment—conventional filtration in a treatment process that uses separate, sequential units for coagulation/flocculation, clarification, and granular media filtration to produce finished water for drinking.

* * * * *

Thirty-day average—The arithmetic average of the samples collected during a consecutive 30day period.

Toxic substance—A chemical or compound in sufficient quantity or concentration which is, or may become, harmful to human, animal or plant life. The term includes, but is not limited to, priority pollutants and those substances, which are identified in Tables 5 and 6 of this Chapter. Additional toxic substances are also described in Chapter 16 Appendix A, Table 1 (relating to site-specific water quality criteria for toxic substances [management strategy—statement of policy]).

Water Effect Ratio (WER) — a factor that expresses the difference between the measures of the toxicity of a substance in laboratory water and the toxicity in site water. The WER provides a mechanism to account for that portion of a metal that is toxic under certain physical, chemical or biological conditions.

Water quality criteria—Numeric concentrations, levels or surface water conditions that need to be maintained or attained to protect existing and designated uses.

* * * *

§ 93.3. Protected water uses.

Water uses which shall be protected, and upon which the development of water quality criteria shall be based, are set forth, accompanied by their identifying symbols, in Table 1:

TABLE 1

Protected Use Symbol

Aquatic Life

* * * * *

MF

Migratory Fishes—Passage, maintenance and propagation of anadromous and catadromous fishes and other fishes which [ascend] move to or from flowing waters to complete their life cycle in other waters.

Water Supply

IRS *Irrigation*—Used to supplement precipitation for [growing crops] crop

<u>production, maintenance of golf courses and athletic fields, and other</u> commercial horticultural activities.

* * * * *

§ 93.7. Specific water quality criteria.

(a) Table 3 displays specific water quality criteria and associated critical uses. The criteria associated with the Statewide water uses listed in § 93.4, Table 2 apply to all surface waters, unless a specific exception is indicated in §§ 93.9a—93.9z. Other specific water quality criteria apply to surface waters as specified in §§ 93.9a—93.9z. All applicable criteria shall be applied in accordance with this chapter, Chapter 96 (relating to water quality standards implementation) and other applicable State and Federal laws and regulations.

TABLE 3

Parameter	Symbol	Criteria	Critical Use*
		* * * *	
Ammonia Nitrogen	Am	The maximum total ammonia nitrogen concentration (in mg/L) at all times shall be the numerical value given by: un-ionized ammonia nitrogen (NH ₃ -N) x (log ⁻¹ [pK _T -pH] + 1), where:	[1] <u>CWF,</u> <u>WWF,</u> <u>TSF,</u> <u>MF</u>

*Critical [u]<u>U</u>se: The most sensitive designated or existing use the criteria are designed to protect. <u>Other intervening</u>, more sensitive uses may apply at a given location on the waterbody.

- (b) Table 4 contains specific water quality criteria that apply to the water uses to be protected. When the symbols listed in Table 4 appear in the Water Uses Protected column in §§ 93.9a 93.9z, they have the meaning listed in the second column of Table 4. Exceptions to these standardized groupings will be indicated on a stream-by-stream or segment-by-segment basis by the words "Add" or "Delete" followed by the appropriate symbols described elsewhere in this chapter.
- (d) If the Department determines that natural quality of a surface water segment is of lower quality than the applicable aquatic life criteria in Table 3, **5 or Chapter 16, Appendix A Table 1**, the natural quality shall constitute the aquatic life criteria for that segment. All draft natural quality determinations shall be published in the *Pennsylvania Bulletin* and be subject to a minimum 30-day comment period. The Department will maintain a publicly available list of surface waters and parameters where this subsection applies, and shall, from time to time, submit appropriate amendments to §§ 93.9a—93.9z.

* * * * *

- [§ 93.8. Development of site-specific water quality criteria.
- (a) The Department will consider a request for site-specific criteria for protection of aquatic life, human health or wildlife when a person demonstrates that there exist site-specific biological or chemical conditions of receiving waters which differ from conditions upon which the water quality criteria were based. Site-specific criteria may be developed for use only in place of current Statewide or regional (such as the Great Lakes systems) criteria. The request for site-specific criteria shall include the results of scientific studies for the purpose of:
- (1) Defining the areal boundaries for application of the site-specific criteria which will include the potentially affected wastewater dischargers identified by the Department, through various means, including, but not limited to, the total maximum daily load (TMDL) process described in Chapter 96 (relating to water quality standards implementation) or biological assessments.
- (2) Developing site-specific criteria which protect its existing use and designated use.
- (b) Scientific studies shall be performed in accordance with the procedures and guidance in the Water Quality Standards Handbook (EPA 1994), as amended and updated, guidance provided by the Department or other scientifically defensible methodologies approved by the Department.
- (c) Prior to conducting studies specified in subsections (a) and (b), a proposed plan of study shall be submitted to and approved by the Department.
- (d) Signed copies of all reports including toxicity test data shall be submitted to the Department within 30 days of completion of the tests.
- (e) If as a result of its review of the report submitted, the Department determines that a site-specific criterion is appropriate, the Department will, for site-specific changes to criteria in § 93.7 (relating to specific water quality criteria), prepare a recommendation to the EQB in the form of proposed rulemaking, incorporating that criterion for the water body segment. The site-specific changes to the criteria will become effective for the water body segment following adoption by the EQB as final rulemaking and publication in the *Pennsylvania Bulletin*.
- (f) A person challenging a Department action under this section shall have the burden of proof to demonstrate that the Department's action does not meet the requirements of this section.]
- § 93.8[a]. Water Quality Criteria for Toxic substances.

- (a) The waters of this Commonwealth may not contain toxic substances attributable to point or nonpoint source waste discharges in concentrations or amounts that are inimical to the water uses to be protected.
- (b) Water quality criteria for toxic substances shall be established <u>as described</u> under Chapter 16 (relating to water quality toxics management strategy—statement of policy) [wherein]. <u>The Department will develop water quality criteria for toxics not listed in Chapter 93, Table 5 in accordance with § 93.8c and Chapter 16. Appendix A, Table 1 in Chapter 16 lists site-specific human health and aquatic life criteria that have been recently developed or adopted by the Department based on approved methodologies and the best scientific information currently available. [t]The [criteria and] approved EPA analytical procedures and detection limits for these substances will also be listed <u>in Chapter 16 (relating to water quality toxics management strategy—statement of policy</u>). Chapter 16, along with changes made to it, is hereby specifically incorporated by reference.</u>
- (c) Water quality criteria for toxic substances which exhibit threshold effects will be established by application of margins of safety to the results of toxicity testing to prevent the occurrence of a threshold effect.

* * * * *

(h) [At intervals not exceeding 1 year, the] The Department will periodically, but at least once every 3 years, review, revise as necessary, and publish [a] new or revised water quality criteria for toxic substances, and revised procedures for criteria development in the *Pennsylvania Bulletin*.

