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INTRODUCTION 

This document is intended to describe the purpose, applicability, and development of a 

thermal fish index (TFI) that serves as a multidisciplinary tool for management centered 

around fish and their role in 25 Pa. Code § 93. Specifically, “Uses” are discussed to 

establish initial context for making assessments and evaluations, pursuant to Water 

Quality Standards, using fish. The technical development of a TFI is conducted and the 

general results are discussed to create an initial foundation for assessment and 

evaluations. Specific methods stemming from this technical document will be presented 

independently.   

Table 1 in 25 Pa. Code § 93.3, lists five Use Categories as: Aquatic Life, Water Supply, 

Recreation and Fish Consumption, Special Protection and Other. Each of these 

categories is specifically intended to protect and support the resource and/or the user of 

the resource. Aquatic Life defines four sub-category Aquatic Life Uses (ALUs), three of 

which – Cold Water Fishes (CWF), Warm Water Fishes (WWF) and Trout Stocking 

(TSF) – are narrative definitions of biological communities along a thermal regime 

(Table 1). The intent of categorical ALU and sub-categorical definitions are to measure 

a waterbody’s ability to support the defined ecological communities (i.e., water quality 

and habitat are supportive), with numeric criteria established to be protective of aquatic 

life. To this end, development of biologically-based ALU assessments must be 

calibrated and responsive to changes in water quality and habitat as a reflection of 

waterbody condition. Alternatively, Recreational Use (RU) assessments are developed 

to protect and support the user of the waterbody (Table 1) with numeric RU criteria 

established to be protective of human health.  

Maximum temperature criteria are provided for defined times of the year for each of 

these sub-categorical ALUs. Temperature criteria in § 93.7 are applied to heated waste 

sources regulated under 25 Pa. Code §§ 92a and 96. Temperature limits apply to other 

sources when they are needed to protect designated and existing uses. In other words, 

temperature criteria are applied to specific cases and are not used for broad 

assessments of ALU. As indicated from the ALU definitions, an appropriate thermal 

evaluation includes a biological assessment based on instream flora and fauna, with 

specific mention of fish species.   

  



 

 

Table 1. 25Pa Code 93.3 Aquatic life and Recreation uses are listed as; 

Aquatic Life  

CWF - Cold Water 
Fishes 

Maintenance or propagation, or both, of fish species including 
the family Salmonidae and additional flora and fauna which 
are indigenous to a cold water habitat.   

WWF - Warm 
Water Fishes 

Maintenance and propagation of fish species and additional 
flora and fauna which are indigenous to a warm water habitat.  

MF - Migratory 
Fishes 

Passage, maintenance and propagation of anadromous and 
catadromous fishes and other fishes which move to or from 
flowing waters to complete their life cycle in other waters.   

TSF - Trout 
Stocking 

Maintenance of stocked trout from February 15 to July 31 and 
maintenance and propagation of fish species and additional 
flora and fauna which are indigenous to a warm water habitat. 

Recreation  

 
B – Boating 

Use of the water for power boating, sail boating, canoeing 
and rowing for recreational purposes when surface water flow 
or impoundment conditions allow. 

F – Fishing 
Use of the water for the legal taking of fish. For recreation or 
consumption. 

WC – Water 
Contact 

Use of the water for swimming and related activities. 

E – Esthetics 
Use of the water as an esthetic setting to recreational 
pursuits. 

 

Freshwater fishes are important indicators of temperature as they are obligate 

poikilothermic, meaning their internal body temperatures are dictated by the ambient 

surrounding water temperature (Wood and McDonald 1997, Beitinger et al. 2000). 

Thermal preference and tolerance vary among species (Wehrly et al. 2003, Yoder 

2006), creating unique assemblages of fishes along a continuous gradient, upstream to 

downstream. These longitudinal changes in fish assemblages parallel important shifts in 

loading, transport, and utilization of organic matter from headwaters to mouth that form 

the river continuum concept (RCC; Vannote et al. 1980).  The thermal zonation of fishes 

along a longitudinal gradient has been realized for nearly a century (Carpenter and 

Huxley 1928) and biological zones have been identified based on the occurrence of 

dominant fishes as “indicator species” (Huet 1959).  



 

 

The use of indicator species may be appropriate where only presence-absence data are 

available, but the use of indicator species in biological assessments tends to lack 

responsiveness to degradation along a continuous gradient (Fausch et al. 1990). For 

example, when an indicator species is absent due to stress, any additional stress on the 

system will have no measurable effect. An alternative to using indicator species is the 

use of all species in an assemblage and their relative abundance based on taxonomy, 

traits, and tolerance values to make biological assessments along a broad range of 

stress. The shift from indicator species to a more broad-scale, assemblage-based 

approach largely began in the 1970’s-80’s and the application of these concepts were 

first realized by the seminal introduction of the Index of Biotic Integrity (IBI) 

conceptualized by Karr (1981). As assemblage-based concepts began to evolve from 

indicator species concepts, regulatory definitions evolved as well. Historic ALU 

definitions were largely dependent on using trout species (family Salmonidae) as an 

indicator of a cold water community, as evident from the definitions from the late 1960’s 

(Table 2), to what they are today (Table 1).  

It is important to note that sub-categorical ALU definitions that make specific mention of 

trout, use trout as an indicator of natural thermal communities; where trout populations 

being completely supported indicates that additional flora and fauna indigenous to a 

cold water habitat may also: be supported (CWF), or not supported (WWF) by 

waterbody conditions, and an ecological community intermediate of CWF and WWF 

exists that does not fit the sub-categorical definition of TSF. While trout have excellent 

socioeconomic value, the socioeconomic value of trout cannot be included in ALU, as it 

is appropriately included and protected under the sub-categorical Fishing Use, within 

RU (Table 1).   



 

 

Table 2. Historic sub-categorical aquatic life uses obtained from Article 301 of the 
Sanitary Water Board Rules and Regulations, Commonwealth of Pennsylvania, Water 
Quality Criteria (1968). 

Cold Water 
Fishes 

Maintenance or propagation, or both, of fish species of 
the family Salmonidae and fish food organisms.   

Warm Water 
Fishes 

Maintenance and propagation of fish food organisms 
and all families of fishes except Salmonidae.  

Migratory 
Fishes 

Passage, maintenance and propagation of anadromous 
and catadromous fishes and other fishes which ascend 
to flowing waters to complete their life cycle.   

Trout (Stocking 
Only) * 

Warm water fishes and trout stocking 

* Added December 20, 1967.  

On the surface, sub-categorical ALU definitions could be interpreted as a form of 

thermal assessment as CWF, TSF and WWF are considered hierarchical along a 

thermal gradient. However, these definitions have inherent complexities that present 

challenges for assessment purposes. Specifically, streams under natural (or near 

natural) conditions may not always support CWF (e.g., large streams, rivers). 

Additionally, the interpretation of the ALU definitions have traditionally relied heavily on 

the presence of fish (trout in CWF) to fulfil the “maintenance” requirements, and the 

presence of young-of-year or multiple age-classes of fish (trout in CWF) to fulfil the 

“propagation” requirements. This interpretation can be successfully applied to CWF 

when trout are present in high numbers but becomes more challenging as trout 

numbers are reduced (e.g., how many trout are needed to satisfy narrative?). In other 

words, numerical thresholds may help alleviate subjectivity while providing consistent 

interpretation of narrative definitions. Furthermore, species within the trout family 

(Salmonidae), need to clearly demonstrate a positive response to good water quality, if 

their use as a potential indicator of waterbody condition is to be meaningful. Preliminary 

investigations of trout density and abundance as an indicator of water quality suggests 

responses to water quality may be variable overall and species-specific (Figure 1).   



 

 

 

Figure 1. Three common trout species found in Pennsylvania, density (log transformed) 
as the number of fish per hectare and relative abundance in response to water quality, 
measured with the modified water quality index (ModWQI), at all sites where present. 
The ModWQI measures water quality stress from poor to good, on a continuous scale 
from 0-100, respectively. 

