

June 7, 2018

<u>Via Electronic Mail</u> Mr. Scott R. Williamson Program Manager Waterways and Wetlands Program Department of Environmental Protectionl South-central Regional Office 909 Elmerton Avenue Harrisburg, PA 17110

Re: Hydrogeological Re-evaluation Report Piney Creek Crossing Horizontal Directional Drill Location (S2-0142) Permit No. E07-459 Woodbury Township, Blair County; Pennsylvania

Dear Mr. Williamson:

In compliance with the Corrected Stipulated Order dated August 10, 2017 (Order) a Reevaluation Report on the above-referenced horizontal directional drill ("HDD") was submitted to the Department on December 28, 2017. The Department requested more information and a revised Reevaluation Report by letter dated February 1, 2018, which Sunoco Pipeline, L.P. (SPLP) provided on March 8, 2018. In a letter dated April 19, 2018, the Department requested further information. Please accept this letter as a response. Your requests are bolded below followed by the response.

1. Sunoco has proposed to use Drilplex as a component of this HDD. Drilplex is not an approved horizontal directional drilling fluid additive listed on the Department's web site. If Sunoco intends to use a drilling fluid additive for this HDD, it must use an approved drilling fluid additive listed on the Department's web site. Please revise the re-evaluation to address this issue.

In the March 8, 2018 response, SPLP proposed the use of DrilPlexTM, a horizontal directional drilling (HDD) additive certified for conformance with NSF/ANSI Standard 60, to mitigate the potential for HDD activities to impact private water supplies during the pilot phase of HDD S2-0142 Piney Creek Crossing. In subsequent conversations, the Department indicated that it would not approve use of DrilPlexTM as an HDD additive. Accordingly, SPLP informed the Department that it no longer intends to use DrilPlexTM at HDD S2-0142. The Department has indicated in separate discussions that it is not necessary to revise the Reevaluation Report to reflect this decision.

2. With respect to the annular pressure and formation pressure capacity curves (APC/FPC) and narrative discussion used to produce the curves that was requested in the DEP's February 1, 2018 letter for this HDD Re-evaluation, DEP offers the following summary and requests the following information:

Scott R. Williamson June 7, 2018 Page 2

• There are many discrepancies between the stationing and elevations on the revised plan/profile maps and the APC/FPC curves and soil profiles, and even among the various tables used to create each curve.

To assist in understanding, the new APC curves attached to this response have additional labeling such that the data being presented can be readily correlated to the HDD profile.

• It appears that DPS underestimated the soil thickness, thereby overestimating the bedrock thickness, as shown by differences between the soil thickness used in the FPC curve calculations and what was determined from the geophysical surveys.

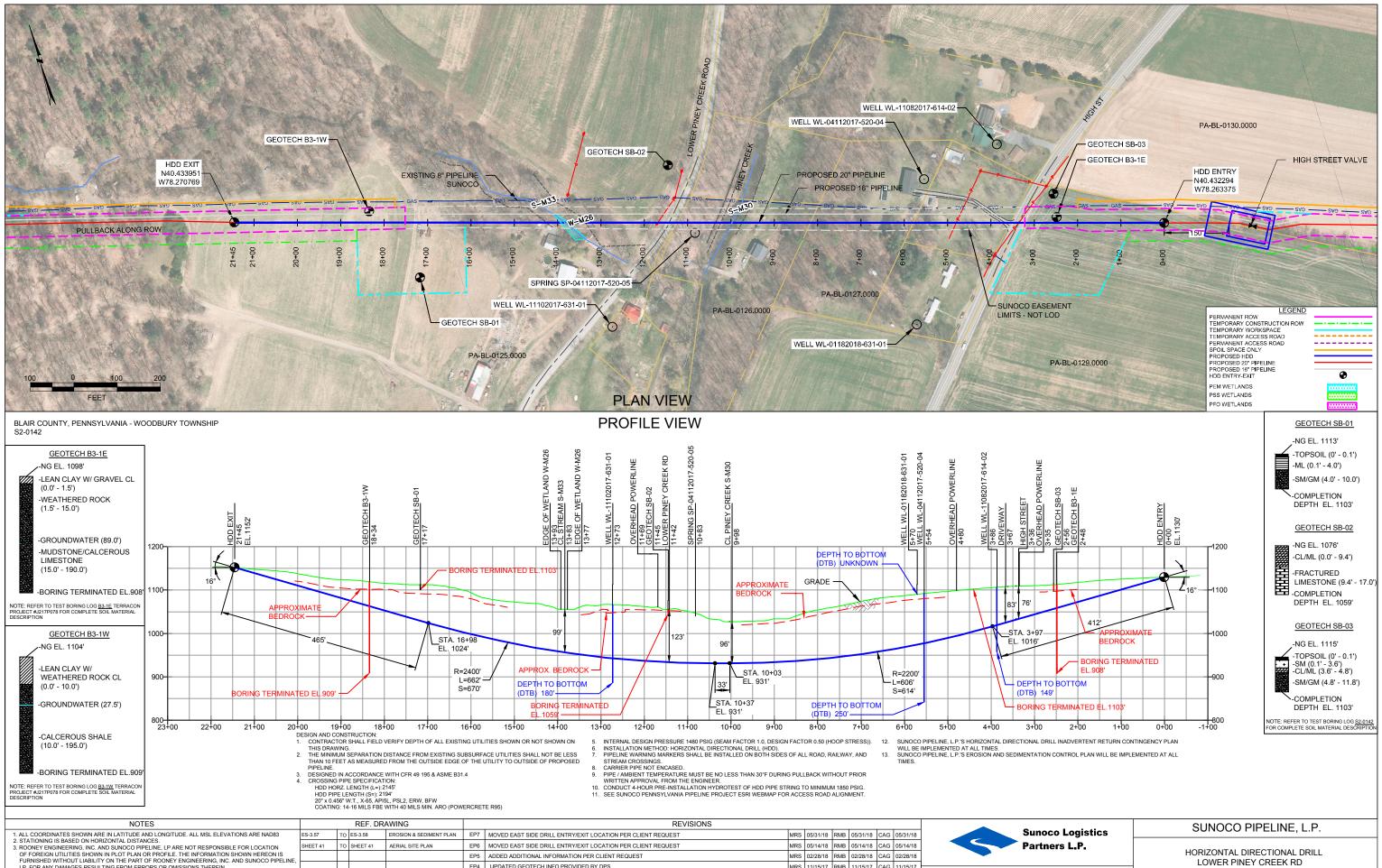
This data has been checked and clarified.

• It appears that DPS calculated a drill path where the annular pressure clearly exceeds the total stress of the overburden at places along the drill path.

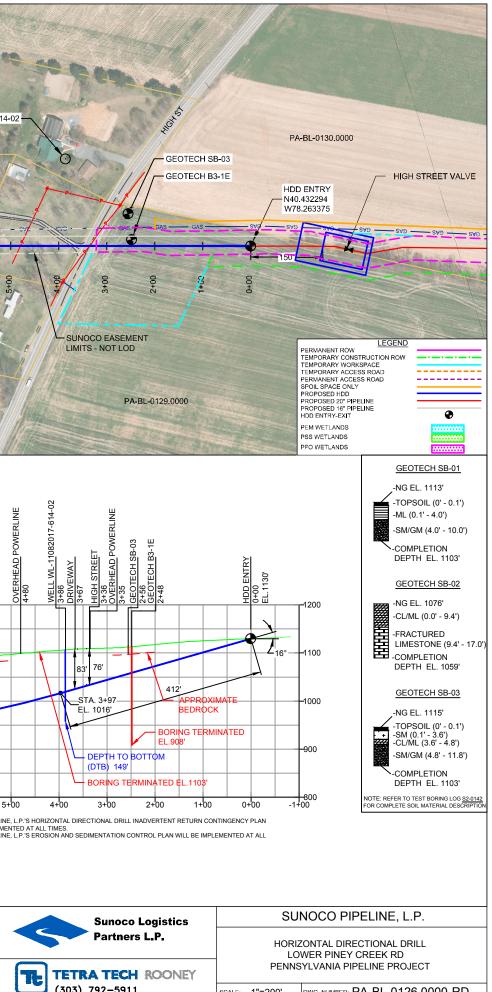
The APC calculations are not used to calculate or establish an HDD profile in advance, rather the data to perform this analysis is obtained from the design profile and geotechnical data, and then adjustments are made post analysis, as SPLP has done, and as is reflected on the new HDD profiles attached to this response.

• DEP requests that SPLP re-examine the above, revise the re-evaluation accordingly, including the new APC/FPC curves and as appropriate, new drill paths/profile.

This has been done. Newly revised profiles and the APC analysis for these profiles are provided as attachments to this letter.

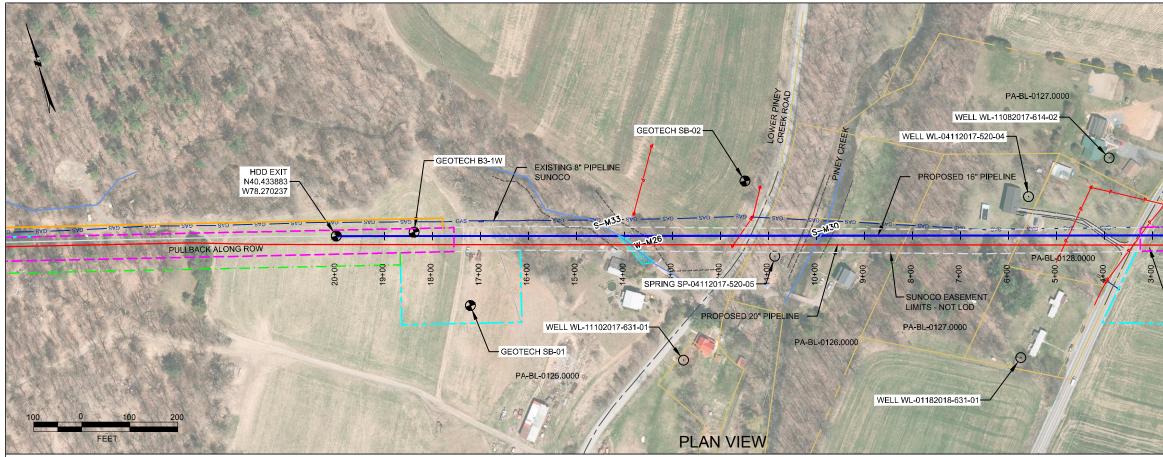

SPLP submits that we have been, and are, in complete compliance with the terms and requirements of analysis of the Order, as agreed to by the Department, and that no further analysis is required for the Department to consent to the start of this HDD. We therefore request that the Department approve the Reevaluation Report for the Piney Creek Horizontal Directional Drills (S2-0142) as soon as possible.