* * * * *

(j) The requirements for discharges to and antidegradation requirements for the Great Lakes System are as follows:

* * * * *

(3) Statewide antidegradation requirements in this [c]Chapter and Chapter [95(relating to water quality standards; and wastewater treatment requirements) | 96 (relating to water quality standards implementation) and in the Federal regulation in 40 CFR 131.32(a) (relating to Pennsylvania) as applicable, apply to all surface waters of the Great Lakes System.

* * * * *

§ 93.8a. Metals criteria.

<u>Dissolved criteria are footnoted in Table 5, and have been developed by applying the most current EPA conversion factors to the total recoverable criteria. The EPA factors are listed in the following Conversion Factors Table.</u>

Conversion Factors Table

	<u>Chronic</u>	<u>Acute</u>	Source
Arsenic	1.000 (As3+)	1.000 (As3+)	<u>1,2</u>
Cadmium	1.101672- (ln[H]x0.041838)	1.136672- (ln[H]x0.041838)	<u>2</u>
Chromium VI	<u>0.962</u>	<u>0.982</u>	<u>1,2</u>
Copper	<u>0.960</u>	<u>0.960</u>	<u>1,2</u>
Lead*		1.46203-(ln[H]x0.145712	
Mercury	<u>0.85</u>	<u>0.85</u>	<u>1,2</u>
<u>Nickel</u>	<u>0.997</u>	<u>0.998</u>	<u>1,2</u>
Selenium	<u>0.922</u>	<u>0.922</u>	<u>1</u>
<u>Silver</u>	NA	<u>0.85</u>	<u>2</u>
Zinc	<u>0.986</u>	<u>0.978</u>	<u>1,2</u>

^{*}Conversion factor applies to both acute and chronic criteria.

Source 1—Final Water Quality Guidance for the Great Lakes System (60 FR 15366, March 23, 1995)

<u>Source 2—Establishment of Numeric Criteria for Priority Pollutants;</u> Revision of Metals Criteria-Interim Final Rule (60 FR 22229, May 4, 1995)

§ 93.8b. Human health and aquatic life criteria for toxic substances.

(a) Table 5 and Chapter 16, Appendix A Table 1 list the aquatic life and human health criteria for toxic substances which the Department uses in development of effluent limitations in NPDES Permits and for other purposes. The human health criteria, which include probable modes of exposure (such as, but not limited to ingestion from drinking water and fish consumption, inhalation, and dermal absorption), are further defined as to the specific effect (that is, cancer or threshold health effects). For those aquatic life criteria which are hardness related and specified as a formula, such as several of the heavy metals, the Department will use the specific hardness of the receiving stream after mixing with the waste discharge in calculating criteria on a case-by-case basis. The priority pollutant numbers (PP NO) used by the EPA to identify priority pollutants are included in Table 5 for reference purposes. The toxics without a PP NO are non-priority pollutants and state derived criteria.

(b) Some of these criteria may be superseded for the Delaware Estuary, Ohio River Basin, Lake Erie Basin, and Genesee River Basin under interstate and international compact agreements with the Delaware River Basin Commission, Ohio River Valley Sanitation Commission and International Joint Commission, respectively. The criteria in Table 5 do not apply to the Great Lakes System. Water quality criteria for the Great Lakes System are contained in § 93.8d and Table 6 (relating to special provisions for the Great Lakes System). Criteria may be developed for the Great Lakes System for substances other than

those listed in § 93.8d under the methodologies in §16.61 (relating to water quality criteria for the Great Lakes system).

TABLE 5 WATER QUALITY CRITERIA FOR TOXIC SUBSTANCES

			<u>Fish and Aqua</u>	<u>tic Life Criteria</u>	<u>Human</u>	
<u>PP</u> <u>NO</u>	<u>Chemical Name</u>	<u>CAS</u> <u>Number</u>	Criteria Continuous Concentrations (ug/L)	<u>Criteria Maximum</u> <u>Concentration (ug/L)</u>	<u>Health</u> <u>Criteria</u> (ug/L)	
<u>1M</u>	ANTIMONY	07440360	<u>220</u>	<u>1100</u>	<u>5.6</u>	<u>H</u>
<u>2M</u>	ARSENIC	07440382	150 (As3+)	340 (As3+)	<u>10</u>	<u>H</u>
<u>3M</u>	BERYLLIUM	<u>07440417</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	Ξ
<u>4M</u>	CADMIUM	<u>07440439</u>	*{1.101672-(ln[H]x0.041838)}x	*{1.136672-(ln[H]x0.041838)}x	<u>N/A</u>	
			Exp(0.7409xln[H]-4.719)	Exp(1.0166xln[H]-3.924)		Ξ
			(ex: @H=100, CCC=0.25)	(ex: @H=100, CMC=2.0)		
<u>5M</u>	CHROMIUM III	<u>16065831)</u>	*0.860xExp(0.819xln[H]+0.6848)	*0.316Exp(0.819xln[H]+3.7256)	<u>N/A</u>	=
			(ex: @H=100, CCC=74)	(ex: @H=100, CMC=570)		
<u>5M</u>	CHROMIUM VI	<u>18540299</u>	<u>*10</u>	<u>*16</u>	<u>N/A</u>	=
<u>6M</u>	COPPER	<u>07440508</u>	*0.960xExp(0.8545xln[H]-1.702)	*0.960xExp(0.9422xln[H]-1.700)	<u>N/A</u>	<u>=</u>
			(ex: @H=100, CCC=9.0)	(ex: @H=100, CMC=13)		
<u>7M</u>	<u>LEAD</u>	<u>07439921</u>	*{1.46203-(ln[H]x0.145712)}x	*{1.46203-(ln[H]x0.145712)}x	<u>N/A</u>	=
			Exp(1.273xln[H]-4.705)	Exp(1.273xln[H]-1.460)		
			(ex: @H=100, CCC=2.5)	(ex: @H=100, CMC=65)		
<u>8M</u>	MERCURY	<u>07439976</u>	*0.77 (Hg2+)	*1.4 (Hg2+)	<u>0.05</u>	<u>H</u>
<u>9M</u>	NICKEL	<u>07440020</u>	*0.997xExp(0.846xln[H]+0.0584)	*0.998xExp(0.846xln[H]+2.255)	<u>610</u>	<u>H</u>
			(ex: @H=100, CCC=52)	(ex: @H=100, CMC=470)		
<u>10M</u>	<u>SELENIUM</u>	<u>07782492</u>	<u>*4.6</u>	<u>N/A</u>	<u>N/A</u>	=
<u>11M</u>	SILVER	<u>07440224</u>	<u>N/A</u>	*0.850xExp(1.72xln[H]-6.590)	<u>N/A</u>	<u>=</u>
				(ex: @H=100, CMC=3.2)		
<u>12M</u>	THALLIUM	<u>07440280</u>	<u>13</u>	<u>65</u>	<u>.24</u>	<u>H</u>
<u>13M</u>	ZINC	<u>07440666</u>	*0.986xExp(0.8473xln[H]+0.884)	*0.978xExp(0.8473xln[H]+0.884)	<u>N/A</u>	
			(ex: @H=100, CCC=120)	(ex: @H=100, CMC=120)		
<u>14M</u>	CYANIDE, FREE	00057125	<u>5.2</u>	22	<u>140</u>	<u>H</u>
<u>1A</u>	2-CHLOROPHENOL	00095578	<u>110</u>	<u>560</u>	<u>81</u>	<u>H</u>
<u>2A</u>	2,4-DICHLORO- PHENOL	00120832	340	<u>1700</u>	<u>77</u>	<u>H</u>
<u>3A</u>	2,4-DIMETHYL-	<u>00105679</u>	<u>130</u>	<u>660</u>	<u>380</u>	<u>H</u>