Interpretation of ALU narrative definitions can be bolstered through the development of 

numeric thermal assemblage classes. This provides a shift from qualitative 

implementation to a more quantitative description of fish assemblages, along a thermal 

gradient. Numerically describing the transition from “additional flora and fauna which are 

indigenous to a cold water habitat” to “additional flora and fauna which are indigenous to 

a warm water habitat” is possible by quantifying the transition of assemblages 

dominated by cold water species to assemblages dominated by warm water species. 

This transition is considered continuous in nature as opposed to binary, meaning there 

will be assemblages dominated by warm water species that may still have cold water 

species present. This transitional or “cool water” assemblage appears to align with the 

TSF use interpretation presented, where stocked trout may be seasonally maintained 

within a warm water assemblage. However, important differences are noted between 



 

 

the TSF use and a transitional assemblage that may preclude quantification of TSF 

directly. Herein, a transitional assemblage is considered a segue of biological 

assemblages intermediate of cold and warm assemblages, based on environmental 

changes along a waterbody’s continuum (e.g., longitude, slope, temperature). 

Subsequently, biological assessments should be directed towards quantifying a 

transitional assemblage (as opposed to TSF), as a measure of a waterbody’s ability to 

support this natural assemblage. To avoid confusion between established uses in 

Chapter 93 and natural assemblages, the terms cold water assemblage (CWA), 

transitional assemblage (TSA) and warm water assemblage (WWA) will be used 

hereafter to describe thermal assemblages from an ALU assessment perspective. 

These terms are used to describe assemblage classes of fishes along a thermal (and 

environmental condition) gradient; and should in no way be considered redefinitions of 

ALUs. 

As previously stated, ALU assessment tools are designed to evaluate a waterbody’s 

condition by measuring changes in biological assemblages, in response to stress. The 

natural thermal zonation of fishes along a longitudinal gradient can be altered by 

anthropogenic stressors (Caissie 2006, Stanfield and Kilgour 2013) that include but are 

not limited to: deforestation (Brown and Krygier 1970, Jones et. al 1999, Burcher et. al.  

2008), urbanization (Brown et. al. 2005, Nelson and Palmer 2007), groundwater 

manipulation (Poole and Berman 2001, O’Driscoll and DeWalle 2006), impounding 

(Ward and Stanford 1983, Lessard and Hayes 2002), thermal effluents (Coutant 1975, 

Shuter et al. 1980), and global climate change (Eaton and Scheller 1996, Mohseni et al. 

2003, Nelson and Palmer 2007). Thermal regimes can also be affected by natural 

factors that may combine to shape the fish assemblages found within. Common natural 

effects that influence the thermal regime include measures related to latitude, elevation, 

slope, velocity, groundwater and canopy cover, among others. Less common effects 

may include measures of turbidity, basin orientation, or substrate characteristics. Effects 

of anthropogenic and/or natural factors are usually spatiotemporally stochastic and are 

both responsible (at varying degrees), to form modern-day fish assemblages. This 

theory forms a physical habitat template and suggests that recovery from disturbances 

and the response of fish assemblages may vary accordingly (Southwood 1977, Poff and 

Ward 1990). In other words, as anthropogenic stress increases in a waterbody the 

natural thermal assemblage may adjust accordingly (Figure 2). Alternatively, as 

anthropogenic stress is mitigated (naturally or through management), the thermal 

assemblage may adjust accordingly. Therefore, it is important to note that the thermal 

response of fish assemblages is not exclusively limited to changes in temperature.  



 

 

 

Figure 2. Theoretical example of natural longitudinal transition areas versus stress 
induced fish assemblage transitions. With applied stress to a cold water assemblage 
(CWA; blue), the CWA reduces, the transitional assemblage (TSA; yellow) is shifted 
upstream and the warm water assemblage (WWA; red) is expanded. 

Historically, DEP has relied on bioassessments based on macroinvertebrate 

assemblages to make categorical ALU assessment determinations. Fish-based 

bioassessment tools offer a suite of benefits that compliment traditional 

macroinvertebrate-based assessments. Benefits include: 1) fish life-cycles are longer 

than macroinvertebrates, providing insight into acute and chronic exposure through 

time, 2) fish often respond to stress at different landscape scales than 

macroinvertebrates (Lammert and Allan 1999), 3) fish life history and tolerance 

information is widely available, 4) fish are relatively easy to identify, 5) fish have 

extensive socioeconomic value, and 6) fish provide important evidence of sub-

categorical ALU narrative. Fish-based bioassessment tools are typically considered 

more complex than macroinvertebrate-based tools, in that: 1) fish can be highly mobile 

within dendritic freshwater systems 2) species distributions are based on zoogeographic 

factors that can make inter-basin comparisons challenging, and 3) barriers (physical 

and/or chemical) to recolonization efforts may delay recovery. Pennsylvania has had 

extensive zoogeographic influences that have shaped six major drainage basins and 

nearly 200 fish species, represented by 28 families, have been recorded from non-tidal 

waters (Stauffer et al. 2016). To overcome distributional challenges and have a fish-

based bioassessment tool that can be broadly applied throughout Pennsylvania, focus 

should be shifted away from taxonomic assessments (species level) and directed 



 

 

towards tolerance/preferences at the assemblage level. Additionally, focus should be 

directed towards relative abundance changes, as a way to help mitigate potential 

barrier-effects for recolonization. Specifically, this assessment development is directed 

towards thermal tolerances (or preference) of fish assemblages to make categorical 

ALU assessments, while numerically aligning assemblages with the intent of sub-

categorical definitions, to the extent possible.  

Although there is a great deal of literature concerning the thermal response of fishes, 

there is little information regarding the quantification of entire fish assemblages along a 

thermal gradient (but see; Zorn et al. 2002). The following represents the introduction of 

a metric (the TFI) that quantifies entire assemblages’ thermal preference as a numerical 

description of how “cold” or “warm” a fish assemblage is, based on a unitless scale. The 

TFI ranks assemblages from coldest to warmest along a 2.0 to 10.0 scoring gradient, 

respectively.  

METHODS 

Index Calculation 

Fish species were designated within a thermal class as determined from thermal studies 

compiled by Eaton and Scheller (1996) and Lyons et al. (2009).  Eaton and Scheller 

(1996) ranked each species on a three-tiered classification of Cold, Cool, and Warm 

from streams across the continental U.S., whereas Lyons et al. (2009) utilized an 

additional fourth tier by splitting Cool into Cool-transitional and Warm-transitional in 

Wisconsin and Michigan streams. Tiered delineations were converted to five-tiers with 

associated numerical values: 1-Cold (Cd), 2-Cold-Cool (CdCl), 3-Cool (Cl), 4-Cool-

Warm (ClWm), and 5-Warm (Wm), similar to Coker et al. (2001), to normalize any 

disagreement between delineations. The list of Pennsylvania fish taxa and their thermal 

delineations were then independently sent to regional experts familiar with fishes of the 

Northeastern and Mid-Atlantic U.S. to delineate taxa not directly addressed by Eaton 

and Scheller (1996) and Lyons et al. (2009).  Final delineations from regional experts 

were chosen based on modal values (Appendix A). Where modal values were not 

achieved, the delineations were made by using arithmetic mean rounded up or down by 

considering latitudinal distributions and habitat preferences for each species, similar to 

Coker et al. (2001).     

To calculate the TFI the number of individuals within each thermal class, as a 

percentage (e.g., 20% cold water individuals), was calculated. A weighted average was 

obtained by multiplying the numeric value for the thermal class by the percent of 

individuals, summed across classes. The final value is then multiplied by two to expand 

and standardize the range from two to ten, coldest to warmest respectively (Table 3). 

