

Bureau of Clean Water

Pennsylvania At-grade Absorption Area: Siting, Design and Construction Manual

Pre-Draft Version

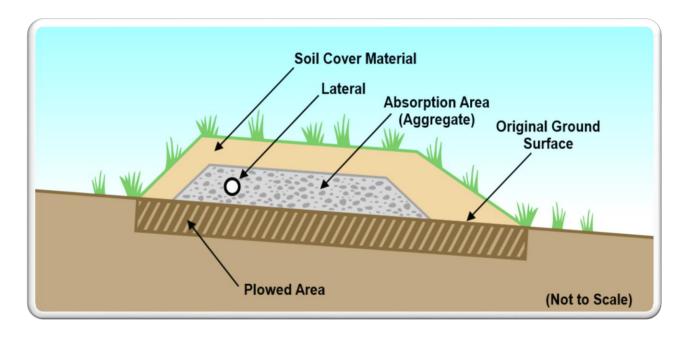
SAC Meeting June 17th, 2020

Tom Wolf, Governor

Patrick McDonnell, Secretary

Purpose and Previous Policies

- The purpose of this Technical Guidance Document (TGD) is to:
 - provide requirements for the siting, design, and construction of the Atgrade component;
 - revise general requirements for planning, permitting and operation and maintenance of the on-lot system;
 - combine the two previous At-grade listings into one document.
- This TGD will replace the previous documents titled:
 - At-grade Absorption Area Alternate Technology (A2014-0019-0003);
 - Shallow Limiting Zone At-grade Absorption Area Alternate Technology (A2014-0025-0003).


Applicability

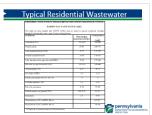
- Planning for new land development;
- Permitting for new systems;
- Permitting for repair of malfunctioning systems;

- Use with primary treated effluent on sites with a depth to limiting zone (LZ) of 48" or greater; and
- Use on sites with a shallow limiting zone (SLZ) with additional pretreatment of the effluent.

What is an At-Grade Bed?

 The main difference between an At-grade sewage system and other on-lot systems is that the At-grade component is constructed directly on top of chisel plowed soil at the original ground surface, instead of placing it on a bed of sand or in the bottom of an excavation.

References


- At-grade On-lot Alternate Technology (OAT) criteria are based on field studies conducted by researchers at the University of Wisconsin - Madison within the Small Scale Waste Management Project.
 - Some field studies:
 - Converse et al. (1991): 31 at-grade systems.
 - Converse et al. (1998): 39 modified mound and atgrade systems.
 - Penninger at al. (1998): 1 WI at-grade system.
 - Mote et al. (1994): 1 WI at-grade system
- State of Wisconsin: regulations and guidance documents.

Current Listings Vs. AGB TGD

- Current At-Grade Absorption Area Listing requires a percolation test to design the absorption area, similar to an elevated sand mound;
- Current Shallow Limiting Zone At Grade Absorption Area Listing uses a soil morphological evaluation to design the absorption area;
- Proposed At-Grade Bed TGD requires a soil morphological evaluation to design the absorption area on all soil types, shallow or otherwise. spennsylvania

General Requirements

- Treatment of domestic strength wastewater (EPA 2002);
- Up to 10,000 gpd;

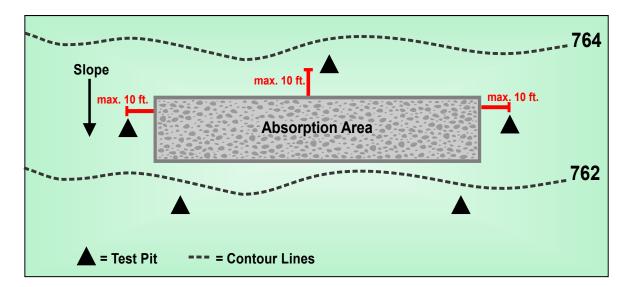
- Peak daily flow 400 gpd, and 100 gpd for each additional bedroom, for residential dwelling;
- Septic tank(s) requirements in 25 Pa. Code § 73.31;
- Aerobic treatment tank(s) requirements in 25 Pa. Code § 73.32. A Department permit is required for peak design flows in excess of 1,500 gallons per day (gpd).