Sincerely,

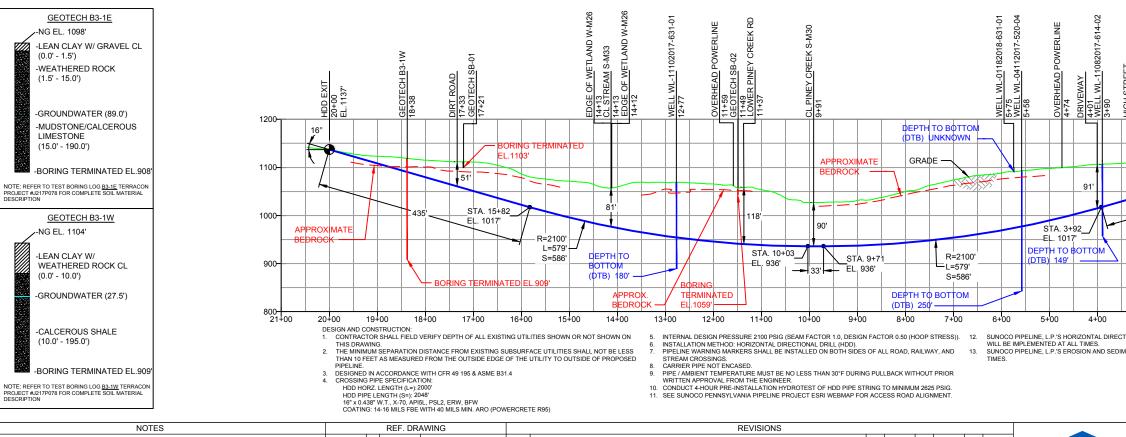

Larry J. Gremminger, CWB Geotechnical Evaluation Leader Mariner II Pipeline Project

Attachments: 1-HDD Plan and Profiles 2-Annular Pressure Calculations ATTACHMENT 1

HORIZONTAL DIRECTION DRILL PLAN AND PROFILES (REVISED)

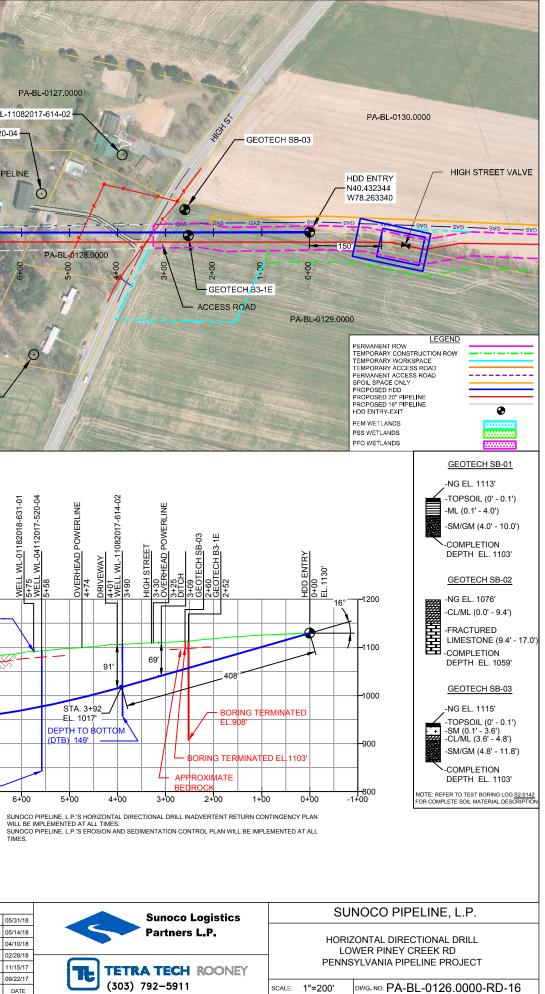


NOTES	REF. DRAWING				REVISIONS									
1. ALL COORDINATES SHOWN ARE IN LATITUDE AND LONGITUDE. ALL MSL ELEVATIONS ARE NAD83	ES-3.57	TO ES-3.58	EROSION & SEDIMENT PLAN	EP7	MOVED EAST SIDE DRILL ENTRY/EXIT LOCATION PER CLIENT REQUEST	MRS	05/31/	/18 F	RMB	05/31/18	CAG	05/31/18		S
2. STATIONING IS BASED ON HORIZONTAL DISTANCES. 3. ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE, LP ARE NOT RESPONSIBLE FOR LOCATION	SHEET 41	TO SHEET 41	AERIAL SITE PLAN	EP6	MOVED EAST SIDE DRILL ENTRY/EXIT LOCATION PER CLIENT REQUEST	MRS	05/14/	/18 F	RMB	05/14/18	CAG	05/14/18		Ρ
OF FOREIGN UTILITIES SHOWN IN PLOT PLAN OR PROFILE. THE INFORMATION SHOWN HEREON IS FURNISHED WITHOUT LIABILITY ON THE PART OF ROONEY ENGINEERING. INC. AND SUNOCO PIPELINE.				EP5	ADDED ADDITIONAL INFORMATION PER CLIENT REQUEST	MRS	, 02/28/	/18 F	RMB	02/28/18	CAG	02/28/18		
LP, FOR ANY DAMAGES RESULTING FROM ERRORS OR OMISSIONS THEREIN.	·			EP4	UPDATED GEOTECH INFO PROVIDED BY DPS	MRS	\$ 11/15/	/17 F	₹МВ	11/15/17	CAG	11/15/17		
 CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES. CONTACT ONE CALL AT 811 PRIOR TO DIGGING. 				EP3	MOVED DRILL ENTRY/EXIT LOCATION - DESIGN PER MICHELS	MRS	s 09/22/	/17 F	RMB	09/22/17	CAG	09/22/17	TETD	Λ.
5. SUNOCO EMERGENCY HOTLINE NUMBER IS #1-800-786-7440.				EP2	REVISED PER PADEP COMMENTS RECEIVED 09-06-16	DLM	09/30/	/16 F	RMB	09/30/16	AAW	09/30/16		_
	DWG NO	DWG NO	DESCRIPTION	NO.	DESCRIPTION	BY	DATE	E (СНК	DATE	APP	DATE	(303) 7	79



TECH	ROONEY
92-5911	

DWG. NUMBER: PA-BL-0126.0000-RD SCALE: 1"=200'



BLAIR COUNTY, PENNSYLVANIA - WOODBURY TOWNSHIP S2-0142-16

PROFILE VIEW

NOTES		RE	EF. DRA	AWING		REVISIONS				_				
1. ALL COORDINATES SHOWN ARE IN LATITUDE AND LONGITUDE. ALL MSL ELEVATIONS ARE NAD83	ES-3.57	TO ES-3.	58	EROSION & SEDIMENT PLAN	EP8	MOVED EAST SIDE DRILL ENTRY/EXIT LOCATION PER CLIENT REQUEST	MRS	05/31/18	RMB	05/31/18	3 CAG	05/31/18		
2. STATIONING IS BASED ON HORIZONTAL DISTANCES. 3. ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE, LP ARE NOT RESPONSIBLE FOR LOCATION	SHEET 41	TO SHEE	ET 41	AERIAL SITE PLAN	EP7	MOVED EAST SIDE DRILL ENTRY/EXIT LOCATION PER CLIENT REQUEST	MRS	05/14/18	RMB	05/14/18	B CAG	05/14/18		F 🗸
OF FOREIGN UTILITIES SHOWN IN PLOT PLAN OR PROFILE. THE INFORMATION SHOWN HEREON IS FURNISHED WITHOUT LIABILITY ON THE PART OF ROONEY ENGINEERING, INC. AND SUNOCO PIPELINE.					EP6	UPDATED NOTE 5 AND 10 PER INCREASED 16" MOP	MRS	04/10/18	RMB	04/10/18	B CAG	04/10/18		
LP, FOR ANY DAMAGES RESULTING FROM ERRORS OR OMISSIONS THEREIN.					EP5	ADDED ADDITIONAL INFORMATION PER CLIENT REQUEST	MRS	02/28/18	RMB	02/28/18	B CAG	02/28/18		
 CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES. CONTACT ONE CALL AT 811 PRIOR TO DIGGING. 					EP4	UPDATED GEOTECH INFO PROVIDED BY DPS	MRS	11/15/17	RMB	11/15/17	CAG	11/15/17		ETRA
5. SUNOCO EMERGENCY HOTLINE NUMBER IS #1-800-786-7440.					EP3	MOVED DRILL ENTRY/EXIT LOCATION - DESIGN PER MICHELS	MRS	09/22/17	RMB	09/22/17	CAG	09/22/17		
	DWG NO	DV	VG NO	DESCRIPTION	NO.	DESCRIPTION	BY	DATE	СНК	DATE	APP	DATE		303) 79
													1	

ATTACHMENT 2

ANNULAR PRESSURE CALCULATIONS (REVISED)

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

- PROJECT: Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania
- CROSSING: LOWER PINEY CREEK HDD #S2-0142 20-INCH STEEL PIPE

ISSUE: APC/FPC DESIGN

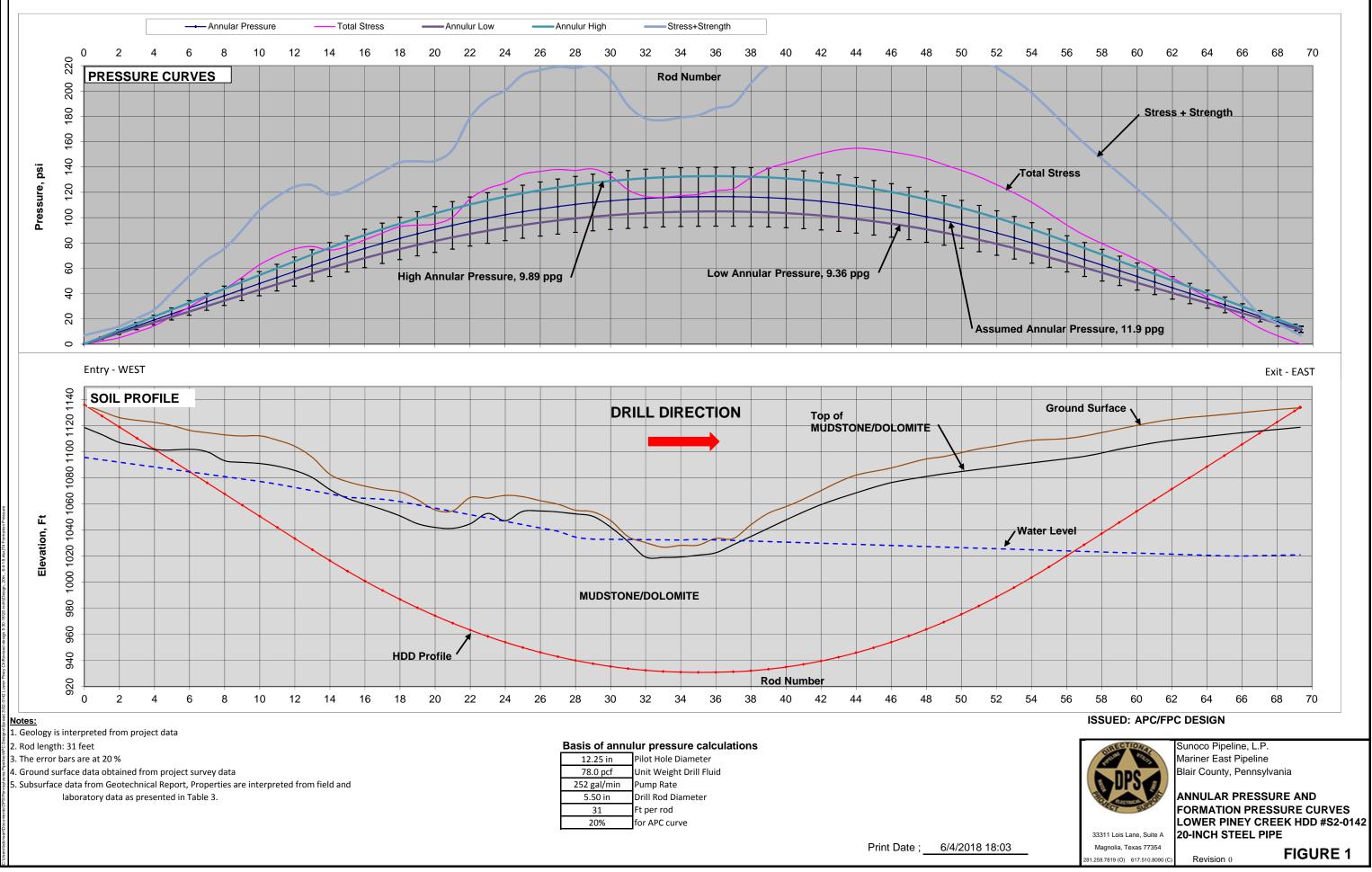

Contents:

Figure 1 - Annular Pressure and Formation Pressure Capacity Curves
Table 1 - Design Summary, Assumptions, Conditions
Table 2 - Design Drill Path Calculation
Table 3 - Estimated Annular Pressure Curve Example Calculation
Table 4 - Estimated Formation Pressure Curve Example Calculation
DWG. NO: PA-BL-0126.0000-RD Latest Revision Dated 5/14/18