Calculation of the TFI follows; 



 

 

EQUATION 

𝑇𝐹𝐼 = (∑𝑁𝑃𝑖

5

1

)2 

 

Where N is the numeric value for the thermal class and P is the percent of individuals at 

the ith thermal class, summed across all five classes and multiplied by two. 

Table 3. Example of proportional abundance shifts of individuals within a thermal class, 
across the five thermal classes, and the resulting thermal fish index (TFI) score. 

Cold Cold-Cool Cool Cool-Warm Warm TFI 
Score 1 2 3 4 5 

1.00         2 
0.60 0.30 0.10   3 

 0.60 0.30 0.10  5 

  0.60 0.30 0.10 7 

  0.10 0.30 0.60 9 
        1.00 10 

 

Reference Condition and Stressor Gradient 

A least-disturbed (LD) approach was used to develop reference condition based on 

Stoddard et al. (2006), or the “best available” condition. The criteria for establishing LD 

condition was determined a priori and applied consistently across streams of all sizes to 

that allow for assemblage characterization, along a longitudinal gradient. Three major 

stress categories were identified as stressed (S), moderately stressed (M) and LD 

(Figure 3). Two major stressors on aquatic environments were used to delineate stress 

categories, water quality and habitat.  Water quality stress was measured using a 

modified version of DEP’s water quality index (WQI), originally described by Wertz and 

Shank (2019). The original WQI used 21 parameters to inform stress condition along a 

land-use-similarity index (range = 0-100, S to LD, respectively). The modified WQI 

(modWQI) was reduced to 18 parameters (Table 4), which increased the number of fish 

sites available with paired water quality. Instream habitat measures were conducted 

following a modified version of the U.S. Environmental Protection Agency’s (USEPA’s) 

Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers (RBP III) 

(Plafkin et al. 1989, Barbour et al.1999) associated with DEP and Susquehanna River 

Basin Commission (SRBC) collection methods at each fish site (Shull and Lookenbill 

2018, Shank et al. 2016). Habitat measures were standardized into a habitat category 

score (Habcat; range = 1-4, LD to S, respectively) based on available measures of: 

sedimentation, embeddedness, sand, silt and detritus, as measures of habitat condition 



 

 

varied across sampling methods (i.e. wadeable vs. nonwadeable). Finally, a dam 

proximity criterion was added to ensure fish sampling sites were not close to habitat-

modified systems, or barriers to migration, that could potentially influence the fish 

assemblage (Table 5).  

 

Figure 3. Map of sites considered least disturbed (LD), moderately stressed (M), and 
stressed (S) across a gradient of water quality and habitat conditions. Open circles 
represent sinkhole locations and relative density.  



 

 

Table 4. Water quality parameters (n=18) used to create a modified water quality index 
(modWQI). 

PARAMETER 

ALKALINITY, TOTAL  

ALUMINUM, TOTAL 

AMMONIA TOTAL AS NITROGEN 

BROMIDE, TOTAL 

CALCIUM, TOTAL 

CHLORIDE, TOTAL 

DISSOLVED SOLIDS, TOTAL 

HARDNESS, TOTAL 

IRON, TOTAL 

MAGNESIUM, TOTAL  

MANGANESE, TOTAL 

NICKEL, TOTAL 

pH 

PHOSPHOROUS, TOTAL 

SPECIFIC CONDUCTIVITY @ 25.0 C 

SULFATE 

SUSPENDED SOLIDS, TOTAL  

ZINC, TOTAL 

 

Table 5. Least-disturbed and stressed criteria based on water quality using a modified 
water quality index (modWQI), habitat from a categorical measure (Habcat) and dam 
proximity. 

  Freestone Limestone 

Description 

Least 
Disturbed 
Criteria 

Stressed 
Criteria 

Least 
Disturbed 
Criteria 

Stressed 
Criteria 

modWQI score > 60 < 40 > 40 < 20 

Habcat score 1 3 or 4 1 or 2 3 or 4 

Proximity to dam or impoundment  > 1.5 km    > 1.5 km   
  



 

 

Datasets 

Prior to development, water quality and habitat data were spatiotemporally paired with 

fish assemblage data; the full dataset was then inspected for potential outliers and 

anomalies. Three potential issues were considered at this stage and addressed 

accordingly. First, if an assemblage had >10% of the individuals not identified to the 

species-level (e.g., not having a thermal class), the TFI score was considered not 

representative of the assemblage and the site was removed. Second, samples with less 

than 50 individuals were investigated for potential cause and representativeness. 

Potential causes for low sample sizes were investigated for: 1) appropriate application 

of collection protocols (e.g., electrofishing settings, survey distance and time), 2) 

potentially toxic water quality conditions, and 3) near sterile conditions (e.g., extremely 

low productivity). Only two of these causes were identified in the dataset. Toxic 

conditions were observed at sites with extreme acid mine drainage and near sterile 

conditions were observed in extreme headwaters. In both cases all samples were still 

considered to be representative of the overall site conditions and were retained. Lastly, 

sites were coded based on spatiotemporal representation of at least one water 

chemistry sample to fish sample location and time. Sites were coded from zero to three, 

best to worst expected representation, respectively. All three’s (those most-likely to be 

unrepresentative) were removed from the dataset. 

The full dataset was divided into three subsets; 1) precision dataset, 2) calibration 

dataset, and 3) validation dataset. The precision dataset was first partitioned from the 

full dataset to reduce any pseudo-replication or spatial-autocorrelation issues (Sokal 

and Oden 1978, Hurlbert 1984). Since the stress measures used have a strong 

temporal component (i.e. based on instream measures instead of land use) sample 

independence was defined in an attempt to retain repeated samples from the same site 

that have measurable, spatiotemporal change in water quality or habitat. Independent 

samples were identified, randomly across samples at the same site, as having either a 

five-point modWQI score change or a one-point change in Habcat score. These 

respective temporal changes to water quality or habitat are biologically meaningful as 

they can occur as a result of anthropogenic activities, which would be expected to 

influence fish assemblages through time. Samples that didn’t meet this definition were 

regarded as repeat measures and were used in the precision dataset (samples 

removed; n= 193). The temporal strength of this method negated the need for temporal 

precision estimates as it treated all duplicate and replicate samples, given similar water 

quality and habitat conditions, the same. In other words, repeated sites were considered 

standardized by habitat and water quality, to ensure variability was associated with 

natural conditions (i.e. seasonal, sampling, processing). This result was desired as 

“duplicating” fish sites presents theoretical challenges and is best considered 

“replicating”. The full development dataset included sites from all stress groups, was 



 

 

then randomly split into a calibration and validation dataset (80/20, respectively; n= 

360/90). The LD sites within the calibration dataset were used for site classification 

purposes. The calibration dataset was used for development and the validation dataset 

served as an independent measure of performance. 

Landscape Variables 

Landscape variables were compiled at the local (stream segment) and watershed (total 

upstream catchment) scale. Local variables were obtained from the Appalachian 

Landscape Conservation Cooperative (AppLCC) stream classification system. The 

AppLCC contained data across six major variable types; size, gradient, temperature, 

hydrology, buffering capacity and confinement (Olivero et al. 2015). Of the six AppLCC 

variable groups available, temperature was the only variable group not used as it was 

based on fish assemblage data and was considered redundant. Catchment data was 

obtained by delineating upstream drainage areas for each site and measuring; area 

(km2), density of sinkholes (#/km2) and the percent of limestone geology within the 

catchment. Sinkholes and limestone geology were specifically chosen to address 

potential relationships identified from previous studies relating to limestone and karst 

systems, and their effect on fish assemblages (Steffy and Kilham 2006, Carline et al. 

2011, Kollaus and Bonner 2012). All landscape variables were compiled using ArcGIS 

Pro version 2.2 (ESRI 2018). 

Site Classification 

Boosted regression trees (BRTs) were used to classify LD and calibration datasets. 