	PHENOL					
<u>4A</u>	4,6-DINITRO-0- CRESOL	<u>00534521</u>	<u>16</u>	<u>80</u>	<u>13</u>	<u>H</u>
<u>5A</u>	2,4-DINITRO- PHENOL	<u>00051285</u>	<u>130</u>	<u>660</u>	<u>69</u>	<u>H</u>
<u>6A</u>	2-NITROPHENOL	<u>00088755</u>	<u>1600</u>	8000	<u>N/A</u>	=
<u>7A</u>	4-NITROPHENOL	<u>00100027</u>	<u>470</u>	<u>2300</u>	<u>N/A</u>	=
<u>8A</u>	P-CHLORO-m- CRESOL	<u>00059507</u>	<u>30</u>	<u>160</u>	<u>N/A</u>	Ξ
<u>9A</u>	PENTACHLORO- PHENOL	<u>00087865</u>	Exp(1.005x[pH]-5.134)	Exp(1.005x[pH]-4.869)	<u>0.27</u>	<u>CRL</u>
			@pH=6.57.89.0	@pH=6.57.89.0		
			Crit= 4.1 15 50	Crit= 5.3 19 65		
<u>10A</u>	PHENOL	<u>00108952</u>	<u>N/A</u>	<u>N/A</u>	<u>21000</u>	<u>H</u>
<u>11A</u>	2,4,6-TRICHLORO- PHENOL	00088062	<u>91</u>	<u>460</u>	<u>1.4</u>	<u>CRL</u>
<u>1V</u>	ACROLEIN	00107028	<u>1</u>	<u>5</u>	<u>190</u>	<u>H</u>
<u>2V</u>	ACRYLONITRILE	00107131	<u>130</u>	<u>650</u>	0.051	<u>CRL</u>
<u>3V</u>	BENZENE	00071432	<u>130</u>	<u>640</u>	<u>1.2</u>	<u>CRL</u>
<u>5V</u>	BROMOFORM	<u>00075252</u>	<u>370</u>	<u>1800</u>	<u>4.3</u>	<u>CRL</u>
<u>6V</u>	CARBON TETRACHLORIDE	00056235	<u>560</u>	<u>2800</u>	0.23	<u>CRL</u>
<u>7V</u>	CHLORO- BENZENE	00108907	<u>240</u>	<u>1200</u>	<u>130</u>	<u>H</u>
<u>8V</u>	CHLORODIBRO- MO-METHANE	00124481	<u>N/A</u>	<u>N/A</u>	0.40	<u>CRL</u>
<u>9V</u>	CHLOROETHANE	<u>00075003</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	=
<u>10V</u>	2-CHLOROETHYL VINYL ETHER	00110758	<u>3500</u>	<u>18,000</u>	<u>N/A</u>	Ξ
<u>11V</u>		<u>00067663</u>	<u>390</u>	<u>1900</u>	<u>5.7</u>	<u>CRL</u>
<u>12V</u>	DICHLOROBRO- MO- METHANE	00075274	<u>N/A</u>	<u>N/A</u>	<u>0.55</u>	<u>CRL</u>
<u>14V</u>	1,1-DICHLORO- ETHANE	00075343	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	Ξ
<u>15V</u>	1,2-DICHLORO- ETHANE	<u>00107062</u>	<u>3100</u>	<u>15,000</u>	<u>0.38</u>	<u>CRL</u>
<u>16V</u>	1,1-DICHLORO- ETHYLENE	<u>00075354</u>	<u>1500</u>	<u>7500</u>	<u>33.0</u>	<u>H</u>
<u>17V</u>	1,2-DICHLORO- PROPANE	<u>00078875</u>	2200	11,000	<u>N/A</u>	Ξ
<u>18V</u>	1,3-DICHLORO- PROPYLENE	<u>00542756</u>	<u>61</u>	<u>310</u>	<u>.034</u>	<u>CRL</u>
<u>19V</u>	ETHYLBENZENE	<u>00100414</u>	<u>580</u>	<u>2900</u>	<u>530</u>	<u>H</u>
<u>20V</u>	METHYL BROMIDE	<u>00074839</u>	<u>110</u>	<u>550</u>	<u>47</u>	<u>H</u>