Proposed Site Requirements

- Max. slope = 15% for the absorption area and the berm.
- Slopes are subdivided into 3 groups: 0-4%, 5-9%, and 10-15%.
- Based on the soil characteristics, slopes, and depth to the LZ, the hydraulic linear loading rate is given by Tyler (2001).
- Proposed TGD uses the full Tyler's table (including ILR for BOD₅ ≥30 mg/l, LZ depths ≥ 20), while current Listing (A2014-0025-0003) only partially.
- Proposed TGD uses design options based on the ground surface slopes (0-4% and 4%-15%) and not as in listing #A2014-0019-0003.

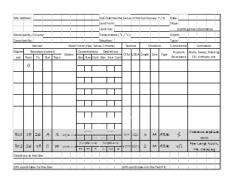
Proposed Site Requirements

- The length of absorption area is placed on contour.
- Absorption areas are allowed on sites with slopes exceeding 4% with concave-shaped contours if the maximum deflection of the at-grade component does not exceed 10%;
- Sites with an excessive number of trees or boulders should be avoided. Appendix provides compensation for the lost infiltrative surface.


Absorption Area

- A qualified soil scientist must perform all soil morphological testing.
- Updated definition of qualified soil scientist.
- Updated definition of SLZ (less than 20").
- Primary and replacement absorption areas on all sites with SLZ.
- An area downgradient from the absorption area needs to be protected.

Soil Requirements


- A minimum of four (4) soil test pits per absorption area.
- Test pits locations requirements:
 - outside the proposed absorption area;
 - if inside, the site may be considered disturbed;
 - at a distance no more than 10 ft from the proposed absorption area, excluding the downslope pits;
 - placed in a diamond shape;
 - and on-contour.

Soil Requirements

 All soil profile descriptions should be documented in detail on a soil boring log.

- §III.C provides guidelines on how to describe each soil profile to identify the most conservative one;
- The soil report should explain why the At-grade Absorption Area component was selected for the site.

Design

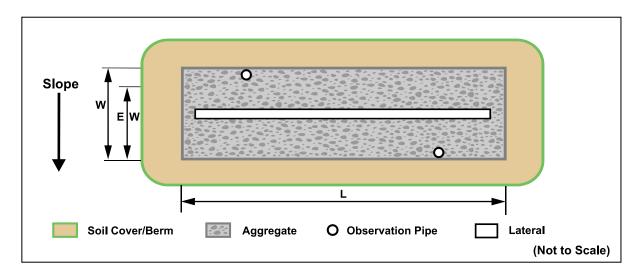
- Main design calculations of the absorption area follow the current Listing # A2014-0025-0003.
- Three design procedures:
 - Design procedure for sites with slopes > 4% and \leq 15%;
 - Design procedure for sites with slopes > 4% and ≤15% with concave contours;
 - Design procedure for sites with slopes between 0 and 4%.
- Width of absorption area: not exceeding 15ft.
- Cover material: 12" min. instead of 8" min.
- Slope of the berms: same criteria as current Listings.

 The size and grading of the aggregate should meet AASHTO No. 57 requirements from a Pennsylvania Department of Transportation (PADOT) certified stockpile and shall be Type A or Type B quality requirements.

Number and Placement of Laterals

Sites on slopes exceeding 4%

If only one effluent distribution pipe, the lateral is located 2 ft from up slope edge of the absorption area.

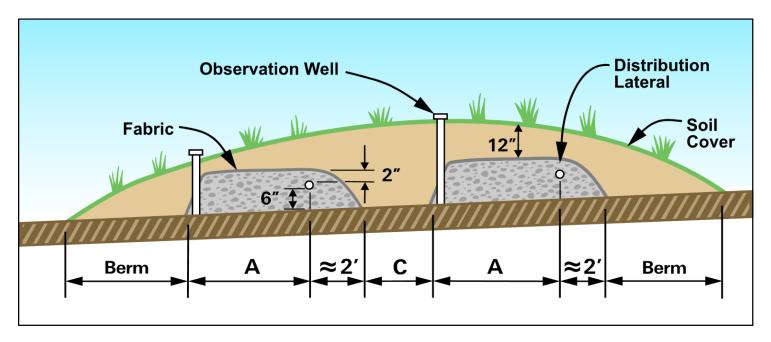

If more, one lateral is located 2 ft down slope as previously, and the others are down slope of the upper lateral, and up slope of the midpoint of the absorption area width.

	mber of Laterals ption area widths
Width (ft)	# laterals
< 7	1
≥7 and ≤ 15	2

Number and Placement of Laterals

Sites on slopes between 0-4%

If only one effluent distribution pipe, the lateral is in the center of the absorption area.