Regression trees are a form of classification tree that utilize machine learning, where 

“boosting” generally improves performance from traditional regression trees by fitting 

multiple ‘simple’ models with an error term to avoid overfitting. Boosted regression 

trees, used in a continuous regression situation, use recursive partitioning to split data 

into homogenous groups and sub-groups based on between-group sum-of-squares, 

similar to analysis of variance (ANOVA), (Qian 2016, Elith et al. 2008). Regression trees 

(with or without boosting) have been utilized extensively for environmental modeling 

(Prasad et al. 2006, Breiman et al. 1984, Cutler et al. 2007, De'ath and Fabricius 2000, 

De’ath 2007) and groundwater studies (Trauth and Xanthopoulos 1997, Naghibi et al. 

2016). All statistics were performed using R (R core team, 2016), BRTs were performed 

using package ‘rpart’ (Therneau and Atkinson, 2019), method = ANOVA for continuous 

response variable. Least disturbed sites were modeled to determine appropriate class 

for natural variables and the mean TFI within the predicted group for evidence of 

directional change. Results were analyzed for ecological relevance and minimal cross-

validation error (Qian 2016). Similarly, BRTs were investigated in the calibration dataset 

to explore potential effects that may be problematic for analysis. Potential problematic 

issues may arise from stressors or site classification groups not represented in the LD 



 

 

dataset. The results of the LD BRT classification schema were then applied to the 

calibration dataset and adjusted as needed to obtain final classification groups based on 

ecologically relevant concepts (i.e. RCC).  

During preliminary data exploration investigations within the calibration dataset, using 

BRTs, the effect of karst geology became apparent (using sinkhole density within 

upstream catchment as a surrogate). This finding was in concordance with previous 

studies conducted in watersheds dominated by limestone geology, generally these 

systems have a unique ability to maintain cold water assemblages at increased stress 

levels, relative to their freestone counterparts (Steffy and Kilham 2006, Carline et al. 

2011). Similarly, sites with increased sinkhole densities were observed to have reduced 

modWQI scores while still maintaining lower TFI scores, when compared to the rest of 

the dataset. Sites with ≥ 0.03 sinkholes/km2 were identified from sites with < 0.03 

sinkholes/km2 in the full dataset, hereafter referred to as limestone (LS) and freestone 

(FS) stream types respectively. It is important to note that no LS streams met LD criteria 

for water quality as LS streams typically are found in wide, fertile valleys that tend to be 

dominated by agricultural practices. Habitat quality was also reduced in the limestone 

group, as many of these streams are typically lower gradient with moderate sand and 

gravel substrates. Additionally, the effect of habitat quality on the TFI score was 

apparent within the limestone group. Since this group of streams did not meet LD 

criteria for the freestone group the criteria was adjusted to accommodate (Error! 

Reference source not found.5), after investigating the sites across their range of water 

quality. It is important to note that LS stress criteria were only adjusted due to lower 

(colder) TFI scores than FS streams under similar stress conditions. This is hereafter 

referred to as the “karst effect”.  The karst effect began to dissipate after reaching 

significant size (~1,000 km2 from this dataset) where TFI scores began to resemble that 

of similar-sized FS streams. To compensate for the karst effect, streams with sinkhole 

densities >0.03/km2 that were in catchments >1,000 km2 were considered FS streams. 

Data Analysis 

Thermal fish index scores were investigated within the FS and LS datasets 

independently to determine thresholds that best align with ALU definitions, based on 

trout responses. To this end, TFI scores were consolidated to integers (2=2-3, 3=3-4, … 

9=9-10) and the presence of trout within each integer group, as percent occurrence 

(PO), was used to determine the probability of trout occurrence. It should be noted that 

this was conducted at the sample level, as opposed to site level. Sample level is an 

under-estimate of the probability of presence at the site or stream level, while still 

providing confidence in sample probability. For example, if trout are present in low 

numbers in a waterbody the probability of capture increases with sample size. 

Furthermore, the percent abundance (PA) of trout averaged across TFI groups was 

calculated for comparison. This method produced four measures of trout response 



 

 

along the TFI gradient; FS - (PO/PA) and LS - (PO/PA). These four trends were 

investigated to find inflection points (reduction of trout PA/PO), to establish TFI 

thresholds that best-represent a quantifiable transition from CWA to WWA, based on 

the TFI. The four measures were chosen to demonstrate the drastic difference across 

measures of occurrence and abundance. The measure of occurrence is very different 

than abundance, as trout can be present throughout a wide range of stream types at 

low abundance (e.g., one individual). Subsequently, the strict presence-of-trout 

measure reduces ecological meaningfulness without associated abundance measures. 

Applying the natural classification schema from the LD to the calibration dataset allowed 

for measures of the TFI response to stress effects. Thermal scores were plotted and 

regressed to test for responsiveness to longitudinal gradient and stress levels. The 

datasets were tested for within-group normalcy and homogeneity of variance by 

inspecting residual distributions from linear models and Shapiro-Wilk tests. Final group 

sample sizes were relatively small and non-normal distributions were not all 

successfully transformed to meet parametric assumptions. Subsequently, Kruskal-

Wallis chi-squared tests were used to measure among-group longitudinal differences of 

the final classification groups, using LD sites, followed by Dunn’s test of multiple 

comparison, post hoc (α = 0.05) adjusted using Bonferroni correction. Least disturbed 

sites were used to test for longitudinal response, minimizing effects from potential 

stressors. This procedure was repeated within-group based on stress level to measure 

significant differences in stress effect. Discrimination efficiency (DE) between LD and S 

sites was calculated to measure the TFI’s ability to characterize stress (i.e. how much 

overlap exists between the LD and S TFI scores) (Barbour et al. 1999, Gerritsen et al. 

2000). To measure DE, the percentage of stressed sites under the 75th percentile for LD 

sites was calculated by; 

%𝐷𝐸 = (
𝐴

𝐵
) ∗ 100 

Where; A is the number of stressed sites scoring below the 75th percentile for LD range 

and B is the total number of Stressed sites.  

After calculating DE, the 95th percentile of the LD sites within each group was used to 

establish impairment thresholds for assessment decisions. The 95th percentile is 

considered a high threshold for impairment which has two important considerations on 

assessments: 1) confidence in impairing a stressed site is increased, 2) confidence in 

not-impairing a stressed site is reduced. For example, if a stressed site is below the 95th 

percentile of the LD TFI range, it would be considered attaining. The decision to use the 

95th percentile of LD sites is based on two reasons; 1) the modWQI is continuous in 

nature and allows for comparisons of stress response along a robust gradient of water 

quality across all stream classes, 2) using Habcat scores (1-4) there is more confidence 



 

 

that LD sites are characterized as a 1 and less confidence that moderately stressed 

sites are characterized as a 4. For example, a moderately affected site with 

sedimentation issues is more likely to be classified as a 3 (stressed) or 4 (very stressed) 

than a 1 (not stressed); however, a site with severe habitat modifications 

(impoundment) may also be classified as a 3 or 4. To this end, more confidence is 

placed on LD sites being accurately characterized, and less confidence on stressed 

sites being accurately characterized 

Once impairment thresholds were established, validation was conducted to measure the 

assessments ability to classify sites not used in the development. Classification 

efficiency (CE) was calculated to measure the percentage of sites correctly classified 

based on the exceedance of established thresholds. The validation dataset was used to 

classify both impaired and attaining samples based on exceedance of impairment 

thresholds, measuring the percent correctly reclassified (i.e. the percentage of stressed 

sites being reclassified as impaired and the percentage of unstressed sites being 

reclassified as attaining).  

The TFI metric was considered novel in both concept and application. A comparative 

analysis that demonstrated how the TFI compares to traditional metrics was needed to 

enhance understanding of metric function; both in ecological relevance and 

performance. Traditional metrics were calculated for the biological condition gradient 

level five (BCG; Davies and Jackson 2006), percent tolerant individuals, and percent 

omnivorous individuals. The BCG level five attribute is generally based on relative 

tolerance value of a species but also includes native/non-native status. A pairwise 

comparison using Spearman’s rank correlation coefficient was conducted across 

metrics as well as the modWQI and Habcat to compare metrics responses to stress.  