- Prepared For: Sunoco Logistics Partners L.P. 525 Fritztown Road Sinking Spring, PA 19608 855-430-4491
- Prepared By: Directional Project Support 33311 Lois Lane, Suite A Magnolia, Texas 77354 281.259.7819 (O) 617.510.8090 (C) B. Dorwart

Project No:0Print Date:4-Jun-2018

Revision	ID	DESCRIPTION	BY
6/4/2018	0	APC/FPC Design	BCD

TABLE 1 DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 20-INCH STEEL PIPE

ltem	Comment/Exception/Assumption
1	PROJECT DATA AND SUMMARY: Project data provided as a technical basis for this submittal included four test borings, a seismic survey, and a resistivity survey. No laboratory data regarding moisture content, unit weight, or strength of the soil or rock has been provided. This information has been assumed for these calculations. Soil property assumptions are shown in the sample calculations on Table 4.
2	DRILL FLUID LOSS DURING CONSTRUCTION: Drill fluid loss during construction typically occurs as a result of one or a combination of the following: LEAKAGE, HYDRAULIC JACKING, HYDRAULIC FRACTURING. In all cases, the drill fluid finds an alternative path different than the design drill path that requires a lower pressure to move the drill fluid. Leakage occurs when an unplanned continuous pathway intersects the drill path. Unplanned pathways can develop as a result of drilling operations or may occur around a manmade feature such as piles or may be a naturally occurring feature such as a solution features or joints in the rock. Hydraulic jacking occurs when there are discontinuous cracks in the formation, such as along rock joints or along a confined relatively high permeability zone, into which the drill fluid can flow and exert hydraulic pressure because of the confinement. When the drill fluid pressure exceeds the restraining pressure, the sides of the confinement are hydraulically jacked apart. The enlarged opening allows more fluid volume capacity and continues to develop as long as the pressure remains. Hydraulic fracturing occurs when the drill fluid pressure exceeds the static stress state in the formation plus the strength of the formation material. The result is a fracturing of the formation is fractured that will continue to grow by hydraulic jacking and fracturing often build pressure in the formation strength increases. Note that hydraulic jacking and fracturing often build pressure in the formation such that during drill rod changes, the drill fluid discharges from the decoupled down hole drill rods until the built up pressure in the formation is reduced. Drill fluid 'loss' during the drilling advance is the source of this return fluid. Continuation of this situation can result in fluid release to the surface, into structures, or movement of adjacent structures such as buildings, highways, and bridges.

Item	Comment/Exception/Assumption
3	ANNULAR PRESSURE CALCULATION: Annular Pressure at any point along a drill path is calculated as the sum of the elevation and dynamic heads. Pressure from elevation head is the difference in feet between elevation of the entry pit drill fluid and the measurement elevation times the drill fluid density in pcf divided by 144 to convert to psi. Dynamic head is the pressure required to make the drill fluid flow along the drill path from the measurement location to the drill entry location. Drill fluids are Non-Newtonian fluids thus pressure must be modeled with specific fluid properties based on assumptions for drill fluid rheological properties. Field rheological properties for these calculations need to be assumed by the design engineer based on experience. Assumptions should be verified by field values that may occur during operations, not on minimum or maximum capacity of a drill fluid. Field data can change from many field influences. Properties of various bentonitic products vary significantly. Additionally, subsurface conditions and cleaning system efficiency will have significant impacts on drill fluid properties. The design Annular Pressure Curve is a planning and design tool for the engineer thus the design curves are not a tool to be applied in the field without correction to account for actual field properties. Field values of drill fluid properties should be expected to change dynamically during even short driling lengths as different subsurface materials may require different drill fluid properties and both subsurface conditions and the contractor ability to clean the drill fluid can change rapidy. Two methods are used in these calculations to calculate Annular pressure. METHOD B uses a hydraulic model for viscous flow in an annulus and is described in the HDD Good Practices Guidelines; a book available through the NASTT. Both methods are accepted in the industry. The annular pressure curves shown in Figure 1 plot the API-13D data by drill rod along the drill path. Three annular pressure curves shown o
4	CALCULATION OF FORMATION PRESSURE: The Formation Pressure capacity is calculated by models. A model used to approximate the complexities of pressure in the subsurface caused by materials that are not uniform thus contain wide variation in both geometry and properties. A model necessary to simplify the conditions yet still provide some science to subsurface complexity. There are presently four models that may be applied to approximate subsurface conditions. Each model provides reasonable values only within the range of the model assumptions and field conditions. Engineering judgement and understanding of the model must be applied during selection of the most appropriate model for a specific set of subsurface conditions. The four models provide four alternative calculation methods: Total Stress, Cavity Expansion (Delft Equation), Total Stress plus Strength, and the Queens Equation. Input data assumptions and range of available properties have been shown to be significant to the results from all four models. Significant experience is required in determination of these input values and in the interpretation of the results. Additionally significant experience is necessary to determine if drained or undrained properties should be used in the analyses. In general, most fine grained materials, when exposed to HDD excavation rates, are best represented by undrained properties. Only highly permeable for mater pressure during the drilling excavation process. Of note is that drained conditions typically provide higher formation pressure capacity than when using undrained properties. Thus these methods may not be conservative and can lead to overly optimistic expectations of Formation Pressure Capacity.

ltem	Comment/Exception/Assumption
4a	Total Stress Method is based strictly on the dead weight of the overlying material above the drill path thus excludes any potential formation material strength. This method is a traditional approach to establish pressure limits to prevent hydraulic jacking along rock joints and other partings while grouting rock. The rule of thumb is apply no more than 1 psi per foot of rock during grout injection to prevent hydraulic jacking. This method is considered a reasonable approximation for limiting formation pressure in rock or very dense soils or weathered rock. Note that total stress and in particular the orientation of principal stress in the ground rotates with surface geometry. Fracturing of the ground always is orientated parallel to the principal stress at that point in the ground. Therefore, in areas of high topographic relief and where the drill path approaches a topographic surface within about 5 times the depth below the entry, then the total stress must be adjusted for both magnitude and direction as the principal stress will be rotated in either soil or rock.
4b	Total Stress plus strength method is a traditional Mohr-Coulomb material failure approach to include insitu formation strength. Experience from the tunneling industry indicates that the strength of the materials needs to include various factors to account for an underground excavation geometry, soil/rock properties, and excavation to ground interaction such as results from trenchless constructions. An acceptable approach has been developed by Terzaghi and later refined by Stein and others. However, these modifications apply only to underbalanced drilling where external pressure exceeds internal pressure. For most HDD constructions, the pressure is applied outward by the annular pressure thus applying extension tension and shear properties for strength calculations. Calculations in this analyses only apply simple sample shear strength as defined by the Mohr-Coulomb relation.
4c	Cavity Expansion is modeled either by the Delft or Queens equations. These equations add the material strength assuming failure is by cavity expansion stresses and geometry. The cavity expansion model does not provide assessment of fluid loss by leakage or hydraulic jacking. Experience with the Delft model indicates unconservative predictions and a correction factor should be applied to determine a realistic Pmax prior to application of a safety factor. This correction factor is in addition to the correction factors of 1.5 and 2.0 for sand and clay materials already included in the equation. The Queens equation addresses the shortcomings of the Delft equation by introducing the Ko factor which does vary in soil and rock as opposed to the Delft equation holding Ko as a constant. The result is expected to improve predictions for soils such that correction factors do not need to be applied to determine Pmax before application of safety factors. The cavity expansion relations are not generally appropriate for rock as fluid loss is typically by other processes such as leakage and/or hydraulic jacking.
5	TECHNICAL APPROACH DRILL FLUID MANAGEMENT: Table 2 provides the proposed drill path for the interpreted geologic profile assumed for the crossing. Table 3 provides the calculated Annular Pressure and Table 4 the calculated Formation Pressure Capacity. Calculations are provided for each drill rod along the design drill path. The results are summarized on Figure 1. Assessment is based on comparison of the Formation Pressure Capacity to the Annular Pressure. This relation provides a tool to assess the risk of hydraulic fracturing of a formation or hydraulic jacking along pathways within a formation caused by Annular Pressure exceeding the Formation Capacity Pressure. When the Annular Pressure is higher than the Formation Pressure Capacity, then the risk of drill fluid loss by jacking or hydrofracturing is considered high for the design drill path and drill direction. Mitigation considerations may include: reversing the drill direction, adjusting the depth of the drill path in problem areas, or reduction of drill fluid pressure by methods such as reduction of drill fluid weight, use of drill foam, reduction in the elevation head pressure which may be accomplished by pumping the drill fluid elevation in the hole down to a lower elevation.

Item	Comment/Exception/Assumption
6	Limitations: These calculations are for HDD planning purposes only. It should be expected that the drill process will generate new data that may require adjustments to the assumed conditions used for the basis of these calculations. Adjustments to the assumed subsurface conditions may require corresponding adjustments to the various HDD drill parameters or tools to optimize production. Typical parameters that are adjusted include: drill fluid pump rate, penetration rate, drill fluid properties, along with bit dimensions and types or other tooling.