If more, the laterals are equally spaced apart.

	mber of Laterals ption area widths
Width (ft)	# laterals
< 7	1
≥7 and ≤ 15	2

Split Design

• A professional engineer will be required to design the system when multiple At-grade Absorption Areas (ie. split absorption areas) are necessary.

Construction Procedures

- Criteria to determine the moisture content of the soil.
- Compaction of the soil shall be avoided.
- Placement of the aggregate.
- Specifications for vehicular traffic.
- Scarification of the surface soil.
- Install a minimum of two observation pipes.

Planning, Permitting, and O&M

- Section VI. Sewage Facility Planning
- Section VII. Permitting Requirements.
- For SLZ At-grade Absorption Area, a primary and replacement absorption areas will be sited for each lot and should be protected by deed restriction
- A detailed section in the TGD (Section VIII) is dedicated to the Operation and Maintenance of the at-grade systems.

Pressure Distribution Network

- The At-grade TGD provides for alternate pressure distribution
- TGD provides detail in Appendix B based on USEPA's Design Manual (1980).
- What is Different?
 - Center feed manifold;
 - Lateral should end 6"-12" from the end of absorption area;
 - No required minimum hole diameter, only recommended; except for primary effluent (1/4")
 - No required hole spacing; recommended area per hole is 6ft²/hole;
 - Equilateral triangle placement of hole between adjacent laterals;
 - Lateral diameter varies with diameter/spacing hole and lateral length.

Thank you.

Annamaria Ether De Sanctis Municipal Facilities Division andesancti@pa.gov 717-787-0129

					2	2001)								
				Loading Rate,			H	ydraulic L	iner Loadir	ng Rate, gal	l/ft/d			
Soil Chara	cteristics		Infiltration] gal/ft²/d	Slope 0-	4%		Slope 5-9)%	Slope 10	Slope 10-15%				
ſexture	Structure		CBOD ₅	CBOD ₅	Infiltrat	ion Distan	ce, Inch	Infiltrati	on Distance	Infiltrat	Infiltration Distance, Inc			
			25-125mg/l	0-25mg/l	10-12	12-24	> 24	10-12	12-24	> 24	10-12	12-24	> 24	
	Shape	Grade	TSS	TSS										
	-		30-80 mg/l	0-30 mg/l										
COS, S, COS, LS		0SG	0.8	1.6	4.0	5.0	6.0	5.0	6.0	7.0	6.0	7.0	8.0	
S, VFS, FS, VFS		0SG	0.4	1.0	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	
		0M	0.2	0.6	3.0	3.5	4.0	3.6	4.1	4.6	5.0	6.0	7.0	
	DV.	1	0.2	0.5	3.0	3.5	4.0	3.6	4.1	4.6	4.0	5.0	6.0	
COSL, SL	PL	2, 3												
	PR/BK/G	1	0.4	0.7	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	
	R	2, 3	0.6	1.0	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	
		0M	0.2	0.5	2.0	2.3	2.6	2.4	2.7	3.0	2.7	3.2	3.7	
SL,	PL	1, 2, 3												
FSL	PR/BK/G	1	0.2	0.6	3.0	3.5	4.0	3.3	3.8	4.3	3.6	4.1	4.6	
	R	2, 3	0.4	0.8	3.3	3.8	4.3	3.6	4.1	4.6	3.9	4.4	<mark>4.9</mark>	
		0M	0.2	0.5	2.0	2.3	2.6	2.4	2.7	3.0	2.7	3.2	3.7	
	PL	1, 2, 3												
_	PR/BK/G	1	0.4	0.6	3.0	3.5	4.0	3.3	3.8	4.3	3.6	4.1	4.6	
	R	2, 3	0.6	0.8	3.3	3.8	4.3	3.6	4.1	4.6	3.9	4.4	<mark>4.9</mark>	
	-	0M	0.0	0.2	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	
IL	PL	1, 2, 3												
	PR/BK/G	1	0.4	0.6	2.4	2.7	3.0	2.7	3.0	3.3	3.0	3.5	4.0	
	R	2, 3	0.6	0.8	2.7	3.0	3.0	3.0	3.5	4.0	3.3	3.8	4.3	
		0M												
CL, CL,	PL	1, 2, 3												
SICL	PR/BK/G	1	0.2	0.3	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	
	R	2,3	0.4	0.6	2.4	2.9	3.4	2.7	3.0	3.3	3.0	3.5	4.0	
		0M												
, ,	PL	1, 2, 3												
SIC	PR/BK/G	1												
	R	2, 3	0.2 Coarse Sand; COSI	0.3	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	