RESULTS 

Thermal Assemblage Classes 

The inflection point for trout PO was between TFI scores 6-7.  Trout PA sharply 

decreased with TFI scores > 4 and the range of inflection was strongly noted between 

TFI scores 4-7 (Figure 4). Overall, the range of TFI scores from 5.0-7.0 indicates a 

strong transition in assemblages based on both trout abundance and occurrence. Upper 

thresholds were established to numerically define thermal assemblage classes that best 

represent the transition from an assemblage dominated by cold water species (TFI = 

5.0), to dominated by cool water species (TFI = 7.0) and dominated by warm water 

species (TFI > 7.0), (Figure 4). 



 

 

 

Figure 4. Percent abundance (PA) and occurrence (PO) of trout in both freestone and 
limestone streams. Dotted lines represent occurrence and solid lines represent 
abundance. The transition from cold water assemblage (CWA) to a warm water 
assemblage (WWA) is represented by blue and red vertical lines, respectively. 

Modeled Results 

Results from the BRTs using LD sites in FS streams indicated a strong longitudinal and 

slope effect, with minimal ecoregional effects in small catchments (Figure 5). Variable 

importance was partitioned relating to: stream size (41%), slope (32%), water quality 

(25%) and ecoregion (2%). Boosted regression trees in the LS dataset were conducted 

across all stress groups, as sample sizes from the LD sites precluded analysis. Boosted 

regression trees in LS streams also indicated a longitudinal and slope effect with 

additional karst effect (Figure 6). Variable importance was partitioned relating to: stream 

size (57%), karst and limestone geology (sum = 33%) and slope (10%). 

The specific catchment-size ranges were modified slightly from BRT output to maintain 

sample size and the longitudinal effect of mean distribution, maintaining ecological 

conformance with RCC. Six final type/longitudinal groups were labeled by stream type 

and upper range of catchment area (km2) as: LS<1000, FS<40, FS<150, FS<550, 

FS<6000, FS>6000 hereafter referred to as drainage area groups (DAGs; Figure 7).  



 

 

 

Figure 5. Boosted regression tree model of least disturbed sites showing important 
variables to classify freestone streams (FS) are generally related to catchment size and 
ecoregion. The bottom “leaflets” correspond to the mean thermal fish index (TFI) and 
the percentage of the dataset within each group. 

 

Figure 6. Boosted regression tree model showing important variables to classify 
limestone streams (LS), is generally related to stream size. All stress groups within the 
dataset were used as the sample size using only least disturbed sites precluded 
analysis. 



 

 

 

Figure 7. Boxplot of the final limestone (LS) and freestone (FS) drainage area groups 
(DAGs) (upper km2 range). Stress groups are denoted as; Least Disturbed (LD), 
Moderate (M) and Stressed (S). Dotted red lines represents the 95th percentile of least 
disturbed sites signifying the impairment threshold. The solid blue line represents the 
upper limit for cold water assemblage and the solid red line represents the lower limit for 
warm water assemblage, transitional assemblage range is between. 

Between-DAG comparisons of LD sites in FS streams using regression showed a 

significant increase in TFI score along a longitudinal gradient (adjusted R2 = 0.76, P= < 

0.001). All mean (and 95th percentile) TFI estimates were increasing as DAGs 

increased, maintaining ecological relevance. The 95th percentile for the LD sites within 

the LS DAG was 5.7. The 95th percentile for the LD sites within each longitudinally 

progressing FS DAG are as follows: 4.8, 6.0, 6.8, 7.6, 8.4. Discrimination efficiencies 

were all >80%, with the exception of the LS<1000 group that was 70%, averaging 88% 

across all DAGs (Table 6).   



 

 

Table 6. Between-group and within-group results describing thermal scores across 
drainage area groups (DAG) and stress, respectively. Shared letters within the DAG 
column designate non-significant differences between width groups (Dunn’s test, p < 
0.05). Kruskal-Wallis chi-squared test with bold italic represents significant results 
(p<0.01). Sample sizes for each stress group and shared letters within the same cell 
designate non-significant differences in stress within width groups (Dunn’s test, p < 
0.05). 

DAG n = LD, M, S 
chi-

squared DE 

LS<1000abc 9a, 6ab, 10b 4.92 70% 

FS<40ab 6a, 31a, 15 24.93 100% 

FS<150ab 16, 30, 9 27.65 100% 

FS<550ac 18, 30a, 9a 18.89 89% 

FS<6000cd 15, 30a, 8a 8.48 88% 

FS>6000d 6a, 82a, 11 8.57 82% 

Average   15.57 88% 

 

Precision estimates measured with CV and SD across all sites averaged 4.3% (TFI 

score ± 0.3) and 0.25 respectively. The highest CV and SD was noted in the FS<150 

DAG averaging 8.8% (TFI score ± 0.7) and 0.4 respectively (Table 7).  Classification 

efficiency, calculated to validate the calibration dataset and averaged across site width 

groups, was 95% for LD sites and 87% for stressed sites (  



 

 

Table 8). 

Table 7. Precision estimates using standard deviation (SD) and percent coefficient of 
variation (CV) for repeated sites within each drainage area group (DAG), regardless of 
stress level. 

DAG SD CV % N 

LS<1000 0.2 4 16 

FS<40 0.1 1.8 11 

FS<150 0.4 8.8 59 

FS<550 0.2 3.2 61 

FS<6000 0.3 4.5 39 

FS>6000 0.3 3.3 178 

  



 

 

Table 8. Validation classification efficiency, the percent stressed above impairment 

threshold and percent least disturbed under impairment threshold from validation 

dataset. Value in parenthesis denotes sample size. 

  LS<1000 FS<40 FS<150 FS<550 FS<6000 FS>6000 Avg. 

Least 
Disturbed 100% (2) 100% (2) 100% (4) 100% (4) 100% (6) 67% (3) 95% 

Stressed 50% (4) 100% (1) 100% (3) 67% (3) 100% (1) 100% (3) 87% 

Avg. 67% 100% 100% 86% 100% 83% 91% 

 

Pairwise comparisons of the TFI to traditional metrics demonstrated numerous, 

significant correlations that were generally considered weak to moderate relationships 

(Figures 8-13). Strong and significant correlations were observed between the BCG5 

and tolerant metrics throughout all DAGs. The omnivore metric tended to correlate with 

other metrics in larger streams but was considered highly variable. Relationships 

between the TFI and water quality were noted in all DAGs, except in the FS>6000 DAG, 

where the relationship was reduced. Across all DAGs the TFI consistently outperformed 

traditional metrics in response to water quality and habitat.  

 

Figure 8. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal 

fish index score (ThermalScore) to traditional metrics; Biological Condition Gradient 

category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality (WQI) 

and habitat (Habcat) in LS<1000 streams. *** (P<0.001, ** (P<0.01), * (P<0.05)  



 

 

 

Figure 9. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal 

fish index score (ThermalScore) to traditional metrics; Biological Condition Gradient 

category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality (WQI) 

and habitat (Habcat) in FS<40 streams. *** (P<0.001, ** (P<0.01), * (P<0.05) 

 

Figure 10. Pairwise comparison, using Spearman’s correlation coefficient, of the 

thermal fish index score (ThermalScore) to traditional metrics; Biological Condition 

Gradient category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality 

(WQI) and habitat (Habcat) in LS<1000 streams. *** (P<0.001, ** (P<0.01), * (P<0.05) 



 

 

 

Figure 11. Pairwise comparison, using Spearman’s correlation coefficient, of the 

thermal fish index score (ThermalScore) to traditional metrics; Biological Condition 

Gradient category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality 

(WQI) and habitat (Habcat) in FS<550 streams. *** (P<0.001, ** (P<0.01), * (P<0.05) 

 

Figure 12. Pairwise comparison, using Spearman’s correlation coefficient, of the 

thermal fish index score (ThermalScore) to traditional metrics; Biological Condition 

Gradient category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality 

(WQI) and habitat (Habcat) in FS<6000 streams. *** (P<0.001, ** (P<0.01), * (P<0.05) 



 

 

 

Figure 13. Pairwise comparison, using Spearman’s correlation coefficient, of the 

thermal fish index score (ThermalScore) to traditional metrics; Biological Condition 

Gradient category 5 (BCG5), percent tolerant, percent omnivorous (Omni), water quality 

(WQI) and habitat (Habcat) in FS>6000 streams. *** (P<0.001, ** (P<0.01), * (P<0.05) 

DISCUSSION 

Limestone streams were identified as a distinct group by their unique ability to support 

CWA in larger stream sizes than FS counterparts during preliminary classification 

investigations. Catchment area was determined to be the strongest predictor of the TFI 

in both FS and LS systems, with slope being an important (albeit secondary) predictor. 