	CALCUL	ATIONS												
Entry Station	21+00.00	FT						1						
Exit Station	0+00.00	FT												
Entry and Exit Design C	oordinates & E	levations (Ft) (Note	2)	Wate	er Surface Elev.	1030.00 ft								
	East	North	Elevation		Mudline Elev.	1027.60 ft								
	1823681.8220	401324.2570	1,136.00 ft		centerline Elev.	931.00 ft								
Horizontal Curve Pl Exit	1824687.6510 1825693.4800	401022.9215 400721.5860	1 124 00 #	SUMMARY HORIZO	NTAL CURVE	CALCULATIONS Start			Er	h				
Depth to Mudline		Clearance Depth =	1,134.00 ft 96.60 ft		Station	Easting	Northing	Station	Easting	Northing	Azimuth	Length	Radius	Angle
	Length at ties =	2099.9953 ft	30.00 H	Tangent	21+00.00		0	10+50.00	1824687.6510	401022.9215	E 343.32235 N	1050.00	Itaulus	Aligie
	rdinate Length =	2099.9953 ft		Curve	10+50.00	1824687.6510		10+50.00	1824687.6510	401022.9215	E 343.32235 N	0.00	0.00	0.000 deg
		RIZONTAL CURVE		Tangent	10+50.00	1824687.6510		+.00	1825693.4800	400721.5860	E 343.32235 N	1050.00		
	HORIZ	ONTAL PLA	N CALCU	ILATIONS (F	T)					Pull Geome	etry			
Entry Tangent Segment		Horizontal Curve Se		Exit Tangent Segme			Pipe Entry			ntry location into	the hole: Entry/E	xit		
Plan Length, ft.	1050.00	Input Radius, ft.	0.00	Plan Length, ft.	1050.00			Elevatio		Vertical A	ngle, (-) = Clock	wise	Path	Curve
Entry Azimuth, deg.5	E 343.32235 N	Curve, deg	0.000 deg.	Exit Azimuth, deg.5	E 343.32235 N		Segment	Start	End	Start	End	∆ Angle	Length	Radius
Entry Azimuth, rad. ⁵	5.99211	Curve, rad	0.00000	Exit Azimuth, rad.5	5.99211		Entry Tangent	1134.00 ft	1016.22 ft	16.00 deg	16.00 deg	0.00 deg	427.29 ft	0.00 ft
		Calculate PTH		Calculate Exit			Entry Curve	1016.22 ft	931.00 ft	16.00 deg	0.00 deg	-16.00 deg	614.36 ft	2200.00 ft
Calculate PCH		Chord Length, ft.	0.00	Easting	1825693.4800	Check	Bottom Tangent	931.00 ft	931.00 ft	0.00 deg	0.00 deg	0.00 deg	30.64 ft	0.00 ft
PCH Easting	1824687.6510	Arc Length, ft.	0.00	Northing	400721.5860	Delta	Exit Curve	931.00 ft	1023.97 ft	0.00 deg	-16.00 deg	-16.00 deg	670.21 ft	2400.00 ft
PCH Northing	401022.9215	Chord Azimuth, deg	343.3224			0.0000	Exit Tangent	1023.97 ft	1136.00 ft	-16.00 deg	-16.00 deg	0.00 deg	406.43 ft	0.00 ft
		PI Easting =	1825143.4940			0.0000					Т	otal Check =	2148.92 ft	OK
		PI Northing =	400886.3559			OK CALC		Compound Curve A		Usein Dien				
		PTH Easting = PTH Northing =	1824687.6510			Exit Station		Entry	Vert. Plan 1052.22	Horiz. Plan 1050.00	Vee Heriz	< Exit V(Tan+C	200	
		PTH Northing =	401022.9215			+.00		Entry	1052.22	1050.00		Entry V(Tan+C		
Cum Plan Length	1050.00	Cum Plan Length	1050.00	Cum Plan Length	2099.995296	OK STA		EXIL	1017.13	1030.00	NU, HUHZ >		Juive)	
g.		g												
VERTICLE PA	TH DESIG		TIONS (F	Т)						Γ	Summary of D	orill Calcula	ations	
Entry Tangent Segment		Entry Vert. Curve Se		•) Middle Tangent Seg	mont ?	Exit Vert. Curve S	Sogmont A	Exit Tangent Segme	ont 5	-		Exit Elevation		-2.00 ft
Entry Angle	-16.000 deg.	Vertical Radius	2400.00	Rod Length	30.64236	Radius	2200.00	Exit Elevation	1134.00			mum Design I		931.00 ft
Entry Angle, rad.	-0.2793 rad	Vert. Curve, deg.	16.000 deg.	Inclined Bottom Tan	NO	Design Exit Angle	16.000 deg.	EXILENTIALION	1104.00			nvert Depth b		
Rod/Path Length	406.43	Vert. Curve, rad.	0.2793 rad			Vert. Curve, rad.	0.2793 rad					vert Depth bel		205.00 ft
Calculate Vertical PCV		Calculate Vertical P		Calculate Vertical P	cv	Calculate Vertica		Calculate Exit				•	h Length =	2,148.92 ft
Plan Length	390.69	Plan Length	661.53	Dian Longth	30.64236328	Vert. Curve, deg		Plan Length	410.73			Pla		2,100.00 ft
Doth Longth				Plan Length	30.04230320	ven. Guive, deg	16.000 deg.	Fian Lengui	410.75				in Length =	
Path Length	406.43	Arc Path Length	670.21	Plan Length Path Length	30.64236326	Vert. Curve, deg Vert. Curve, rad.	16.000 deg. 0.27925268	Path Length	410.73		Minimum Pla			
Tangent Depth	406.43 -112.03	•		•			•	•			Minimum Pla	n Length (No		2,069.35 ft
		Arc Path Length	670.21	Path Length	30.64	Vert. Curve, rad.	0.27925268 606.40	Path Length	427.29		Minimum Pla	n Length (No Ent	Tangent) =	2,069.35 ft
Tangent Depth	-112.03	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation	670.21 -92.97 931.00 931.00	Path Length End Elevation Rise/drop	30.64 931.00 0.00	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation	0.27925268 606.40 614.36 931.00	Path Length Elevation	427.29 1134.00		Cor	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth	-112.03 1023.97	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle	670.21 -92.97 931.00 931.00 0.000 deg.	Path Length End Elevation Rise/drop End Vert Angle	30.64 931.00 0.00 0.000 deg.	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation	0.27925268 606.40 614.36 931.00 1016.22	Path Length Elevation Rise/drop	427.29 1134.00 117.78		Cor	n Length (No Ent E	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg
Tangent Depth End Elevation	-112.03 1023.97	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad	670.21 -92.97 931.00 931.00 0.000 deg.	Path Length End Elevation Rise/drop	30.64 931.00 0.00 0.000 deg.	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation	0.27925268 606.40 614.36 931.00 1016.22	Path Length Elevation	427.29 1134.00		Cor Co	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation	-112.03 1023.97 CURVE CALCUL	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad	Path Length End Elevation Rise/drop End Vert Angle End Vert Angle, rad	30.64 931.00 0.00 0.000 deg. 0.0000 rad	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22	Path Length Elevation Rise/drop Prop. Plan Length	427.29 1134.00 117.78 2099.995296	Stationin	Cor Co g Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station	-112.03 1023.97 CURVE CALCUL 21+00.00	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle ATIONS Start Station	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad 17+09.31	Path Length End Elevation Rise/drop End Vert Angle End Vert Angle, rad	30.64 931.00 0.00 0.000 deg. 0.0000 rad	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13	Path Length Elevation Rise/drop Prop. Plan Length Start Station	427.29 1134.00 117.78 2099.995296 4+10.73	OK STAT	Cor Co g Check FIONING	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station	670.21 -92.97 931.00 931.00 0.0000 deg. 0.0000 rad 17+09.31 10+47.78	Path Length End Elevation Rise/drop End Vert Angle End Vert Angle, rad Start Station PCV Station	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station	427.29 1134.00 117.78 2099.995296 4+10.73 +.000	OK STAT Plan Leng	Cor Co g Check FIONING th Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Summary VERTICLE (Start Station PVC Station Cum Plan Length	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31 390.69	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22	Path Length End Elevation Rise/drop End Vert Angle End Vert Angle, rad Start Station PCV Station Cum Plan Length	30.64 931.00 0.000 0.0000 rad 10+47.78 10+17.13 1082.86 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296	OK STAT	Cor Co g Check FIONING th Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE of Start Station PVC Station Cum Plan Length Cum Path Length	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31 390.69 406.43	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607	OK STAT Plan Leng	Cor Co g Check FIONING th Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station Cum Plan Length	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31 390.69	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22	Path Length End Elevation Rise/drop End Vert Angle End Vert Angle, rad Start Station PCV Station Cum Plan Length	30.64 931.00 0.000 0.0000 rad 10+47.78 10+17.13 1082.86 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng	Cor Co g Check FIONING th Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE of Start Station PVC Station Cum Plan Length Cum Path Length	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31 390.69 406.43	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check FIONING th Check	n Length (No Ent E npound Curve	Tangent) = try Angle = xit Angle = e at Entry =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth	-112.03 1023.97 CURVE CALCUL 21+00.00 17+09.31 390.69 406.43 -112.03	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ArtIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCI	Cor Cd g Check rIONING th Check JLATION	n Length (No En En pound Curve ompound Curv	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth	-112.03 1023.97 2000 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+)	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ArtIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	670.21 -92.97 931.00 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Cd g Check TIONING th Check JLATION Indicates inputs	n Length (No Eni npound Curve mpound Curve	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as 2. Coordinates are in feet	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference N	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L	n Length (No En pound Curve mpound Curve mpound Curve mpound Curve s internal desig N P.	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates sinputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin	n Length (No En mpound Curve ompound Curve ompound Curve ompound Curve No ninternal desig N P. P.	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as 2. Coordinates are in feet	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L	n Length (No En mpound Curve ompound Curve ompound Curve ompound Curve No ninternal desig N P. P.	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation Start Station PVC Station Cum Plan Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78	Path Length Elevation Rise/drop Prop. Plan Length Start Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Cd g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunco Pipeline, L Mariner East Pipelii Blair County, Penn	n Length (No En mpound Curve ompound Curve ompound Curve ompound Curve No ninternal desig N P. P.	Tangent) = try Angle = xit Angle = e at Entry = ve at Exit =	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU ISSUE:	Cor Cc g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2	n Length (No En En pound Curve mpound Curve mpound Curve mound Curve mpound Curve Curve mpound Curve mpound Curve mpound Curve mpound Curve mpound C	Tangent) = try Angle = ixit Angle = e at Entry = ve at Exit = n checks	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78 ENGTH	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth EXIT	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Suncco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F	n Length (No En mpound Curve mpound Curve mpound Curve mpound Curve mpound Curve mpound Curve ne sylvania	Tangent) = try Angle = try Angle = e at Entry = ve at Exit = n checks	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78 ENGTH	Path Length Elevation Rise/drop Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth EXIT	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates status or APC/FPC DESIG Suncco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F LOWER PINEY C	n Length (No En mpound Curve ompound Curve ompound Curve ompound Curve N niternal desig N P. ne sylvania	Tangent) = try Angle = try Angle = e at Entry = ve at Exit = n checks	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth PLAN L PDW	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78 ENGTH	Path Length Elevation Rise/drop Prop. Plan Length Start Station Cum Plan Length Cum Path Length Cum Depth EXIT EXIT TAN,	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Suncco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F	n Length (No En mpound Curve ompound Curve ompound Curve ompound Curve N niternal desig N P. ne sylvania	Tangent) = try Angle = try Angle = e at Entry = ve at Exit = n checks	2,069.35 ft -16.00 deg 16.00 deg 0 ft
Tangent Depth End Elevation SUMMARY VERTICLE (Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for any Due East is defined as 2. Coordinates are in feet 3. Elevations are in feet a	-112.03 1023.97 21+00.00 17+09.31 390.69 406.43 -112.03 gles - positive (+) 0 degrees. and reference NA	Arc Path Length Curve Vert Depth End Elevation Lowest Elevation End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Depth angles are counterclo AD 83 Pennsylvania S /D 88.	670.21 -92.97 931.00 0.000 deg. 0.0000 rad 17+09.31 10+47.78 1052.22 1076.64 -205.00	Path Length End Elevation Rise/drop End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	30.64 931.00 0.000 deg. 0.0000 rad 10+47.78 10+17.13 1082.86 ft 1107.28 ft -205.00 ft	Vert. Curve, rad. Plan Length Path Arc Length Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth PLAN L PDW	0.27925268 606.40 614.36 931.00 1016.22 85.22 10+17.13 4+10.73 1689.26 1721.64 -119.78 ENGTH	Path Length Elevation Rise/drop Prop. Plan Length Start Station Cum Plan Length Cum Path Length Cum Depth EXIT EXIT TAN,	427.29 1134.00 117.78 2099.995296 4+10.73 +.000 2099.995296 2148.922607 -2.00	OK STAT Plan Leng OK CALCU	Cor Co g Check TIONING th Check JLATION Indicates status or APC/FPC DESIG Suncco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F LOWER PINEY C	n Length (No En En pound Curve pound Curve	Tangent) = try Angle = try Angle = e at Entry = ve at Exit = n checks	2,069.35 ft -16.00 deg 16.00 deg 0 ft

TABLE 3 ESTIMATED ANNULAR PRESSURE CURVE (APC) EXAMPLE CALCULATION Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 20-INCH STEEL PIPE INPUT 1. Drill path data

	Measured Distance	Elevations	Angles	Lengths	Angle Change	
Drill Entry	0.000 ft	1136	-16	Entry to PC	406.433 ft	
PC	406.433 ft			PC to PT	670.206 ft	-0.024 deg/ft
PT	1076.639 ft			Invert Tangent	30.642 ft	
PC	1107.282 ft			PC to PT	614.356 ft	0.026 deg/ft
PT	1721.638 ft			PT to Exit	427.285 ft	
Drill Exit	2148.923 ft	1134.00 ft	16		2148.923 ft	
					Length Ck	OK

2. Drill Fluid Hydraulic Assumptions

	Assumed	
Density, $\gamma_f =$	78	10.43 lb/gal
Dynamic annulus pressure $P_d =$	0.0050 psi/ft	
Drill fluid viscosity, $\mu_p =$	15 cp	
Yield point of drill fluid, YP =	30	

DD660

Avg Rod length =

Diameter of hole, $D_h =$

Drilling Pump rate, gpm =

Drill Rod Tube Diameter, D_r =

[Low	
	70	9.36 lb/gal
ĺ	0.0047 psi/ft	
	4 cp	
[16	

High	
89	11.90 lb/gal
0.0054 psi/ft	
13 ср	
5	

Max Rig Pump =	1200 gpm
Number of drill rods =	
Estimated annular pilot uphole drill fluid velocity, V_{ha} =	51.55 ft/min