2157	METHYL CHI ODIDE	0054053	5500	20,000	T T / A	
<u>21V</u>	METHYL CHLORIDE	0074873	<u>5500</u>	<u>28,000</u>	<u>N/A</u>	Ξ
<u>22V</u>	METHYLENE CHLORIDE	00075092	2400	12,000	<u>4.6</u>	<u>CRL</u>
<u>23V</u>	1,1,2,2-TETRA- CHLOROETHANE	00079345	<u>210</u>	<u>1000</u>	<u>0.17</u>	<u>CRL</u>
<u>24V</u>	TETRACHLORO- ETHYLENE	00127184	<u>140</u>	<u>700</u>	<u>0.69</u>	<u>CRL</u>
<u>25V</u>	TOLUENE	00108883	<u>330</u>	<u>1700</u>	<u>1300</u>	<u>H</u>
<u>26V</u>	1,2-trans- DICHLORO- ETHYLENE	<u>00156605</u>	1400	<u>6800</u>	<u>140</u>	<u>H</u>
<u>27V</u>	1,1,1-TRICHLORO- ETHANE	<u>00071556</u>	<u>610</u>	3000	<u>N/A</u>	
<u>28V</u>	1,1,2-TRICHLORO- ETHANE	<u>00079005</u>	<u>680</u>	3400	<u>0.59</u>	<u>CRL</u>
<u>29V</u>	TRICHLORO- ETHYLENE	<u>00079016</u>	<u>450</u>	2300	<u>2.5</u>	<u>CRL</u>
<u>31V</u>	VINYL CHLORIDE	00075014	<u>N/A</u>	<u>N/A</u>	<u>.025</u>	<u>CRL</u>
<u>1B</u>	ACENAPHTHENE	00083329	<u>17</u>	<u>83</u>	<u>670</u>	<u>H</u>
<u>2B</u>	ACENAPHTHYLENE	00208968	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	=
<u>3B</u>	ANTHRACENE	00120127	<u>N/A</u>	<u>N/A</u>	<u>8300</u>	<u>H</u>
<u>4B</u>	BENZIDINE	00092875	<u>59</u>	<u>300</u>	0.000086	<u>CRL</u>
<u>5B</u>	BENZO(a)- ANTHRACENE	00056553	<u>0.1</u>	<u>0.5</u>	<u>0.0038</u>	<u>CRL</u>
<u>6B</u>	BENZO(a)PYRENE	00050328	<u>N/A</u>	<u>N/A</u>	0.0038	<u>CRL</u>
<u>7B</u>	3,4-BENZO- FLUORANTHENE	00205992	<u>N/A</u>	<u>N/A</u>	0.0038	<u>CRL</u>
<u>8B</u>	BENZO(ghi)- PERYLENE	00191242	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	Ξ
<u>9B</u>	BENZO(k)- FLUORANTHENE	00207089	<u>N/A</u>	<u>N/A</u>	0.0038	<u>CRL</u>
<u>10B</u>	BIS(2-CHLORO- ETHOXY)METHANE	<u>00111911</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	=
<u>11B</u>	BIS(2-CHLORO- ETHYL)ETHER	00111444	6000	30,000	<u>0.030</u>	<u>CRL</u>
<u>12B</u>	BIS(2-CHLORO- ISOPROPYL)ETHER	[39638329] 108-60-1	<u>N/A</u>	<u>N/A</u>	<u>1400</u>	<u>H</u>
<u>13B</u>	BIS(2-ETHYL- HEXYL)PHTHALATE	<u>00117817</u>	910	<u>4500</u>	<u>1.2</u>	<u>CRL</u>
<u>14B</u>	4-BROMOPHENYL PHENYL ETHER	<u>00101553</u>	<u>54</u>	<u>270</u>	<u>N/A</u>	Ξ
<u>15B</u>	BUTYLBENZYL PHTHALATE	00085687	<u>35</u>	<u>140</u>	<u>150</u>	<u>H</u>
<u>16B</u>	2-CHLORO- NAPHTHALENE	00091587	<u>N/A</u>	<u>N/A</u>	<u>1000</u>	<u>H</u>

<u>17B</u>	4-CHLORO- PHENYL PHENYL ETHER	<u>07005723</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	Ξ
<u>18B</u>	CHRYSENE	<u>00218019</u>	<u>N/A</u>	<u>N/A</u>	<u>0.0038</u>	<u>CRL</u>
<u>19B</u>	DIBENZO(a,h)- ANTHRACENE	00053703	<u>N/A</u>	<u>N/A</u>	<u>0.0038</u>	<u>CRL</u>
<u>20B</u>	1,2-DICHLORO- BENZENE	00095501	<u>160</u>	<u>820</u>	420 for dichloro- benzene	<u>H</u>
<u>21B</u>	1,3-DICHLORO- BENZENE	00541731	<u>69</u>	<u>350</u>	See 20B	H
<u>22B</u>	1,4-DICHLORO- BENZENE	<u>00106467</u>	<u>150</u>	<u>730</u>	See 20B	<u>H</u>
<u>23B</u>	3,3-DICHLORO- BENZIDINE	00091941	<u>N/A</u>	<u>N/A</u>	<u>.021</u>	<u>CRL</u>
<u>24B</u>	<u>DIETHYL</u> <u>PHTHALATE</u>	00084662	800	4000	<u>17000</u>	<u>H</u>
<u>25B</u>	DIMETHYL PHTHALATE	00131113	<u>500</u>	<u>2500</u>	<u>270000</u>	<u>H</u>
<u>26B</u>	DI-N-BUTYL PHTHALATE	00084742	<u>21</u>	<u>110</u>	<u>2000</u>	<u>H</u>
<u>27B</u>	2,4-DINITRO- TOLUENE	00121142	<u>320</u>	<u>1600</u>	0.05 for dinitro-toluene	<u>CRL</u>
<u>28B</u>	2,6-DINITRO- TOLUENE	00606202	<u>200</u>	990	See 27B	<u>CRL</u>
<u>29B</u>	DI-N-OCTYL PHTHALATE	<u>00117840</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	=
<u>30B</u>	1,2-DIPHENYL- HYDRAZINE	00122667	<u>3</u>	<u>15</u>	<u>.036</u>	<u>CRL</u>
<u>31B</u>	FLUORANTHENE	00206440	<u>40</u>	<u>200</u>	<u>130</u>	<u>H</u>
<u>32B</u>	FLUORENE	00086737	<u>N/A</u>	<u>N/A</u>	<u>1100</u>	<u>H</u>
<u>33B</u>	HEXACHLORO- BENZENE	00118741	<u>N/A</u>	<u>N/A</u>	0.00028	<u>CRL</u>
<u>34B</u>	HEXACHLORO- BUTADIENE	00087683	<u>2</u>	<u>10</u>	<u>0.44</u>	<u>CRL</u>
<u>35B</u>	HEXACHLORO- CYCLOPENTADIENE	00077474	1	<u>5</u>	<u>40</u>	H
<u>36B</u>	HEXACHLORO- ETHANE	00067721	<u>12</u>	<u>60</u>	<u>1.4</u>	CRL
<u>37B</u>	INDENO(1,2,3- cd)PYRENE	<u>00193395</u>	<u>N/A</u>	<u>N/A</u>	<u>.0038</u>	<u>CRL</u>
<u>38B</u>	ISOPHORONE	00078591	<u>2100</u>	<u>10,000</u>	<u>35</u>	<u>H</u>
<u> 39B</u>	NAPHTHALENE	<u>00091203</u>	<u>43</u>	<u>140</u>	<u>N/A</u>	Ξ
<u>40B</u>	NITROBENZENE	00098953	<u>810</u>	<u>4000</u>	<u>17</u>	<u>H</u>
<u>41B</u>	N-NITROSO-	<u>00062759</u>	<u>3400</u>	<u>17,000</u>	<u>0.00069</u>	<u>CRL</u>