This result is beneficial as it provides a template for the transition of fish assemblages 

along a longitudinal gradient for both stream types. The combination of these benefits 

allows for ecologically relevant, numerical estimates of expected thermal fish 

assemblages, based on environmental characteristics (e.g., DAGs). The longitudinal 

regression response of the TFI using the LD sites in this analysis was strong and 

significant (adjusted R2 = 0.76, P= < 0.001) and meets expectations for ecological 

relevance, based on the RCC (Vannote et al. 1980).  

On the surface, the LS<1000 DAG appears to be unique when compared to FS DAGs. 

This group had the lowest DE (70%) and lowest CE (in the S group; 50%) recorded. 

However, the reason for this apparent discrepancy is attributed to one major factor, 

trout-stocking. Herein, all (100%) LS streams that were considered S yet had a TFI 

score below the impairment threshold are streams regularly stocked with trout, thereby 

lowering the TFI score. This concept identifies a small degree of complexity that may be 

present in all fish-based bioassessments, where intentional (or unintentional) stocking 

co-occurs. Herein, a tradeoff exists between enhancing valuable recreational 

opportunities through stocking and measuring the response of fish assemblages that 

may not be solely driven by waterbody conditions. Subsequently, the effect of stocking 



 

 

should be realized and treated as inherent, yet subtle “noise” that will likely be present 

in many fish-based bioassessments.  

The lowest DE in the FS DAGs was noted in FS>6000, with a DE of 82%. This is 

attributed to; 1) a stress effect-size change and 2) using a four-tiered habitat category 

(Habcat) as a measure of stress. Generally, as stream size increases the range of water 

quality decreases; where large rivers tend to occupy a more-narrow and centralized 

distribution, as an effect of dilution (see generally, Nilssan 2008) (Figure 14). 

Alternatively, small streams are more susceptible to the extreme ends of the water 

quality range, being “very good” in heavily forested headwaters to “very poor” in effluent 

dominated headwaters. This important concept suggests as streams increase in size 

the effect of water quality stress may be mitigated, to some degree, and the effect of 

habitat quality may become more important.  Using Habcat as a measure of habitat 

successfully standardized habitat stress across all methodologies employed, yet not 

without consequence. The Habcat is generally, but not always, comparable across all 

sites within the same stress level. For example, a river characterized as a 4 for 

sediment deposition may not be the same stress as a river that is impounded for miles, 

also characterized as a 4. This concept was the major driver of the reduced DE in 

FS>6000, where naturally occurring increases in sedimentation caused a site to fall in 

the S group. This reaffirms aforementioned confidence in correctly identified LD sites 

and reduced confidence in correctly identifying S sites. 

 

Figure 14. The shift in water quality range distribution across drainage area groups 
(DAG), as measured from the modified water quality index (modWQI).  



 

 

The TFI was responsive to changes along a longitudinal gradient, temperature and 

stress (both habitat and water quality). The effect of water quality stress on the TFI was 

reduced longitudinally, as larger DAGs tended to occupy a narrow and more-central 

range of the modWQI (Figure 14). The effect of habitat on the TFI was important across 

both FS and LS groups (and DAGs) and tended to increase dramatically with increased 

sedimentation and impounding (Figure 15). These observations are important as the 

effects of multiple stressors are synergistic, antagonistic, or additive to the TFI scores. 

For example, as water quality is reduced by agricultural activities and loss of riparian 

areas, changes to instream habitat and temperature will likely parallel, having a 

dramatic effect on the TFI. Alternatively, a stream with mining influences may have 

reduced water quality, without drastic changes in habitat and temperatures, which may 

have a smaller effect on the TFI. In other words, as the number of stressors and/or 

intensity of stressors increases, increases in the TFI are expected. This is a desired 

outcome from a management perspective, as measured improvements in individual 

stressors may result in measurable recovery. For example, best management practices 

applied to small reaches of a larger watershed may have localized, measurable 

biological effects 

 

Figure 15. Boxplot of the final limestone (LS) and freestone (FS) drainage area groups 

(DAGs) (upper km2 range). Habcat groups 1-4 are on a gradient of good to poor 

respectively. Dotted red lines represents the 95th percentile of least disturbed sites 

signifying the impairment threshold. The solid blue line represents the upper limit for 

cold water assemblage and the solid red line represents the lower limit for warm water 

assemblage, transitional assemblage range is between. 



 

 

From a comparative perspective, the TFI may appear to be quite simple in design. In 

reality, the TFI should be viewed as a comprehensive metric, in that: 1) all species and 

individuals within the assemblage are provided equal consideration based on relative 

abundance, 2) can be applied uniformly across the State, basins, or ecoregions, 3) has 

an ecologically meaningful output of assemblage thermal class (cold vs. warm; as 

opposed to a purely statistically-derived construct), and 4) thermal preferences exhibit 

collinearity with other tolerances (water quality and habitat as evidenced herein) and 

traits. The TFI performed as well as or better than the three traditional metrics, in 

response to water quality and habitat conditions (Figures 8-13). The longitudinal stress 

effect-size change was again noted; where water quality and habitat elicited TFI 

responses in smaller DAGs and habitat became more important in the largest DAG 

(FS>6000), likely resulting from a more-central distribution along the water quality range 

(Figures 8-15). 

Numerous unique samples were noted within the dataset that warrant further 

discussion. Unique samples within each DAG were apparent in both directions. The 

assemblages with lower TFI scores than the rest of the distribution were generally 

caused by: 1) hydrologic alterations in the form of augmented bottom-releases from 

upstream impoundments, 2) unique natural features such as increased groundwater 

volume or canopy cover, and 3) unrepresentative sample locations that are influenced 

strongly by proximal tributaries. Individual streams, or stream segments that have a 

natural ability to maintain colder fish assemblages can be viewed as unique and 

important from an ecological and/or recreational perspective. For example, the 

Delaware River near Balls Eddy, PA is in the FS<6000 DAG and has achieved TFI 

scores as low as 4.6. This exceptionally low score for such a large DAG is the result of 

flow management and cold water releases from upstream reservoirs. This portion of the 

Delaware river remains an important recreational destination for trout fishing. 

Conversely, while flow management and cold water augmentation scenarios may 

initially be portrayed as an improvement, it is not without consequences. An example of 

these consequences is apparent in Clarks Creek near Harrisburg, PA, a small tributary 

to the Susquehanna River. This stream is impounded by a drinking water reservoir; two 

fish survey sites were conducted, bracketing the reservoir. The site downstream of the 

reservoir had a catchment area of 62 km2 (FS<150) with a TFI score of 5.4. This site is 

augmented by both cold water releases from the reservoir and trout stocking. The TFI 

score of 5.4 is within expected range based on its DAG; water quality is supportive of 

trout stocking and the assemblage is characterized as a TSA. The site upstream of the 

reservoir had a much smaller catchment area of 34km2 (FS<40) with a TFI score of 7.8. 