4. Calculate Annular Pressure, P

3. Drill Data Assumptions

Assumed Drill Size:

Method A - (API RP) 13D $P_A = [\gamma_f (Y_{entry} - Y)/144] + (P_d)(MD)$

31.0 feet

5.500 in

252 gal/min

12.25

Method B - HDD Good Practices Cavity Expansion Annular Pressure

 $P_{B} = [\gamma_{f} * (Y_{entry} - Y)/144] + MD^{*}[\mu_{p} * (V_{ha}/60)/(1000^{*}(D_{h}-D_{r})^{2}) + YP/[200^{*}(D_{h}-D_{r})]$

			B - Lift (Pentry	1,,144] 1 MB	[µp (*na/00)/(10	$OO(D_n D_r))$		
Start Station	0+00.00	-1						
	Drill Path		Assumed Re	turn Density	Low Retu	rn Density	High Retu	rn Density
	Drill Path		Density, $\gamma_{fE} = 78$		Density, γ _{fL} =	70	Density, $\gamma_{fH} =$	89
Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B
ft	ft	ft	psi	psi	psi	psi	psi	psi
0.00	0+00.00	1,136.00	0.00	0.00	0.00	0.00	0.00	0.00
31.00	-0+29.80	1,127.46	4.78	5.33	4.30	4.53	5.45	5.40
62.00	-0+59.60	1,118.91	9.57	10.65	8.60	9.05	10.90	10.81
93.00	-0+89.40	1,110.37	14.35	15.98	12.90	13.58	16.35	16.21
124.00	-1+19.20	1,101.82	19.13	21.30	17.20	18.11	21.79	21.61
155.00	-1+49.00	1,093.28	23.91	26.63	21.50	22.63	27.24	27.02
186.00	-1+78.79	1,084.73	28.70	31.96	25.80	27.16	32.69	32.42
217.00	-2+08.59	1,076.19	33.48	37.28	30.10	31.69	38.14	37.82
248.00	-2+38.39	1,067.64	38.26	42.61	34.40	36.21	43.59	43.23
279.00	-2+68.19	1,059.10	43.04	47.93	38.70	40.74	49.04	48.63
310.00	-2+97.99	1,050.55	47.83	53.26	43.00	45.27	54.49	54.04
341.00	-3+27.79	1,042.01	52.61	58.59	47.30	49.79	59.94	59.44

	Drill Path		Assumed Re	eturn Density	Low Retu	rn Density	High Retu	rn Density
	Driii Faln		Density, γ_{fE} =	78	Density, $\gamma_{fL} =$	70	Density, $\gamma_{fH} =$	89
Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B
ft	ft	ft	psi	psi	psi	psi	psi	psi
372.00	-3+57.59	1,033.46	57.39	63.91	51.60	54.32	65.38	64.84
403.00	-3+87.39	1,024.92	62.17	69.24	55.90	58.85	70.83	70.25
434.00	-4+17.24	1,016.54	66.86	74.47	60.12	63.29	76.18	75.54
465.00	-4+47.18	1,008.54	71.35	79.51	64.16	67.56	81.29	80.62
496.00	-4+77.23	1,000.91	75.64	84.33	68.01	71.64	86.17	85.45
527.00 558.00	-5+07.38 -5+37.61	993.68 986.84	79.71 83.57	88.95 93.35	71.67 75.14	75.52 79.22	90.81 95.21	90.04 94.39
589.00	-5+67.93	980.39	87.22	97.55	78.43	82.73	99.36	94.39
620.00	-5+98.34	974.33	90.65	101.52	81.52	86.05	103.27	102.37
651.00	-6+28.81	968.66	93.88	105.29	84.42	89.18	106.94	105.99
682.00	-6+59.36	963.39	96.89	108.84	87.13	92.11	110.37	109.37
713.00	-6+89.98	958.51	99.68	112.18	89.65	94.86	113.55	112.51
744.00	-7+20.65	954.03	102.26	115.31	91.97	97.41	116.49	115.40
775.00	-7+51.38	949.95	104.63	118.22	94.10	99.77	119.18	118.05
806.00	-7+82.16	946.26	106.78	120.91	96.04	101.93	121.63	120.45
837.00	-8+12.98	942.97	108.72	123.39	97.79	103.91	123.83	122.61
868.00	-8+43.85	940.08	110.44	125.66	99.34	105.68	125.78	124.52
899.00	-8+74.75	937.59	111.94	127.70	100.70	107.27	127.49	126.18
930.00 961.00	-9+05.68	935.50	113.23 114.30	129.54	101.86 102.83	108.66	128.95	127.59 128.76
992.00	-9+36.63 -9+67.61	933.80 932.51	115.16	131.15 132.55	102.83	109.86 110.86	130.16 131.13	128.76
1023.00	-9+98.59	931.62	115.79	133.73	103.00	111.66	131.85	130.36
1054.00	-10+29.59	931.13	116.21	134.69	104.57	112.28	132.32	130.79
1085.00	-10+60.59	930.98	116.45	135.47	104.79	112.72	132.58	131.00
1116.00	-10+91.59	931.04	116.57	136.14	104.90	113.06	132.71	131.08
1147.00	-11+22.59	931.38	116.54	136.65	104.88	113.27	132.67	130.99
1178.00	-11+53.58	932.16	116.27	136.92	104.65	113.27	132.35	130.64
1209.00	-11+84.55	933.37	115.77	136.96	104.21	113.05	131.77	130.01
1240.00	-12+15.51	935.03	115.03	136.77	103.55	112.62	130.92	129.11
1271.00	-12+46.44	937.11	114.05	136.33	102.68	111.98	129.79	127.94
1302.00	-12+77.34	939.63	112.84	135.67	101.61	111.12	128.40	126.51
1333.00	-13+08.19	942.59	111.39	134.76	100.31	110.06	126.74	124.80
1364.00	-13+39.01 -13+69.77	945.98 949.81	109.71 107.79	133.62 132.25	98.81 97.10	108.78 107.30	124.81 122.62	122.83 120.58
1395.00 1426.00	-13+69.77	949.01	107.79	132.25	97.10	105.60	122.62	120.56
1457.00	-14+31.12	958.76	103.25	128.79	93.04	103.69	117.42	115.30
1488.00	-14+61.69	963.88	100.63	126.72	90.70	101.58	114.42	112.25
1519.00	-14+92.19	969.44	97.77	124.41	88.14	99.25	111.16	108.94
1550.00	-15+22.61	975.42	94.69	121.86	85.38	96.71	107.63	105.37
1581.00	-15+52.94	981.83	91.37	119.09	82.41	93.97	103.83	101.53
1612.00	-15+83.18	988.67	87.82	116.08	79.23	91.02	99.77	97.43
1643.00	-16+13.31	995.93	84.04	112.85	75.85	87.86	95.45	93.06
1674.00	-16+43.35	1,003.61	80.03	109.38	72.26	84.50	90.87	88.43
1705.00	-16+73.27	1,011.72	75.79	105.69	68.47	80.93	86.03	83.54
1736.00	-17+03.10	1,020.15	71.38	101.82	64.51	77.21	80.98	78.45
1767.00	-17+32.90	1,028.70	66.91	97.89	60.51	73.43	75.87	73.30
1798.00	-17+62.70	1,037.24	62.43	93.96	56.50	69.64	70.76	68.14
1829.00 1860.00	-17+92.50 -18+22.29	1,045.79 1,054.33	57.96 53.48	90.03 86.10	52.49 48.48	65.86 62.08	65.64 60.53	62.98 57.82
1891.00	-18+22.29	1,054.33	49.01	80.10	48.48	58.30	55.41	52.66
1922.00	-18+81.89	1,071.42	49.01	78.23	44.40	54.52	50.30	47.50
1953.00	-19+11.69	1,079.97	40.06	74.30	36.46	50.74	45.19	42.34
1984.00	-19+41.49	1,088.51	35.59	70.37	32.45	46.96	40.07	37.18
2015.00	-19+71.29	1,097.06	31.11	66.44	28.45	43.18	34.96	32.03
2046.00	-20+01.09	1,105.60	26.64	62.51	24.44	39.40	29.85	26.87

	Drill Path		Assumed Re	eturn Density	Low Retu	rn Density	High Return Density		
	Dilli Fatti		Density, γ_{fE} =	78	Density, $\gamma_{fL} =$	70	Density, $\gamma_{fH} =$	89	
Rod Measured Distance MD	Station X	Pressure		Annular Fluid Pressure P _A Annular Fluid Pressure P _B		Annular Fluid Pressure P _A	Annular Fluid Pressure P _B		
ft	ft	ft	psi	psi	psi	psi	psi	psi	
2077.00	-20+30.89	1,114.15	22.16	58.58	20.43	35.62	24.73	21.71	
2108.00	-20+60.69	1,122.69	17.69	54.65	16.43	31.84	19.62	16.55	
2139.00	-20+90.49	1,131.24	13.21	50.72	12.42	28.06	14.51	11.39	
2148.92	-21+00.02	1,133.97	11.78	49.46	11.14	26.85	12.87	9.74	

TABLE 4 **ESTIMATED FORMATION PRESSURE CURVE (FPC) EXAMPLE CALCULATION** Sunoco Pipeline, L.P. **Mariner East Pipeline** Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 20-INCH STEEL PIPE INPUT

1. Drill path data from vertical path calculations

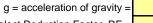
Measured	Distance	Elevations	Angles	Lengths	Angle Change		
Entry 0.000 ft		1136	-16	Entry to PC	406.433 ft		
PC 406.433 ft				PC to PT	670.206 ft	-0.024 deg/ft	
PT 1076.639 ft			0	Invert Tangent	30.642 ft		
PC 1107.282 ft				PC to PT	614.356 ft	0.026 deg/ft	
PT <u>1721.638 ft</u>				PT to Exit	427.285 ft		
Exit 2148.923 ft		1134.00 ft	16		2148.923 ft	Length Ck	Ok
. Drill Fluid Hydraulic Data for Estimat	ed Drill Fluid						
Dynamic annulus pressu	re = 0.00497 psi/LF						
Uphole Drill Fluid Dens	ty = 78	10.4 lb/gal					
Drill fluid viscosity,	ср = 15 ср						
Up hole drill fluid velocity, ft/se	ec = 51.55 ft/sec						
Pump rate, gp	m = 252 gal/min		Radius		_		
Diameter of hole D _H ,	in = 12.25		R _H =	6.125 in			
Diameter of Drill Rod D _R ,	in = 5.5		R _R =	= 2.750 in			
Yield point of drill fluid, lb/100 ft	2 = 30.00 Lb/	100FT^2					

3. Soil Profile Data

2.