DIMETHYLAMINE N-NITROSODI-N-

<u>42B</u>	N-NITROSODI-N- PROPYLAMINE	00621647	<u>N/A</u>	<u>N/A</u>	<u>0.005</u>	<u>CRL</u>
<u>43B</u>	N-NITROSO- DIPHENYLAMINE	00086306	<u>59</u>	<u>300</u>	<u>3.3</u>	<u>CRL</u>
<u>44B</u>	PHENANTHRENE	00085018	<u>1</u>	<u>5</u>	N/A	<u>=</u>
<u>45B</u>	PYRENE	<u>00129000</u>	<u>N/A</u>	<u>N/A</u>	<u>830</u>	<u>H</u>
<u>46B</u>	1,2,4-TRICHLORO- BENZENE	<u>00120821</u>	<u>26</u>	<u>130</u>	<u>35</u>	<u>H</u>
<u>1P</u>	ALDRIN	00309002	<u>0.1</u>	<u>3</u>	0.000049	<u>CRL</u>
<u>2P</u>	<u>alpha-BHC</u>	00319846	<u>N/A</u>	<u>N/A</u>	<u>0.0026</u>	<u>CRL</u>
<u>3P</u>	beta-BHC	<u>00319857</u>	<u>N/A</u>	<u>N/A</u>	<u>.0091</u>	<u>CRL</u>
<u>4P</u>	gamma-BHC (LINDANE)	00058899	<u>N/A</u>	0.95	<u>0.098</u>	<u>H</u>
<u>5P</u>	delta-BHC	00319868	<u>N/A</u>	<u>N/A</u>	N/A	=
<u>6P</u>	CHLORDANE	00057749	0.0043	<u>2.4</u>	0.00080	<u>CRL</u>
<u>7P</u>	<u>4,4-DDT</u>	00050293	<u>0.001</u>	<u>1.1</u>	.00022	<u>CRL</u>
<u>8P</u>	4,4-DDE	00072559	<u>0.001</u>	<u>1.1</u>	.00022	<u>CRL</u>
<u>9P</u>	<u>4,4-DDD</u>	00072548	<u>0.001</u>	<u>1.1</u>	.00031	<u>CRL</u>
<u>10P</u>	DIELDRIN	<u>00060571</u>	<u>0.056</u>	<u>0.24</u>	.000052	<u>CRL</u>
<u>11P</u>	alpha-ENDOSUL- FAN	00959988	0.056	<u>0.22</u>	62 for endosulfan	<u>H</u>
<u>12P</u>	beta-ENDOSULFAN	<u>33213659</u>	0.056	<u>0.22</u>	See 11P	<u>H</u>
<u>13P</u>	ENDOSULFAN SULFATE	<u>01031078</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	Ξ
<u>14P</u>	ENDRIN	00072208	<u>0.036</u>	<u>0.086</u>	<u>.059</u>	<u>H</u>
<u>15P</u>	ENDRIN ALDEHYDE	<u>07421934</u>	<u>N/A</u>	<u>N/A</u>	<u>0.29</u>	=
<u>16P</u>	HEPTACHLOR	00076448	0.0038	<u>0.52</u>	<u>.000079</u>	<u>CRL</u>
<u>17P</u>	HEPTACHLOR EPOXIDE	<u>01024573</u>	0.0038	<u>0.5</u>	.000039	<u>CRL</u>
<u>18P</u>	<u>PCB</u>		<u>0.014</u>	<u>N/A</u>	<u>0.000064 for</u> <u>PCBs</u>	<u>CRL</u>
<u>25P</u>	TOXAPHENE	<u>08001352</u>	<u>0.0002</u>	<u>0.73</u>	<u>0.00028</u>	<u>CRL</u>
<u>PP</u>	2,3,7,8-TCDD	<u>01746016</u>	<u>N/A</u>	<u>N/A</u>	<u>5.0 E-9</u>	<u>CRL</u>
=	ACETONE	<u>00067641</u>	<u>86,000</u>	<u>450,000</u>	<u>3500</u>	<u>H</u>
=	<u>ALUMINUM</u>	<u>07429905</u>	<u>N/A</u>	<u>750</u>	<u>N/A</u>	=
=	<u>BARIUM</u>	<u>07440393</u>	<u>4100</u>	<u>21,000</u>	<u>2400</u>	<u>H</u>
=	BORON	<u>07440428</u>	<u>1600</u>	<u>8100</u>	<u>3100</u>	<u>H</u>
=	<u>COBALT</u>	<u>07440484</u>	<u>19</u>	<u>95</u>	N/A	=
=	p-CRESOL	<u>00106445</u>	<u>160</u>	<u>800</u>	<u>N/A</u>	=
=	DIAZINON	<u>333415</u>	<u>0.17</u>	<u>0.17</u>	N/A	=
=	FORMALDEHYDE	00050000	<u>440</u>	<u>2200</u>	<u>700</u>	<u>H</u>

=	2-HEXANONE	<u>00591786</u>	<u>4300</u>	<u>21,000</u>	<u>N/A</u>	=
=	<u>LITHIUM</u>	07439932	<u>N/A</u>	<u>N/A</u>	N/A	=
=	METHYLETHYL KETONE	00078933	32,000	230,000	<u>21,000</u>	<u>H</u>
=	METHYLISO-BUTYL KETONE	<u>00108101</u>	<u>5000</u>	<u>26,000</u>	<u>N/A</u>	=
=	METOLACHLOR	<u>51218452</u>	<u>NA</u>	<u>NA</u>	<u>69</u>	<u>H</u>
=	MOLYBDENUM	07439987	<u>NA</u>	<u>NA</u>	<u>210</u>	<u>H</u>
=	<u>I-PROPANOL</u>	<u>00071238</u>	<u>46,000</u>	230,000	<u>N/A</u>	=
=	2-PROPANOL	<u>00067630</u>	<u>89,000</u>	<u>440,000</u>	<u>N/A</u>	=
=	1,2,3-TRICHLORO- PROPANE	<u>00096184</u>	<u>N/A</u>	<u>N/A</u>	<u>210</u>	<u>H</u>
=	VANADIUM	<u>07440622</u>	<u>100</u>	<u>510</u>	<u>N/A</u>	=
=	XYLENE	01330207	<u>210</u>	<u>1100</u>	<u>70,000</u>	H

Acronyms and Footnotes to Table 5

* Indicates dissolved metal criterion; others are total recoverable metals. Each listed dissolved criterion in Table 5 is equal to the corresponding total recoverable criterion before rounding (from the EPA National Ambient Water Quality Criteria Documents) multiplied by the conversion factor (from the Conversions Factors Table); a criterion that is expressed as a hardness (H)-based equation is shown in Table 5 as the conversion factor (listed) multiplied by the hardness criterion equation; an example criterion at hardness=100mg/L is included.

CAS—Chemical Abstract Service number

CRL—Cancer risk level at 1 x 10⁻⁶

H—Threshold effect human health criterion; incorporates additional uncertainty factor for some Group C carcinogens.

ln[H]—Natural Logarithm of the Hardness of stream as mg/l CaCO₃

μg/L –Micrograms per liter

N/A—Criterion not developed

PP NO—Priority Pollutant Number

§ 93.8c. Development of site-specific water quality criteria.