The TFI score for this DAG is well above the 95th percentile of reference for the FS<40, 

set at 4.8. The upper site had excellent water quality and habitat but was located only 

500 meters upstream of the impounded portion of the reservoir. Herein, the upstream 

site was influenced from fishes migrating upstream of the reservoir and was dominated 



 

 

by the family Centrarchidae. In other words, fishes indigenous to a cold water habitat 

were being replaced by fishes indigenous to a warm water habitat; conceptually, a 

“thermally invasive species”. This effect is therefore considered a “biological pollution” 

as a result of significant habitat alterations within proximity (Pringle 1997, Elliott 2003). 

Consequently, beneficial changes to CWAs, downstream of cold water releases from 

impoundments was observed; but a reduction of CWAs within and upstream of 

impounded areas was also observed. Additionally, this tradeoff is likely to be in both 

directions of top release “spillover” impoundments (warmer assemblages upstream and 

downstream).  

Overall, the TFI responded significantly to changes in longitude and stress in both 

freestone and limestone waterbodies across Pennsylvania. The discrimination and 

classification efficiencies were within acceptable range, averaging 88% and 91% across 

all groups respectively. Precision estimates measured from coefficient of variation were 

within (below) recommended threshold ranges of 10-15% (Stribling et al. 2008) and 

averaged 4.3%, with maxima still within acceptable limits at 8.8%. The TFI correlated 

with, and often outperformed traditional metrics in comparative analysis. These factors 

combined with added benefits of a large spatial application and ecological relevance 

solidify the TFI as a tool for assessing and evaluating fish assemblages across 

Pennsylvania’s lotic waterbodies. 
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APPENDIX A – THERMAL PREFERENCE BY SPECIES 

 

 

 

 

 

 

 

 

  



 

 

Family Common Name Scientific Name 
Numeric 

Value Preference 

Petromyzontidae Ohio Lamprey Ichthyomyzon bdellium 3 Cool 

Petromyzontidae 
Northern Brook 
Lamprey Ichthyomyzon fossor 3 Cool 

Petromyzontidae Silver Lamprey Ichthyomyzon unicuspis 3 Cool 

Petromyzontidae 
American Brook 
Lamprey Lampetra appendix 3 Cool 

Petromyzontidae Sea Lamprey Petromyzon marinus 3 Cool 

Polydontidae Paddlefish Polyodon spathula 5 Warm 

Lepisosteidae Spotted Gar Lepisosteus oculatus 5 Warm 

Lepisosteidae Longnose Gar Lepisosteus osseus 5 Warm 

Lepisosteidae Shortnose Gar 
Lepisosteus 
platostomus 5 Warm 

Amiidae Bowfin Amia calva 5 Warm 

Hiodontidae Goldeye Hiodon alosoides 5 Warm 

Hiodontidae Mooneye Hiodon tergisus 5 Warm 

Anguillidae American Eel Anguilla rostrata 3 Cool 

Clupeidae Blueback Herring Alosa aestivalis 5 Warm 

Clupeidae Skipjack Herring Alosa chrysochloris 5 Warm 

Clupeidae Hickory Shad Alosa mediocris 5 Warm 

Clupeidae Alewife Alosa pseudoharengus 4 Cool-Warm 

Clupeidae American Shad Alosa sapidissima 5 Warm 

Clupeidae Gizzard Shad Dorosoma cepedianum 5 Warm 

Cyprinidae Central Stoneroller 
Campostoma 
anomalum 4 Cool-Warm 

Cyprinidae Goldfish Carassius auratus 5 Warm 

Cyprinidae 
Northern Redbelly 
Dace Chrosomus eos 4 Cool-Warm 

Cyprinidae Finescale Dace Chrosomus neogaeus 3 Cool 

Cyprinidae Redside Dace Clinostomus elongatus 3 Cool 

Cyprinidae Rosyside Dace 
Clinostomus 
funduloides 2 Cold-Cool 

Cyprinidae Grass Carp 
Ctenopharyngodon 
idella 5 Warm 

Cyprinidae Satinfin Shiner Cyprinella analostana 5 Warm 

Cyprinidae Spotfin Shiner Cyprinella spiloptera 5 Warm 

Cyprinidae Common Carp Cyprinus carpio 5 Warm 

Cyprinidae Streamline Chub Erimystax dissimilis 4 Cool-Warm 

Cyprinidae Gravel Chub Erimystax x-punctatus 3 Cool 

Cyprinidae Tonguetied Minnow Exoglossum laurae 3 Cool 

Cyprinidae Cutlip Minnow 
Exoglossum 
maxillingua 3 Cool 



 

 

Cyprinidae Eastern Silvery Minnow Hybognathus regius 5 Warm 

Cyprinidae Striped Shiner Luxilus chrysocephalus 4 Cool-Warm 

Cyprinidae Common Shiner Luxilus cornutus 4 Cool-Warm 

Cyprinidae Redfin Shiner Lythrurus umbratilis 4 Cool-Warm 

Cyprinidae Silver Chub 
Macrhybopsis 
storeriana 4 Cool-Warm 

Cyprinidae Pearl Dace Margariscus margarita 2 Cold-Cool 

Cyprinidae Hornyhead Chub Nocomis biguttatus 3 Cool 

Cyprinidae River Chub Nocomis micropogon 3 Cool 

Cyprinidae Golden Shiner 
Notemigonus 
crysoleucas 5 Warm 

Cyprinidae Comely Shiner Notropis amoenus 5 Warm 

Cyprinidae Emerald Shiner Notropis atherinoides 5 Warm 

Cyprinidae Silverjaw Minnow Notropis buccatus 3 Cool 

Cyprinidae Blackchin Shiner Notropis heterodon 4 Cool-Warm 

Cyprinidae Blacknose Shiner Notropis heterolepis 4 Cool-Warm 

Cyprinidae Spottail Shiner Notropis hudsonius 4 Cool-Warm 

Cyprinidae Silver Shiner Notropis photogenis 4 Cool-Warm 

Cyprinidae Swallowtail Shiner Notropis procne 3 Cool 

Cyprinidae Rosyface Shiner Notropis rubellus 4 Cool-Warm 

Cyprinidae Sand Shiner Notropis stramineus 4 Cool-Warm 

Cyprinidae Mimic Shiner Notropis volucellus 4 Cool-Warm 

Cyprinidae Bluntnose Minnow Pimephales notatus 4 Cool-Warm 

Cyprinidae Fathead Minnow Pimephales promelas 4 Cool-Warm 

Cyprinidae 
Eastern Blacknose 
Dace Rhinichthys atratulus 3 Cool 

Cyprinidae Longnose Dace Rhinichthys cataractae 3 Cool 

Cyprinidae 
Western Blacknose 
Dace Rhinichthys obtusus 3 Cool 

Cyprinidae Creek Chub 
Semotilus 
atromaculatus 3 Cool 

Cyprinidae Fallfish Semotilus corporalis 4 Cool-Warm 

Catostomidae River Carpsucker Carpiodes carpio 5 Warm 

Catostomidae Quillback Carpiodes cyprinus 5 Warm 

Catostomidae Highfin Carpsucker Carpiodes velifer 5 Warm 

Catostomidae Longnose Sucker 
Catostomus 
catostomus 2 Cold-Cool 

Catostomidae White Sucker 
Catostomus 
commersonii 3 Cool 

Catostomidae Creek Chubsucker Erimyzon oblongus 4 Cool-Warm 

Catostomidae Northern Hog Sucker Hypentelium nigricans 3 Cool 

Catostomidae Smallmouth Buffalo Ictiobus bubalus 5 Warm 

Catostomidae Bigmouth Buffalo Ictiobus cyprinellus 5 Warm 



 

 