Technical approach to generate data as no testing available

Undrained conditions use v = 0.5


Material Layer	Dry Density γ (pcf)	Moisture Content %	Insitu Saturated Density (pcf)	Effective UW (pcf)	Phi, Φ	Undrained Cohesion c, psf	Poisson Ratio µ	Slow Shear Modulus, G psf	OCR Cohessive (Use 0 if non- cohessive)	Model Material Layer Description	Cohesive
1	100	25.0%	125	37.60 pcf	22	1000	0.5	260,000	1	Lean Clay/Clayey Silt	Y
2	160	10.0%	176	97.60 pcf	40	20	0.3	1,000,000	1	MUDSTONE/DOLOMITE	Y
3	160	10.0%	176	97.60 pcf	40	20	0.3	1,000,000	1	MUDSTONE/DOLOMITE	Y
4								0			
5								0			
6								0			
7								0			
8								0			
9								0			
10								0			
Water	62.4			62.40 pcf							

Dynamic Shear Velocity, $V_s = 61.4 N_{60}$

Based on Seed and Idris approximation

Dynamic Shear Modulus, $G_{max} = (\gamma/g)^* Vs^2$

Extended Strain Shear Modulus G is typically between 5% and 20% of G_{max}

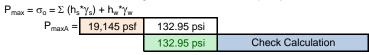
Select Reduction Factor, RF =

Ref 1

4 Select Controlling Location and list properties (Based on inspection of Figure 1 plot

30

Joint =


Away Distance from Entry = 905.68 ft

Depth of Cover = 111.80 ft

Layers	Surface 1-2	Surface 2-3	Surface 3-4	Surface 4-5	Surface 5-6	Surface 6-7	Surface 7-8	Surface 8-9	Surface 9-10	TOTAL	
Soil Type in Layer =	1	2	3								
Dry Density in Layer, γ_d =	100.00 pcf	160.00 pcf	160.00 pcf								
Insitu Density in Layer, γ_s =	125.00 pcf	176.00 pcf	176.00 pcf								
Effective Weight in Layer, $\gamma'_e =$	37.60 pcf	97.60 pcf	97.60 pcf								Total CK
Total Layer Thickness over drill, $h_s =$	5.04 ft	106.76 ft	0.00 ft							111.80 ft	111.80 ft
Saturated Thickness over drill, h _{sat} =	0.00 ft	97.42 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	97.42 ft	
Dry Thickness over drill, h _{dry} =	5.04 ft	9.34 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	14.38 ft	
Contribution Effective Stress, $\sigma' =$	503.92 psf	12,561.54 psf	0.00 psf								
Contribution Total Stress, $\sigma = h_s^* \gamma_s$	503.92 psf	18,640.82 psf	0.00 psf								
Shear Modulus, G =	260,000 psf	1,000,000 psf	1,000,000 psf								
							Height of	Water above S	oil Surface, h _w =	0.00 ft	
						-	Total soil and wa	ater height abov	e drill path, H _T =	111.80 ft	
Properties At Drill Depth for	Selected Joint						Total wa	ter height above	e drill path, $H_W =$	97.42 ft	
R _H =	0.51 ft	Radius of drill ho	ble						-		
$R_{max} = h_s/FS_D =$	55.90 ft	Maximum allowa	able radius of pla	astic zone = Heig	ght of soil above	Drill Path (h _s) di	vided by Delft &	Queens Equation	on FS _D		
	2	Soil Layer At Dri	ll Depth								
G _w =	1,000,000 psf	Large Strain She	ear Modulus at d	rill depth							
$S_u = c = q_u/2$	20 psf	Cohessive mate	rial: cohession c	= unconfined co	ompressive strer	ngth (q _u) divided	by 2				
$\phi =$	40 deg	0.6981 rad									
H _W =	97.42 ft	Total water heigl	ht above drill pat	th							
FS _D =	2	Factor of Safety	for Delft & Quee	ens Equation soi	l type: Use 1.5 fo	or Sand and 2 fo	or Clay at Drill De	epth - Apply to F	R_{max} and P_{max}		
μ =	0.3	Poisson ration of	Granular Soil: A	ngle of internal	friction of layer a	at drill path depth	า				
OCR =	1	Over Consolidat	ion Ratio								
K _o =	0.429	Coefficient of lat	eral earth pressu	ure at rest. For	OCR = 1 use rel	ation $K_o = \mu/(1 - \mu)$	μ); For OCR >1	use K _o = (K _{onorm}	nally consolidated) * O	CR ^{-1/2}	
$\sigma_{o} =$	19,145 psf	Total Stress at d	rill depth, $\sigma = \gamma_d$	above water)*he	dry +γ _s (saturated	d)*h _{sat}					
u =	6,079 psf	Water pressure	at drill depth, u =	- γ _W * H _W							
σ' =	13,065 psf	Effective Stress	at drill depth, σ'	=σ-u							
		_									

5. Method A - Total Stress Method (Conservative)

Calculate Allowable Controlling Formation Pressure Capacity

6. Method B - Total Stress Method + Local Formation Strength

Calculate Allowable Controlling Formation Pressure Capacity

$$P_{max} = \Sigma (h_s * \gamma_s) + h_w * \gamma_w + S$$

$$P_{maxB} 30,128 \text{ psf} 209.22 \text{ psi}$$

$$209.22 \text{ psi} \text{ Check Calculation}$$

Based on Mohr-Coulomb

Strength = $c + \sigma' * tan(\phi)$

10,983 psf 76.27 psi

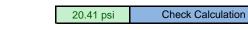
7. Method C - Delft Equation for cavity expansion (Assumes undrained properties)

 $P_{max} = \mu + [p'_{f} + c^{*} \cot \phi]^{*} \{ [R_{o}/R_{pmax}]^{2} + [(\sigma_{o}^{'*} \sin \phi + c^{*} \cos \phi)/G] \}^{-\sin \phi/(1+\sin \phi)} - c^{*} \cot(\phi)$

8. Method D - Queens Equation (Cohessive Soils Only) better for softer clay soils

 $K_o < 1$ $P_i = S_u + (1/2)^* (3K_o - 1)^* \sigma_o - S_u^* ln[(R_o/R_{pmax})^2 + (S_u/G)]$

 $K_0 > 1$ $P_i = S_u + (1/2)^* (3-K_0)^* \sigma_0 - S_u^* ln[(R_0/R_{pmax})^2 + S_u/G]$


To Determine if hydraulic fracturing or blowout occurs

 $K_{o} < 1 \qquad \qquad F_{1}(K_{o},\sigma_{o},S_{u}) = (3^{*}K_{o} - 1)^{*}\sigma_{o}$

 $K_{o} > 1$ $F_{1}(K_{o},\sigma_{o},S_{u}) = (3 - K_{o})^{*}\sigma_{o}$

Method D

$$K_{o} = 0.429$$
 $P_{i} = 2,939 \text{ psf}$ 20.41 psi
 $F_{1} = Expect Blowout$

(<2Su) indicates hydraulic fracturing; (>2Su) indicates blowout

(Assumes undrained properties)

Checks

21502.94594

8.33702E-05

0.008413642

-0.391278584

23.83507185

9. SUMMARY and Assessment of Estimated Drilling Annular Pressure and Formation Capacity

(See Annular Pressure Calculations for joint by joint calculations)

Method A - (API RP) 13D

Method B - HDD Good Practices Cavity Expansion Annular Pressure

 $P_{annularA} = 113.23 \text{ psi} P_A = [\gamma_f (Y_{entry} - Y)/144] + (P_d)(MD)$

 $P_{annularB} = \begin{bmatrix} 129.54 \text{ psi} & P_B = [\gamma_f * (Y_{entry} - Y)/144] + MD^*[\mu_p * V_{ha}/(1000^*(Dh-Dr)^2)] + YP/[200^*(D_h-D_r)] \end{bmatrix}$

Method A 132.95 psi FS = 1 Total Stress

Method B 209.22 psi FS = 1 Total Stress + Strength

Method C 503.35 psi At $FS_{D} = 2$ Delft Equation

20.41 psi At FS_D = 2 Queens Equation

Comparitive Factor of Safety against Drill Fluid Loss at Critical Joint

Critical Joint =	30	D	epth of Cover =	111.8 ft	
Confining Pressure Calculation Method		Method A	Method B	Method C	Method D
Met	1.17	1.85	4.45	0.18	
Met	hod (X)/P _{annularB}	1.03	1.62	3.89	0.16

Acceptable if Factor of Safety >=1.0

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

- PROJECT: Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania
- CROSSING: LOWER PINEY CREEK HDD #S2-0142 16-INCH STEEL PIPE

ISSUE: APC/FPC DESIGN

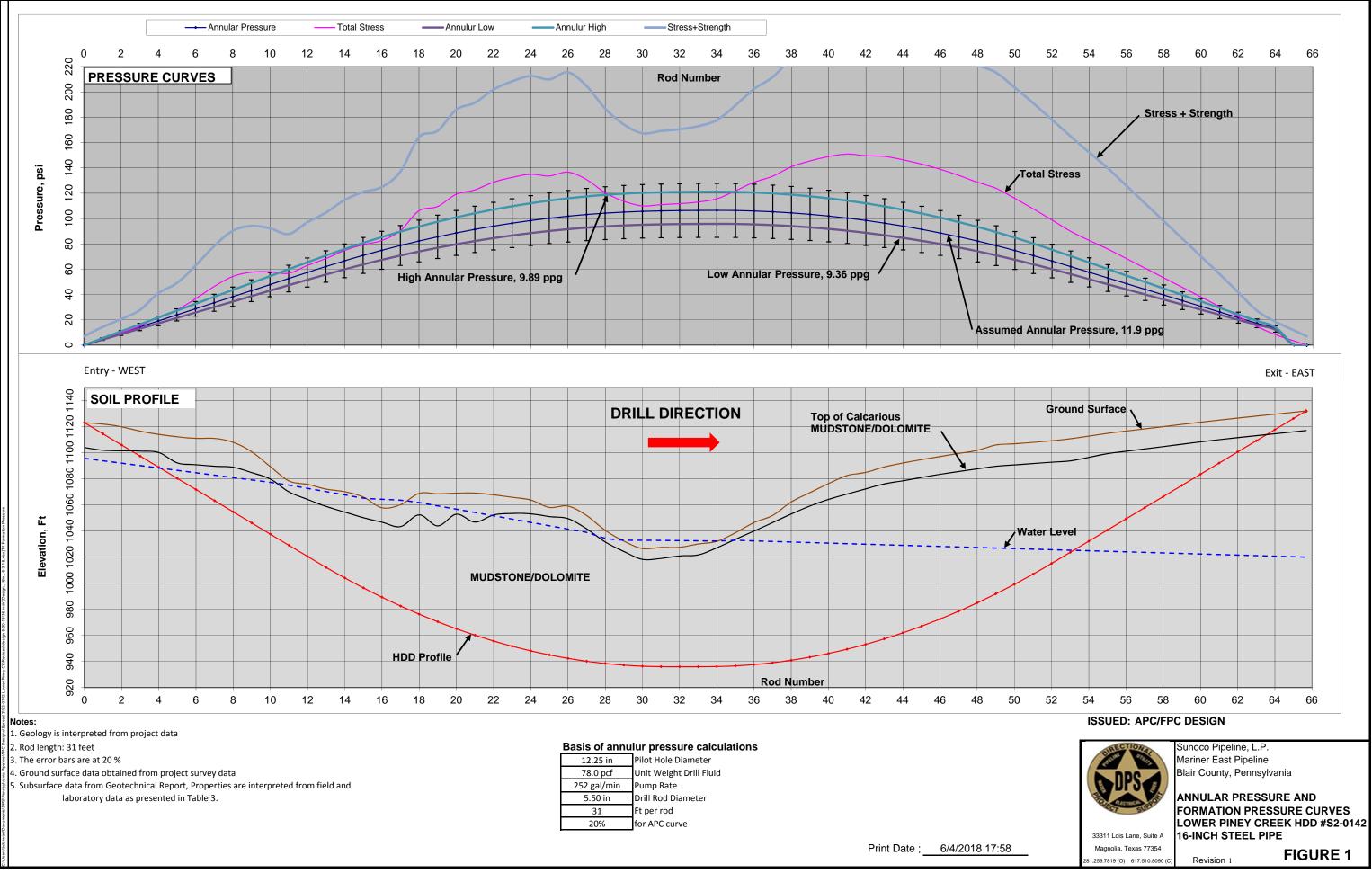

Contents:

Figure 1 Appular Pressure and Fermation Pressure Capacity Curves
 Figure 1 - Annular Pressure and Formation Pressure Capacity Curves
Table 1 - Design Summary, Assumptions, Conditions
Table 2 - Design Drill Path Calculation
Table 3 - Estimated Annular Pressure Curve Example Calculation
Table 4 - Estimated Formation Pressure Curve Example Calculation
DWG. NO: PA-BL-0126.0000-RD-16 Latest Revision Dated 5/14/18

- Prepared For: Sunoco Logistics Partners L.P. 525 Fritztown Road Sinking Spring, PA 19608 855-430-4491
- Prepared By: Directional Project Support 33311 Lois Lane, Suite A Magnolia, Texas 77354 281.259.7819 (O) 617.510.8090 (C) B. Dorwart