(a) The Department will consider a request for site-specific criteria for protection of aquatic life, human health or wildlife when a person demonstrates that there exist site-specific biological or chemical conditions of receiving waters which differ from conditions

upon which the water quality criteria were based. Site-specific criteria may be developed for use only in place of current Statewide or regional (such as the Great Lakes systems) criteria. The request for site-specific criteria shall include the results of scientific studies for the purpose of:

- (1) Defining the areal boundaries for application of the site-specific criteria which will include the potentially affected wastewater dischargers identified by the Department, through various means, including, but not limited to, the total maximum daily load (TMDL) process described in Chapter 96 (relating to water quality standards implementation) or biological assessments.
- (2) Developing site-specific criteria which protect its existing use and designated use.
- (b) Scientific studies shall be performed in accordance with the procedures and guidance in the Water Quality Standards Handbook (EPA 1994), including "Guidance on the Determination and Use of Water-Effect Ratios for Metals" (February 1994) and with the Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000), as amended and updated. Other guidance approved by the Department, which is based on other EPA approved or scientifically defensible methodologies, may be used. The water effect ratio (WER) study may be conducted, based on either total recoverable or dissolved criteria, depending on the form of the criterion.
- (c) Prior to conducting studies specified in subsections (a) and (b), a proposed plan of study shall be submitted to the Department for review, consideration and approval.
- (d) Signed copies of all reports including toxicity test data shall be submitted to the Department within 60 days of completion of the tests.
- (e) If, as a result of its review of the report submitted to satisfy a request, the Department determines that a site-specific criterion for a toxic substance is appropriate, the Department will publish the site-specific criterion in the *Pennsylvania Bulletin*, along with other special conditions under § 92.61(a)(5) (relating to public notice of permit application and public hearing), and in Chapter 16 Appendix A, Table 1. Changes listed in Appendix A, Table 1 will be promulgated through a formal rulemaking process as part of a triennial review or other rulemaking. If, as a result of its review of the report submitted to satisfy a request, the Department determines that a site-specific criterion for a parameter listed in § 93.7 (relating to specific water quality criteria) is appropriate, the Department will prepare a recommendation to the EQB in the form of proposed rulemaking, incorporating that criterion for the water body segment. A change to the criterion for a parameter listed in § 93.7 will become effective following adoption by the EQB as final rulemaking and publication in the *Pennsylvania Bulletin*.
- (f) A person challenging a Department action under this section shall have the burden of proof to demonstrate that the Department's action does not meet the requirements of this section.

§ 93.8d. Special criteria for the Great Lakes System.

- (a) The following special provisions shall apply for the Great Lakes System, which includes the streams, rivers, lakes and other bodies of surface water within the drainage basin of the Great Lakes in this Commonwealth:
- (b) Water quality criteria for the Great Lakes System. Human health and aquatic life criteria for the Great Lakes System are contained in Table 6. For any pollutant not listed in the table, criteria to protect existing and designated uses will be developed by the Department, as needed in accordance with this Chapter and Chapter 16.

TABLE 6 GREAT LAKES AQUATIC LIFE AND HUMAN HEALTH CRITERIA

			Fish and Aqua	tic Life Criteria	<u>Human</u>	
<u>PP</u> <u>NO</u>	Chemical Name	<u>CAS</u> <u>Number</u>	<u>Criteria Continuous</u> <u>Concentrations (ug/L)</u>	Criteria Maximum Concentration (ug/L)	Health Criteria (ug/L)	
<u>2M</u>	Arsenic	<u>07440382</u>	*148 (As3+)	*340[lowbar](As3+)	<u>N/A</u>	
<u>4M</u>	<u>Cadmium</u>	07440439	*{1.101672-(ln[H x0.041838)}x Exp(0.7852xln[H]-2.715) (ex: @H=100, CCC=2.24)	*{1.136672-(ln[H]x0.041838)}x Exp(1.128xln[H]-3.6867) (ex: @H=100, CMC=4.26)	<u>N/A</u>	
<u>5M</u>	Chromium, III	<u>16065831</u>	*0.860xExp(0.819xln[H]+0.6848)	*0.316xExp(0.819xln[H]+3.7256)	<u>N/A</u>	
			(ex: @H=100, CCC=74)	(ex: (a)H=100, CMC=570)		
<u>5M</u>	Chromium, VI	<u>18540299</u>	<u>*10.56</u>	<u>*15.73</u>	N/A	=
<u>6M</u>	<u>Copper</u>	<u>07440508</u>	*0.960xExp(0.8545xln[H]-1.702)	*(0.960xExp(0.9422xln[H]- 1.700)	<u>N/A</u>	
			(ex: @H=100, CCC=8.96)	(ex: @H=100, CMC=13.44)		
<u>8M</u>	Mercury	07439976	<u>*0.77</u>	<u>*1.44</u>	0.0031	<u>H</u>
<u>9M</u>	<u>Nickel</u>	<u>07440020</u>	*0.997xExp(0.846xln[H]+0.0584	*[0.998xExp(0.846xln[H]+2.255)	N/A	<u>H</u>
			(ex: @H=100, CCC=52.01)	(ex: @H=100, CMC=468.24)		
<u>10M</u>	<u>Selenium</u>	$\underline{07782492}$	<u>*4.61</u>	<u>N/A</u>	<u>N/A</u>	=
<u>13M</u>	Zinc	<u>07440666</u>	*0.986xExp(0.8473xln[H]+0.884)	*0.978xExp(0.8473xln[H]+0.884)	<u>N/A</u>	
			(ex: @H=100, CCC=118.14)	(ex: @H=100, CMC=117.18)		
<u>14M</u>	Cyanide, Free	<u>00057125</u>	<u>5.2</u>	<u>22</u>	<u>600</u>	<u>H</u>
<u>3A</u>	2,4-Dimethyl- phenol	00105679	<u>N/A</u>	<u>N/A</u>	<u>450</u>	<u>H</u>
<u>5A</u>	2,4-Dinitro- phenol	<u>00051285</u>	<u>N/A</u>	<u>N/A</u>	<u>55</u>	<u>H</u>