Catostomidae Silver Redhorse Moxostoma anisurum 4 Cool-Warm 

Catostomidae Smallmouth Redhorse Moxostoma breviceps 4 Cool-Warm 

Catostomidae River Redhorse Moxostoma carinatum 4 Cool-Warm 

Catostomidae Black Redhorse Moxostoma duquesnei 4 Cool-Warm 

Catostomidae Golden Redhorse Moxostoma erythrurum 4 Cool-Warm 

Catostomidae Shorthead Redhorse 
Moxostoma 
macrolepidotum 4 Cool-Warm 

Ictaluridae Black Bullhead Ameiurus melas 5 Warm 

Ictaluridae Yellow Bullhead Ameiurus natalis 4 Cool-Warm 

Ictaluridae Brown Bullhead Ameiurus nebulosus 4 Cool-Warm 

Ictaluridae Channel Catfish Ictalurus punctatus 5 Warm 

Ictaluridae Stonecat Noturus flavus 4 Cool-Warm 

Ictaluridae Tadpole Madtom Noturus gyrinus 5 Warm 

Ictaluridae Margined Madtom Noturus insignis 4 Cool-Warm 

Ictaluridae Brindled Madtom Noturus miurus 4 Cool-Warm 

Ictaluridae Flathead Catfish Pylodictis olivaris 5 Warm 

Osmeridae Rainbow Smelt Osmerus mordax 1 Cold 

Salmonidae Cisco Coregonus artedi 1 Cold 

Salmonidae Lake Whitefish 
Coregonus 
clupeaformis 1 Cold 

Salmonidae Pink Salmon 
Oncorhynchus 
gorbuscha 1 Cold 

Salmonidae Coho Salmon Oncorhynchus kisutch 1 Cold 

Salmonidae Hybrid Golden Trout 
Oncorhynchus mykiss 
(hybrid) 1 Cold 

Salmonidae Rainbow Trout Oncorhynchus mykiss 1 Cold 

Salmonidae Steelhead 
Oncorhynchus 
mykiss(steelhead) 1 Cold 

Salmonidae Chinook Salmon 
Oncorhynchus 
tshawytscha 1 Cold 

Salmonidae Brown Trout Salmo trutta 2 Cold-Cool 

Salmonidae Hybrid Tiger Trout 
Salvelinus fontinalis x 
Salmo trutta 1 Cold 

Salmonidae Brook Trout Salvelinus fontinalis 1 Cold 

Salmonidae Lake Trout Salvelinus namaycush 1 Cold 

Esocidae Redfin Pickerel 
Esox americanus 
americanus 4 Cool-Warm 

Esocidae Grass Pickerel 
Esox americanus 
vermiculatus 4 Cool-Warm 

Esocidae Northern Pike Esox lucius 4 Cool-Warm 

Esocidae Muskellunge Esox masquinongy 4 Cool-Warm 

Esocidae Chain Pickerel Esox niger 4 Cool-Warm 

Umbridae Central Mudminnow Umbra limi 4 Cool-Warm 



 

 

Percopsidae Trout Perch 
Percopsis 
omiscomaycus 1 Cold 

Gadidae Burbot Lota lota 2 Cold-Cool 

Atherinidae Brook Silverside Labidesthes sicculus 5 Warm 

Fundulidae 
Eastern Banded 
Killifish 

Fundulus diaphanus 
diaphanus 5 Warm 

Fundulidae 
Western Banded 
Killifish 

Fundulus diaphanus 
menoma 5 Warm 

Fundulidae Mummichog Fundulus heteroclitus 5 Warm 

Poeciliidae Eastern Mosquitofish Gambusia holbrooki 5 Warm 

Belonidae Atlantic Needlefish Strongylura marina 5 Warm 

Gasterosteidae Fourspine Stickleback Apeltes quadracus 1 Cold 

Gasterosteidae Brook Stickleback Culaea inconstans 3 Cool 

Gasterosteidae Threespine Stickleback Gasterosteus aculeatus 1 Cold 

Gasterosteidae 
Blackspotted 
Stickleback 

Gasterosteus 
wheatlandi 1 Cold 

Gasterosteidae Ninespine Stickleback Pungitius pungitius 1 Cold 

Cottidae Mottled Sculpin Cottus bairdii 1 Cold 

Cottidae Blue Ridge Sculpin Cottus caeruleomentum 1 Cold 

Cottidae Slimy Sculpin Cottus cognatus 1 Cold 

Cottidae Potomac Sculpin Cottus girardi 2 Cold-Cool 

Cottidae Spoonhead Sculpin Cottus ricei 1 Cold 

Cottidae Deepwater Sculpin 
Myoxocephalus 
thompsoni 1 Cold 

Cottidae Unidentified sculpin Unidentified Cottus 1 Cold 

Moronidae White Perch Morone americana 5 Warm 

Moronidae White Bass Morone chrysops 5 Warm 

Moronidae White x Striped bass 
Morone chrysops x 
saxatalis 4 Cool-Warm 

Moronidae Striped Bass Morone saxatilis 4 Cool-Warm 

Centrarchidae Rock Bass Ambloplites rupestris 4 Cool-Warm 

Centrarchidae Redbreast Sunfish Lepomis auritus 4 Cool-Warm 

Centrarchidae Green Sunfish Lepomis cyanellus 5 Warm 

Centrarchidae Pumpkinseed Lepomis gibbosus 4 Cool-Warm 

Centrarchidae Warmouth Lepomis gulosus 5 Warm 

Centrarchidae Orangespotted Sunfish Lepomis humilis 5 Warm 

Centrarchidae Bluegill Lepomis macrochirus 5 Warm 

Centrarchidae Longear Sunfish Lepomis megalotis 4 Cool-Warm 

Centrarchidae Redear Sunfish Lepomis microlophus 5 Warm 

Centrarchidae Smallmouth Bass Micropterus dolomieu 4 Cool-Warm 

Centrarchidae Spotted Bass Micropterus punctulatus 4 Cool-Warm 

Centrarchidae Largemouth Bass Micropterus salmoides 5 Warm 

Centrarchidae White Crappie Pomoxis annularis 5 Warm 



 

 

Centrarchidae Black Crappie 
Pomoxis 
nigromaculatus 5 Warm 

Percidae Greenside Darter Etheostoma blennioides 4 Cool-Warm 

Percidae Rainbow Darter Etheostoma caeruleum 4 Cool-Warm 

Percidae Iowa Darter Etheostoma exile 3 Cool 

Percidae Fantail Darter Etheostoma flabellare 3 Cool 

Percidae Johnny Darter Etheostoma nigrum 4 Cool-Warm 

Percidae Tessellated Darter Etheostoma olmstedi 3 Cool 

Percidae Tippecanoe Darter Etheostoma tippecanoe 3 Cool 

Percidae Variegate Darter Etheostoma variatum 3 Cool 

Percidae Banded Darter Etheostoma zonale 4 Cool-Warm 

Percidae Ruffe 
Gymnocephalus 
cernuus 3 Cool 

Percidae Yellow Perch Perca flavescens 3 Cool 

Percidae 
Cheseapeake 
Logperch Percina bimaculata 4 Cool-Warm 

Percidae Logperch Percina caprodes 4 Cool-Warm 

Percidae Channel Darter Percina copelandi 4 Cool-Warm 

Percidae Gilt Darter Percina evides 3 Cool 

Percidae Longhead Darter Percina macrocephala 4 Cool-Warm 

Percidae Blackside Darter Percina maculata 3 Cool 

Percidae Shield Darter Percina peltata 3 Cool 

Percidae River Darter Percina shumardi 4 Cool-Warm 

Percidae Sauger Sander canadensis 3 Cool 

Percidae Saugeye 
Sander canadensis x 
vitreus 3 Cool 

Percidae Walleye Sander vitreus 3 Cool 

Sciaenidae Freshwater Drum Aplodinotus grunniens 5 Warm 

Gobiidae Round Goby 
Neogobius 
melanostomus 3 Cool 

 

 

 

 

 

 

 