Coarse Sand; LFS = Loamy Fine Sand; LVFS = Loamy Very Fine Sand; S = Sand; SC = Sandy Clay; SCL = Sandy Clay; SIC = Silty Clay; SICL = Silty Clay


Site Ado	dress:									Soil r	natch	es the	Series	s in the	Soil Su	rvey: `	(/ N	Date:					
										Land	Form							Slope:					
										Land	Use:							Lim	niting	Zone l	nform	ation	
Municip	ality /	County	<i>'</i> :							Tem	peratu	ıre (°l	F / °C):	:				Depth:					
Describ	ed By:									Weat	ther:							Type:					
	Н	lorizon			Mo	oist	Color	·(Hue	, Valu	ie <i>,</i> Ch	roma)		Tex	ture	S	tructu	re	Consiste	ence	(Comme	ents	
Master	Во	undary	(inche	es)	Matui		Conc	entra	tions	De	pletic	ons			Crede	C:===	Turne	Ruptu	re	Roots,	Seeps	, Stain	ing,
sub	From	То	Dist	Торо	Matri	х	Abn	Size	Cont	Abn	Size	Cont	CFIVI	USDA	Grade	Size	Туре	Resista	nce		Artifa		
	0																						
	0																						
			•	(-		-									N.		Com	noni	nedí	ım
Bt1	18	26	A	S	10YR 4	f/6	1						CH	SíL	3	\mathcal{M}	АВК	fí			root	S	
D LO	0.0	~ ~	0				7.5	YRE	5/6	10	YR 6	»/2								Few (Large	ROO	ts,
Bt2	26	38	С		10YR 4	-/6	м	м	F	С	co	Þ	VCH	SÍCL	2	Μ	АВК	vfi	•	MV	n staí	níng)
Directio	ons to th	ne Site	:																				
GPS coo	ordinate	es for tl	he Site	:									GPS co	oordina	tes for	the Te	st Pit:						

Tree Stump

Boulders

Typical Residential Wastewater

APPENDIX C: CONSTITUENT MASS LOADINGS AND CONCENTRATIONS IN TYPICAL

RESIDENTIAL WASTEWATER TABLE

This table has been adapted after USEPA (2002); data are based on typical residential dwelling equipped with standard water-using fixtures and appliances.

Constituent	Mass loading (grams/person/day)	Concentration A (mg/l)
Total solids (TS)	115-200	500-880
Volatile solids	65-85	280-375
Total suspended solids (TSS)	35-75	155-330
Volatile suspended solids	25-60	110-265
5-day biochemical oxygen demand (BOD ₅)	35-65	155-286
Chemical oxygen demands (COD)	115-150	500-660
Total nitrogen (TN)	6-17	26-75
Ammonium (NH ₄)	1-3	4-13
Nitrites and nitrates (NO ₂ -N, NO ₃ -N)	<1	<1
Total phosphorous (TP) ^C	1-2	6-12
Fats, oils, and grease	12-18	70-105
Volatile organic compound (VOC)	0.02-0.07	0.1-0.3
Surfactants	2-4	9-18
Total coliforms (TC) in MPN/100 ml	-	10 ⁸ -10 ¹⁰
Fecal coliforms (FC) in MPN/100 ml	-	10 ⁶ -10 ⁸
^A Milligram per liter, assumed water use of 60 gal/person/day		