<u>9A</u>	Pentachlorophenol	00087865	Exp(1.005[pH]-5.134)	Exp (1.005[pH]-4.869)	<u>N/A</u>	
			@pH = 6.5 7.8 9.0	$@pH = 6.5 \ 7.8 \ 9.0$		
			Crit = 4.05 14.95 49.95	Crit = 5.28 19.49 65.10		
<u>3V</u>	Benzene	00071432	<u>N/A</u>	<u>N/A</u>	<u>1.2</u>	<u>CRL</u>
<u>7V</u>	Chloro- benzene	<u>00108907</u>	<u>N/A</u>	<u>N/A</u>	<u>470</u>	<u>H</u>
<u>22V</u>	Methylene Chloride	00075092	<u>N/A</u>	<u>N/A</u>	<u>4.7</u>	CRL
<u>25V</u>	Toluene	00108883	<u>N/A</u>	<u>N/A</u>	<u>5600</u>	<u>H</u>
<u>29V</u>	Trichloro- ethylene	00079016	<u>N/A</u>	<u>N/A</u>	<u>2.9</u>	<u>CRL</u>
<u>33B</u>	Hexachloro- benzene	00118741	<u>N/A</u>	<u>N/A</u>	0.000045	<u>CRL</u>
<u>36B</u>	Hexachloro- ethane	00067721	<u>N/A</u>	<u>N/A</u>	<u>0.53</u>	<u>CRL</u>
<u>4P</u>	gamma-BHC (Lindane)	00058899	<u>N/A</u>	0.95	<u>0.47</u>	<u>H</u>
<u>6P</u>	Chlordane	00057749	<u>N/A</u>	<u>N/A</u>	0.000025	<u>CRL</u>
<u>7P</u>	<u>4,4-DDT</u>	00050293	<u>N/A</u>	<u>N/A</u>	<u>0.000015</u>	<u>CRL</u>
<u>10P</u>	<u>Dieldrin</u>	<u>00060571</u>	<u>0.056</u>	<u>0.24</u>	<u>0.0000065</u>	<u>CRL</u>
<u>14P</u>	Endrin	00072208	0.036	0.086	<u>N/A</u>	
<u> 18P</u>	<u>PCBs</u>		<u>N/A</u>	<u>N/A</u>	0.00000039	<u>CRL</u>
<u>25P</u>	Toxaphene	<u>08001352</u>	<u>N/A</u>	<u>N/A</u>	<u>0.0000068</u>	<u>CRL</u>
<u>PP</u>	2,3,7,8-TCDD	<u>01746016</u>	<u>N/A</u>	<u>N/A</u>	<u>8.6 E-10</u>	<u>CRL</u>
=	Parathion	00056382	0.013	0.065	<u>N/A</u>	

Acronyms and Footnotes to Table 6

CAS—Chemical Abstract Service number

CRL—Cancer risk level at 1 x 10⁻⁶

^{*} Indicates dissolved metal criterion; others are total recoverable metals. Each listed dissolved criterion in Table 6 is equal to the corresponding total recoverable criterion before rounding (from the EPA National Ambient Water Quality Criteria Documents) multiplied by the conversion factor (from the Conversions Factors); a criterion that is expressed as a hardness (H)-based equation is shown in Table 6 as the conversion factor (listed) multiplied by the hardness criterion equation; an example criterion at hardness=100mg/L is included.

<u>H—Threshold effect human health criterion; incorporates additional uncertainty factor for some Group C carcinogens.</u>

<u>In[H]—Natural Logarithm of the Hardness of stream as mg/l CaCO₃</u>

<u>μg/L –Micrograms per liter</u>

N/A—Criterion not developed.

PPNO—Priority Pollutant Number

(c) Wildlife criteria. Wildlife criteria will be developed for the bioaccumulative chemicals of concern (BCCs) in the Great Lakes System using methodologies contained in the Great Lakes guidance in 40 CFR Part 132, Appendix D (relating to Great Lakes Water Quality Initiative methodology for the development of wildlife criteria). The wildlife criteria are contained in the following table:

GREAT LAKES WILDLIFE CRITERIA

TABLE 7

<u>PP</u>	<u>CHEMICAL</u>	<u>CRITERION</u>
<u>NO.</u>	<u>NAME</u>	(ug/L)
<u>7-9P</u>	DDT & METABOLITES	0.000011
<u>8M</u>	MERCURY	0.0013
18-24P	PCBs (TOTAL)	0.00012
<u>PP</u>	2,3,7,8-TCDD	3.1 E-9

DESIGNATED WATER USES AND WATER QUALITY CRITERIA

§ 93.9. Designated water uses and water quality criteria.

(a) The tables in § § 93.9a—93.9z display designated water uses and water quality criteria in addition to the water uses and criteria specified in Tables 2 and 3. Designated uses shall be protected in accordance with Chapters 95 and 96 (relating to wastewater treatment requirements; and water quality standards implementation) and any other applicable State and Federal laws and regulations. The tables also indicate specific exceptions to Tables 2 and 3 on a stream-by-stream or segment-by-segment basis by the words "add" or "delete" followed by the appropriate symbols described elsewhere in this chapter. The county column in § § 93.9a—93.9z indicates

the county in which the mouth of the stream <u>or the downstream limit of the zone described for that entry</u> is located. Abbreviations used in the Stream and the "Zone" columns are as follows:

(b) When appropriate, "Exceptions to Specific Criteria" provide reference to the Delaware River Basin Commission (DRBC) water quality regulations, Orsanco (Ohio River Valley Water Sanitation Commission) pollution control standards and the Great Lakes Water Quality Agreement (GLWQA) which specify the criteria that apply <u>if a water quality standard is more stringent than those in this title.</u>

* * * * *

Editor's note: A basin-wide migratory fishes (MF) designation is being applied to drainage lists A through O and Z, unless there are specific exceptions already noted for certain waterbodies or stream segments within one of these drainage lists. These specific changes to the drainage lists, however, are not reflected in this Annex, but will be added to the code at final rulemaking. Drainage lists A through G are located within the Delaware River Basin. Drainage lists H through O are located within the Susquehanna River Basin. Drainage list Z is located within the Potomac River Basin.

* * * * *

§93.9d. Drainage List D

Delaware River Basin in Pennsylvania Lehigh River

Stream	Zone *****	County	Water Uses Protected	Exceptions To Specific Criteria
3—Penn Springs	Basin	Carbon	HQ-CWF	None
3—Black Creek	[Basin, Source to Beaver Creek	Carbon	HQ-CWF	None]
<u>4—Hazle Creek</u>	Basin	<u>Carbon</u>	HQ-CWF	None
4—Beaver Creek	Basin	Carbon	CWF	None
3—Black Creek	Main Stem, Confluence of Hazle Creek	Carbon	CWF	None
	and Beaver Creek to Mouth			
4—Unnamed Tributaries to	Basins, Confluence of Hazle Creek and	Carbon	HQ-CWF	None
Black Creek	Beaver Creek to Mouth			
4—Koons Creek	Basin	Carbon	HQ-CWF	None
4—Quakake Creek	Basin, Source to Wetzel Creek	Carbon	HQ-CWF	None
5—Wetzel Creek	Basin	Carbon	CWF	None
4—Quakake Creek	Basin, Wetzel Creek to Mouth	Carbon	CWF	None
4—Brushy Hollow Run	Basin	<u>Carbon</u>	HQ-CWF	None
3—Maple Hollow	Basin	Carbon	HQ-CWF	None