Project No:0Print Date:3-Jun-2018

Revision	ID	DESCRIPTION	BY		
10/22/2017	0	APC/FPC Design	BCD		
6/3/2018	1	PC/FPC Design with revised drill path			

TABLE 1 DESIGN SUMMARY, ASSUMPTIONS, CONDITIONS Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 16-INCH STEEL PIPE

Item	Comment/Exception/Assumption
1	PROJECT DATA AND SUMMARY: Project data provided as a technical basis for this submittal included four test borings, a seismic survey, and a resistivity survey. No laboratory data regarding moisture content, unit weight, or strength of the soil or rock has been provided. This information has been assumed for these calculations. Soil property assumptions are shown in the sample calculations on Table 4.
2	DRILL FLUID LOSS DURING CONSTRUCTION: Drill fluid loss during construction typically occurs as a result of one or a combination of the following: LEAKAGE, HYDRAULIC JACKING, HYDRAULIC FRACTURING. In all cases, the drill fluid finds an alternative path different than the design drill path that requires a lower pressure to move the drill fluid. Leakage occurs when an unplanned continous pathway intersects the drill path. Unplanned pathways can develop as a result of drilling operations or may occur around a manmade feature such as piles or may be a naturally occuring feature such as a solution features or joints in the rock. Hydraulic jacking occurs when there are discontinous cracks in the formation, such as along rock joints or along a confined relatively high permeability zone, into which the drill fluid can flow and exert hydraulic pressure because of the confinement. When the drill fluid pressure exceeds the restraining pressure, the sides of hte confinement are hydraulically jacked apart. The enlarged opening allows more fluid volume capacity and continues to develop as long as the pressure remains. Hydraulic fracturing occurs when the drill fluid pressure exceeds the static stress state in the formation plus the strength of the formation material. The result is a fracturing of the formation parrellel to the primary stress field which can provide a new path for the drill fluid. Once the formation is fractured that will continue to grow by hydraulic jacking and fracturing often build pressure in the formation such that during drill rod changes, the drill fluid discharges from the decoupled down hole drill rods until the built up pressure in the formation is reduced. Drill fluid 'loss' during the drilling advance is the source of this return fluid. Continuation of this situation can result in fluid release to the surface, into structures, or movement of adjacent structures such as buildings, highways, and bridges.

Item	Comment/Exception/Assumption
3	ANNULAR PRESSURE CALCULATION: Annular Pressure at any point along a drill path is calculated as the sum of the elevation and dynamic heads. Pressure from elevation head is the difference in feet between elevation of the entry pit drill fluid and the measurement elevation times the drill fluid density in pcf divided by 144 to convert to psi. Dynamic head is the pressure required to make the drill fluid flow along the drill path from the measurement location to the drill entry location. Drill fluids are Non-Newtonian fluids thus pressure must be modeled with specific fluid properties based on assumptions for drill drill dried reporteries. Field rheological properties for these calculations need to be assumed by the design engineer based on expereince. Assumptions should be verified by field values that may occur during operations, not on minimum or maximum capacity of a drill fluid. Field data can change from many field influences. Properties of various benonitic products vary significantly. Additionally, subsurface conditions and cleaning system efficiency will have significant impacts on drill fluid properties. The design Annular Pressure Curve is a planning and design tool for the engineer thus the design curves are not a tool to be applied in the field without correction to account for actual field properties. Field values of drill fluid properties should be expected to change dynamically during even short drilling lengths as different subsurface materials may require different drill fluid properties and both subsurface conditions and the contractor ability to clean the drill fluid can change rapidy. Two methods are used in these calculations to calculate Annular pressure. METHOD B uses a hydraulic model for viscous flow in an annulus and is described in the HDD Good Practices Guidelines; a book available through the NASTT. Both methods are accepted in the industry. The annular pressure curves shown in Figure 1 plot the API-13D data by drill rod along the drill path. Three annular pressure curves are shown on
4	CALCULATION OF FORMATION PRESSURE: The Formation Pressure capacity is calculated by models. A model used to approximate the complexities of pressure in the subsurface caused by materials that are not uniform thus contain wide variation in both geometry and properties. A model necessary to simplify the conditions yet still provide some science to subsurface complexity. There are presently four models that may be applied to approximate subsurface conditions. Each model provides reasonable values only within the range of the model assumptions and field conditions. Engineering judgement and understanding of the model must be applied during selection of the most appropriate model for a specific set of subsurface conditions. The four models provide four alternative calculation methods: Total Stress, Cavity Expansion (Delft Equation), Total Stress plus Strength, and the Queens Equation. Input data assumptions and range of available properties have been shown to be significant to the results from all four models. Significant experience is required in determination of these input values and in the interpretation of the results. Additionally significant experience is necessary to determine if drained or undrained properties should be used in the analyses. In general, most fine grained materials, when exposed to HDD excavation rates, are best represented by undrained properties. Only highly permeable formations should be considered for drained properties as the undrained assumption means no change on water pressure during the drilling excavation process. Of note is that drained conditions typically provide higher formation pressure capacity than when using undrained properties. Thus these methods may not be conservative and can lead to overly optimistic expectations of Formation Pressure Capacity.

ltem	Comment/Exception/Assumption
4a	Total Stress Method is based strictly on the dead weight of the overlying material above the drill path thus excludes any potential formation material strength. This method is a traditional approach to establish pressure limits to prevent hydraulic jacking along rock joints and other partings while grouting rock. The rule of thumb is apply no more than 1 psi per foot of rock during grout injection to prevent hydraulic jacking. This method is considered a reasonable approximation for limiting formation pressure in rock or very dense soils or weathered rock. Note that total stress and in particular the orientation of principal stress in the ground rotates with surface geometry. Fracturing of the ground always is orientated parrellel to the principal stress at that point in the ground. Therefore, in areas of high topographic relief and where the drill path approaches a topographic surface within about 5 times the depth below the entry, then the total stress must be adjusted for both magnitude and direction as the principal stress will be rotated in either soil or rock.
4b	Total Stress plus strength method is a traditional Mohr-Coulomb material failure approach to include insitu formation strength. Experience from the tunneling industry indicates that the strength of the materials needs to include various factors to account for an underground excavation geometry, soil/rock properties, and excavation to ground interaction such as results from trenchless constructions. An acceptible approach has been developed by Terzaghi and later refined by Stein and others. However, these modifications apply only to underbalanced drilling where external pressure exceeds internal pressure. For most HDD constructions, the pressure is applied outward by the annular pressure thus applying extension tension and shear properties for strength calculations. Calculations in this analyses only apply simple sample shear strength as defined by the Mohr-Coulomb relation.
4c	Cavity Expansion is modeled either by the Delft or Queens equations. These equations add the material strength assuming faulure is by cavity expansion stresses and geometry. The cavity expansion model does not provide assessment of fluid loss by leakage or hydraulic jacking. Expereince with the Delft model indicates unconservative predictions and a correction factor should be applied to determine a realistic Pmax prior to application of a safety factor. This correction factor is in addition to the correction factors of 1.5 and 2.0 for sand and clay materials already included in the equation. The Queens equation addresses the shortcomings of the Delft equation by intorducing the Ko factor which does vary in soil and rock as opposed to the Delft equation holding Ko as a constant. The result is expected to improve predictions for soils such that correction factors do not need to be applied to determine Pmax before application of safety factors. The cavity expansion relations are not generally appropriate for rock as fluid loss is typically by other processes such as leakage and/or hydraulic jacking.
5	TECHNICAL APPROACH DRILL FLUID MANAGEMENT: Table 2 provides the proposed drill path for the interpreted geologic profile assumed for the crossing. Table 3 provides the calculated Annular Pressure and Table 4 the calculated Formation Pressure Capacity. Calculations are provided for each drill rod along the design drill path. The results are summarized on Figure 1. Assessment is based on comparison of the Formation Pressure Capacity to the Annular Pressure. This relation provides a tool to assess the risk of hydraulic fracturing of a formation or hydraulic jacking along pathways within a formation caused by Annular Pressure exceeding the Formation Capacity Pressure. When the Annular Pressure is higher than the Formation Pressure Capacity, then the risk of drill fluid loss by jacking or hydrofracturing is considered high for the design drill path and drill direction. Mitigation considerations may include: reversing the drill direction, adjusting the depth of the drill path in problem areas, or reduction of drill fluid pressure by methods such as reduction of drill fluid weight, use of drill fluid elevation in the hole down to a lower elevation.

Item	Comment/Exception/Assumption
6	Limitations: These calculations are for HDD planning purposes only. It should be expected that the drill process will generate new data that may require adjustments to the assumed conditions used for the basis of these calculations. Adjustments to the assumed subsurface conditions may require corresponding adjustments to the various HDD drill parameters or tools to optimize production. Typical parameters that are adjusted include: drill fluid pump rate, penetration rate, drill fluid properties, along with bit dimensions and types or other tooling.