* * * * *

§93.9f. Drainage List F

Delaware River Basin in Pennsylvania Schuylkill River

Stream	Zone *****	County	Water Uses Protected	Exceptions To Specific Criteria
3—Monocacy Creek	Basin	Berks	WWF	None
3—UNTs to Schuylkill River	Basins, (all UNT's along Montgomery County shore), Berks-Chester- Montgomery County Border to Valley Creek [(except those in Spring City and	[Chester—] Montgomery	[HQ-TSF] WWF	None
3—UNTs to Schuylkill River	Phoenixville) Basins (all UNTs along Chester County shore except those in Spring City and Phoenixville), Berks-Chester-	<u>Chester</u>	<u>HQ-TSF</u>	<u>None</u>
3—UNTs to Schuylkill River	Montgomery County Border to Valley Creek Basins, in Spring City and Phoenixville *****	Chester	WWF	None
3—Valley Creek	Basin	Montgomery- Chester	EV	None
3—Unnamed Tributaries to Schuylkill River	Basins, Valley Creek to Head of Tide	[Chester- Montgomery] Philadelphia	WWF	None
[3—Mellshamic Creek 3—Trout Creek	Basin ****	Montgomery Montgomery	WWF WWF	None] None

§93.9i. Drainage List I

Susquehanna River Basin in Pennsylvania Susquehanna River

Stream	Zone	County	Water	Exceptions
			Uses	To Specific

			Protected	Criteria
	* * * *			
2—Mehoopany Creek	Basin, Source to North [Fork]	Wyoming	HQ-CWF	None
	Branch Mehoopany Creek			
3—North [Fork] Branch	Basin	Wyoming	CWF	None
Mehoopany Creek				
2—Mehoopany Creek	Basin, North [Fork] Branch	Wyoming	CWF	None
	Mehoopany Creek to Mouth			
2—Taques Creek	Basin	Wyoming	CWF	None
2—Tunkhannock Creek	Main Stem, Source to Susquehanna-	Susquehanna-	CWF	None
	Wyoming County Border	Wyoming		
3—Unnamed Tributaries to	Basins, Source to Susquehanna-	Susquehanna	CWF	None
Tunkhannock Creek	Wyoming County Border			
3—Bear Swamp Creek	Basin	Susquehanna	CWF	None
3—Bell Creek	Basin	Susquehanna	CWF	None
3— <u>Nine Partners [Leslie]</u>	Basin	Susquehanna	CWF	None
Creek				
3—Partners Creek	Basin	Susquehanna	CWF	None
	* * * *			

§93.9l. Drainage List L

Susquehanna River Basin in Pennsylvania West Branch Susquehanna River

Stream	Zone *****	County	Water Uses Protected	Exceptions To Specific Criteria
4—Unnamed Tributary	Basin, Source to Rauchtown Creek	Lycoming	CWF	None
21134	,	, .		
5—Rauchtown Creek	[Basin, Source to Confluence of Rockey Run	Clinton	HQ-CWF	Nonel
	and Gottshall Run		_	,
6—Rockey Run	Basin	Clinton	HO-CWF	None
6—Gottshall Run	Basin	Clinton	HQ-CWF	None
5—Rauchtown Creek	Basin, Confluence of Rockey Run and Gottshall			None
	Run to Mouth	5 8		

§93.9m. Drainage List M

Susquehanna River Basin in Pennsylvania
Susquehanna River

Stream	Zone		County	Water Uses Protected	Exceptions To Specific Criteria
		* * * * *			
3—Trout Run	Basin		Northumberland	CWF	None
3 – [Buddys] Bennys Run	Basin		Northumberland	CWF	None
3—Millers Run	Basin		Northumberland	CWF	None
		* * * * *			

§93.9q. Drainage List Q

Ohio River Basin in Pennsylvania Allegheny River

Zone	County	Water Uses Exceptions	
	·	Protected	To Specific Criteria
* * * *			
Basin	Crawford	CWF	None
Basin, Source to Shirley Run	Crawford	CWF	None
Basin	Crawford	HQ-CWF	None
Basin, Shirley Run to Mouth	Crawford	CWF	<u>None</u>
* * * *			
Basin, Source to West Branch Caldwell Creek	Warren	HQ-CWF	None
l Basin	[Crawford]	EV	None
	Warren		
to Mouth	Crawford	EV	None
	* * * * * Basin Basin, Source to Shirley Run Basin Basin, Shirley Run to Mouth * * * * * Basin, Source to West Branch Caldwell Creek Basin Basin, West Branch Caldwell Creek	***** Basin Crawford Basin, Source to Shirley Run Crawford Basin Crawford Basin, Shirley Run to Mouth ***** Basin, Source to West Branch Caldwell Creek Basin [Crawford] Warren Basin, West Branch Caldwell Creek Crawford	Basin Crawford CWF Basin, Source to Shirley Run Crawford CWF Basin Crawford HQ-CWF Basin, Shirley Run to Mouth ***** Basin, Source to West Branch Caldwell Creek Basin, West Branch Caldwell Creek Crawford EV To Mouth The Protected CWF CWF Cawford Warren EV Warren EV Warren EV

§93.9v. Drainage List V

Ohio River Basin in Pennsylvania Monongahela River

Stream	Zone *****	County		s Exceptions To Specific Criteria
3—Bates Run 3—Tenmile Creek	Basin Basin, Source to South Fork Tenmile Creek	Fayette Greene <u>-Washington</u>	WWF TSF	None None

4—South Fork Tenmile	Basin, Source to Browns Creek	Greene	HQ-WWF	None
Creek				
5—Browns Creek	Basin	Greene	HQ-WWF	None
4—South Fork Tenmile	Basin, Browns Creek to Mouth	Greene	WWF	None
Creek				
3—Tenmile Creek	Basin, South Fork Tenmile Creek	Greene-Washington-	WWF	None
	to Mouth	Fayette		
	* * * *			

§ 93.9x. Drainage List X.

Lake Erie

Stream	Zone	County	Water Uses Protected	Exceptions To Specific Criteria
1—Lake Erie	All sections of lake in PA except Outer Erie Harbor and Presque Isle Bay	Erie	CWF	Delete Fe, pH1, DO1 and Bac1 See GLWQA Add E. coli per 40 CFR 131.41 and See 28 Pa. Code § 18.28(b)(2) and (3)
1—Lake Erie (Outer Erie Harbor and Presque Isle Bay)	Portion of lake bordered by Presque Isle on west, longitude 80°10'18" on north, except harbor area and central channel dredged and maintained by United States Army Corps of Engineers.	Erie	WWF	Delete pH Add pH between 7 and 9 Add E. coli per 40 CFR 131.41 and See 28 Pa. Code § 18.28(b)(2) and (3)
1—Lake Erie (Outer Erie Harbor and Presque Isle Bay)	Harbor area and central channel dredged and maintained by United States Army Corps of Engineers	Erie	WF, lete WC	Delete pH and Bac1. Add pH between 7 and 9, Bac2

* * * * *