	CALCUL	ATIONS												
Entry Station	0+00.00	FT						ľ						
Exit Station	19+89.94	FT												
Entry and Exit Design Co	oordinates & E	levations (Ft) (Note 2	2)	Wate	er Surface Elev.	1030.00 ft								
	East	North	Elevation		Mudline Elev.	1027.60 ft								
	1823773.9250	401317.5210	1,123.00 ft		centerline Elev.	936.00 ft	_							
	1824727.0950	401032.1605		SUMMARY HORIZO	NTAL CURVE									
	1825680.2650	400746.8000	1,132.00 ft			Start		-	Er					
Depth to Mudline		Clearance Depth =	91.60 ft		Station	Easting	Northing	Station	Easting	Northing	Azimuth	Length	Radius	Angle
Measured Plan		1989.9384 ft		Tangent	0+00.00		401317.5210	9+94.97	1824727.0950	401032.1605	E 343.33333 N	994.97		0.000 1
	dinate Length =	1989.9384 ft		Curve	9+94.97	1824727.0950	401032.1605	9+94.97	1824727.0950	401032.1605	E 343.33333 N	0.00	0.00	0.000 deg.
UK - NU	HURIZONTAL	CURVE TANGENT		Tangent	9+94.97	1824727.0950	401032.1605	19+89.94	1825680.2650	400746.8000	E 343.33333 N	994.97		
		ONTAL PLA			T)					Pull Geome	4 10 1			
					/									
Entry Tangent Segment		Horizontal Curve Se		Exit Tangent Segme			Pipe Entry			ntry location into			1	
Plan Length, ft.	994.97	Input Radius, ft.	0.00	Plan Length, ft.	994.97			Elevatio			ngle, (-) = Clock		Path	Curve
Entry Azimuth, deg.⁵	E 343.33333 N	Curve, deg	0.000 deg.	. 0	E 343.33333 N		Segment	Start	End	Start	End	∆ Angle	Length	Radius
Entry Azimuth, rad. ⁵	5.99230	Curve, rad	0.00000	Exit Azimuth, rad.5	5.99230		Entry Tangent	1132.00 ft	1017.35 ft	16.00 deg	16.00 deg	0.00 deg	415.94 ft	0.00 ft
		Calculate PTH		Calculate Exit			Entry Curve	1017.35 ft	936.00 ft	16.00 deg	0.00 deg	-16.00 deg	586.43 ft	2100.00 ft
Calculate PCH		Chord Length, ft.	0.00	Easting	1825680.2650	Check	Bottom Tangent	936.00 ft	936.00 ft	0.00 deg	0.00 deg	0.00 deg	63.99 ft	0.00 ft
PCH Easting	1824727.0950	Arc Length, ft.	0.00	Northing	400746.8000	Delta	Exit Curve	936.00 ft	1017.35 ft	0.00 deg	-16.00 deg	-16.00 deg	586.43 ft	2100.00 ft
PCH Northing	401032.1605	Chord Azimuth, deg	343.3333		I	0.0000	Exit Tangent	1017.35 ft	1123.00 ft	-16.00 deg	-16.00 deg	0.00 deg	383.29 ft	0.00 ft
		PI Easting =	1824727.0950		I	0.0000					Т	otal Check =	2036.08 ft	OK
		PI Northing =	401032.1605		I	OK CALC		Compound Curve A						
		PTH Easting =	1824727.0950		I	E 10 00 01		= .	Vert. Plan	Horiz. Plan		<u></u>		
		PTH Northing =	401032.1605		I	Exit Station		Entry	947.28	994.97		Entry V(Tan+C		
Cum Plan Length	994.97	Cum Plan Length	994.97	Cum Plan Length	1989.938355	19+89.94 OK STA		Exit	978.67	994.97	NO, HOFIZ >	Entry V(Tan+C	Jurve)	
Culli Fian Lengin	554.57	Culli Fian Lengin	554.57	Culli Flan Length	1909.930333	OKSTA								
				-						r				
VERTICLE PAT	H DESIG	N CALCULA	110N5 (F	/							Summary of I			
Entry Tangent Segment		Entry Vert. Curve Se	gment 2	Middle Tangent Seg		Exit Vert. Curve S	Segment 4	Exit Tangent Segme			Entry to	Exit Elevation	n Change =	9.00 ft
Entry Angle	-16.000 deg.	Vertical Radius	2100.00	Rod Length	63.98712	Radius	2100.00	Exit Elevation	1132.00			mum Design I		936.00 ft
Entry Angle, rad.	-0.2793 rad	Vert. Curve, deg.	16.000 deg.	Inclined Bottom Tan	NO	Design Exit Angle	16.000 deg.					nvert Depth b		
Rod/Path Length	383.29	Vert. Curve, rad.	0.2793 rad			Vert. Curve, rad.	0.2793 rad				In	vert Depth be	-	187.00 ft
Calculate Vertical PCV		Calculate Vertical P		Calculate Vertical P		Calculate Vertica		Calculate Exit					th Length =	2,036.08 ft
Plan Length	368.44	Plan Length	578.84	Plan Length	63.98711694	Vert. Curve, deg	16.000 deg.	Plan Length	399.83				n Length =	
Path Length	383.29	Arc Path Length	586.43	Path Length	63.99	Vert. Curve, rad.	0.27925268	Path Length	415.94		Minimum Pla			
Tangent Depth	-105.65	Curve Vert Depth	-81.35	End Elevation	936.00	Plan Length	578.84	Elevation	1132.00				try Angle =	•
End Elevation	1017.35	End Elevation	936.00	Rise/drop	0.00	Path Arc Length								
			000.00			•	586.43	Rise/drop	114.65		0		xit Angle =	16.00 deg
		Lowest Elevation	936.00	-	0.000 dag	Lowest Elevation	936.00	Rise/drop	114.65			npound Curve	e at Entry =	NO
		End Vert Angle	0.000 deg.	End Vert Angle	0.000 deg.	Lowest Elevation Elevation	936.00 1017.35						e at Entry =	-
		End Vert Angle End Vert Angle, rad	0.000 deg.	End Vert Angle End Vert Angle, rad	•	Lowest Elevation	936.00 1017.35	Rise/drop Prop. Plan Length	114.65 1989.938355	Stationin	Co	npound Curve	e at Entry =	NO
SUMMARY VERTICLE C	URVE CALCUL	End Vert Angle End Vert Angle, rad ATIONS	0.000 deg. 0.0000 rad	End Vert Angle, rad	0.0000 rad	Lowest Elevation Elevation Curve Vert Depth	936.00 1017.35 81.35	Prop. Plan Length	1989.938355	Stationin OK STAT	Co g Check	npound Curve	e at Entry =	NO
Start Station	URVE CALCUL 0+00.00	End Vert Angle End Vert Angle, rad ATIONS Start Station	0.000 deg. 0.0000 rad 3+68.44	End Vert Angle, rad Start Station	0.0000 rad 9+47.28	Lowest Elevation Elevation Curve Vert Depth Start Station	936.00 1017.35 81.35 10+11.27	Prop. Plan Length	1989.938355 15+90.11	OK STAT	Co g Check 10NING	npound Curve	e at Entry =	NO
Start Station PVC Station	URVE CALCUL 0+00.00 3+68.44	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station	0.000 deg. 0.0000 rad 3+68.44 9+47.28	End Vert Angle, rad Start Station PCV Station	0.0000 rad 9+47.28 10+11.27	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station	936.00 1017.35 81.35 	Prop. Plan Length Start Station Exit Station	1989.938355 15+90.11 19+89.938	OK STAT Plan Leng	Co g Check TONING th Check	npound Curve	e at Entry =	NO
Start Station PVC Station Cum Plan Length	URVE CALCUL 0+00.00 3+68.44 368.44	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28	End Vert Angle, rad Start Station PCV Station Cum Plan Length	0.0000 rad 9+47.28 10+11.27 1011.27 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11	Prop. Plan Length Start Station Exit Station Cum Plan Length	1989.938355 15+90.11 19+89.938 1989.938355	OK STAT	Co g Check TONING th Check	npound Curve	e at Entry =	NO
Start Station PVC Station Cum Plan Length Cum Path Length	URVE CALCUL 0+00.00 3+68.44 368.44 383.29	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374	OK STAT Plan Leng	Co g Check TONING th Check	npound Curve	e at Entry =	NO
Start Station PVC Station Cum Plan Length	URVE CALCUL 0+00.00 3+68.44 368.44	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28	End Vert Angle, rad Start Station PCV Station Cum Plan Length	0.0000 rad 9+47.28 10+11.27 1011.27 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11	Prop. Plan Length Start Station Exit Station Cum Plan Length	1989.938355 15+90.11 19+89.938 1989.938355	OK STAT Plan Leng	Co g Check TONING th Check	npound Curve	e at Entry =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth	URVE CALCUL 0+00.00 3+68.44 368.44 383.29	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check 10NING th Check JLATION	npound Curve	e at Entry =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES:	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Contraction of the second seco	npound Curve	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+)	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check 10NING th Check JLATION	npound Curve ompound Cur	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees.	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclo	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI ISSUE:	Control Contro	npound Curve ompound Cur n internal desig N	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference N	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclo AD 83 Pennsylvania S	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Co g Check IONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG	npound Curve ompound Cur ompound Cur n internal desig N P.	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check 10NING th Check JLATION Indicates inputs indicates status or APC/FPC DESIG Sunoco Pipeline, L	npound Curve ompound Cur pound Cur internal desig N P. Te	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check IONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Suncco Pipeline, L Mariner East Pipelin Blair County, Penn	npound Curve ompound Cur pound Cur internal desig N P. Te	e at Entry = ve at Exit =	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth EXIT	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check IONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2	npound Curve ompound Cur pointernal desig N P. P. P. P. sylvania	e at Entry = ve at Exit = In checks	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check IONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F	npound Curve ompound Cur n internal desig N P. P. P. sylvania	e at Entry = ve at Exit = In checks	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 ft 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth PLAN L PLAN L	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65 ENGTH	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Depth EXIT b EXIT TAN	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check 10NING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F LOWER PINEY C	npound Curve ompound Cur h internal desig N P. he sylvania XATH CALCUL REEK HDD #1	e at Entry = ve at Exit = In checks	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth PLAN L PLAN L rDw	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65 ENGTH	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Path Length Cum Depth EXIT	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check IONING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F	npound Curve ompound Cur h internal desig N P. he sylvania XATH CALCUL REEK HDD #1	e at Entry = ve at Exit = In checks	NO
Start Station PVC Station Cum Plan Length Cum Path Length Cum Depth NOTES: 1. Sign convention for ang Due East is defined as (2. Coordinates are in feet a 3. Elevations are in feet an	URVE CALCUL 0+00.00 3+68.44 368.44 383.29 -105.65 les - positive (+) 0 degrees. and reference NA	End Vert Angle End Vert Angle, rad ATIONS Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth angles are counterclc AD 83 Pennsylvania S /D 88.	0.000 deg. 0.0000 rad 3+68.44 9+47.28 947.28 969.72 -187.00	End Vert Angle, rad Start Station PCV Station Cum Plan Length Cum Path Length Cum Depth	0.0000 rad 9+47.28 10+11.27 ft 1011.27 ft 1033.71 ft -187.00 ft	Lowest Elevation Elevation Curve Vert Depth Start Station PTV Station Cum Plan Length Cum Path Length Cum Depth PLAN L PLAN L rDw	936.00 1017.35 81.35 10+11.27 15+90.11 1590.11 1620.14 -105.65 ENGTH	Prop. Plan Length Start Station Exit Station Cum Plan Length Cum Depth EXIT b EXIT TAN	1989.938355 15+90.11 19+89.938 1989.938355 2036.08374 9.00	OK STAT Plan Leng OK CALCI	Cd g Check 10NING th Check JLATION Indicates inputs Indicates status or APC/FPC DESIG Sunoco Pipeline, L Mariner East Pipelin Blair County, Penn TABLE 2 DESIGN DRILL F LOWER PINEY C	npound Curve ompound Cur pointernal desig N P. ne sylvania Sylvania PIPE	e at Entry = ve at Exit = In checks	NO

TABLE 3 ESTIMATED ANNULAR PRESSURE CURVE (APC) EXAMPLE CALCULATION Sunoco Pipeline, L.P. Mariner East Pipeline Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 16-INCH STEEL PIPE INPUT 1. Drill path data

	Measured Distance	Elevations	Angles	Lengths	Angle Change	
Drill Entry	0.000 ft	1123	-16	Entry to PC	383.292 ft	
PC	383.292 ft			PC to PT	586.431 ft	-0.027 deg/ft
PT	969.723 ft			Invert Tangent	63.987 ft	
PC	1033.710 ft			PC to PT	586.431 ft	0.027 deg/ft
PT	1620.140 ft			PT to Exit	415.943 ft	
Drill Exit	2036.084 ft	1132.00 ft	16		2036.084 ft	
					Length Ck	ОК

2. Drill Fluid Hydraulic Assumptions

	Assumed	
Density, $\gamma_f =$	78	10.43 lb/gal
Dynamic annulus pressure $P_d =$	0.0050 psi/ft	
Drill fluid viscosity, $\mu_p =$	15 ср	
Yield point of drill fluid, YP =	30	

3.	Drill Data Assumptions	
	Assumed Drill Size:	

umed Drill Size:	0660	
Avg	31.0 feet	
Diamete	12.25	
Drill Rod Tube Diameter, D _r =		5.500 in
Drilling Pun	np rate, gpm =	252 gal/min

Low		High	
70	9.36 lb/gal	89	11.90 lb/gal
0.0047 psi/ft		0.0054 psi/ft	
4 cp		13 ср	
16		5	

Max Rig Pump =	1200 gpm
Number of drill rods =	
Estimated annular pilot uphole drill fluid velocity, V_{ha} =	51.55 ft/min

4. Calculate Annular Pressure, P

Method A - (API RP) 13D $P_A = [\gamma_f (Y_{entry} - Y)/144] + (P_d)(MD)$

Method B - HDD Good Practices Cavity Expansion Annular Pressure

 $P_{B} = [\gamma_{f} * (Y_{entry} - Y)/144] + MD*[\mu_{p}*(V_{ha}/60)/(1000*(D_{h}-D_{r})^{2}) + YP/[200*(D_{h}-D_{r})]$

				, ,	Leep (That e e), (the		• • • • • • • •	
Start Station	0+00.00	1]					
Drill Path		Assumed Return Density		Low Retu	rn Density	High Return Density		
		Density, $\gamma_{fE} = 78$		Density, $\gamma_{fL} = 70$		Density, $\gamma_{fH} =$	89	
Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B
ft	ft	ft	psi	psi	psi	psi	psi	psi
0.00	0+00.00	1,123.00	0.00	0.00	0.00	0.00	0.00	0.00
31.00	0+29.80	1,114.46	4.78	5.33	4.30	4.53	5.45	5.40
62.00	0+59.60	1,105.91	9.57	10.65	8.60	9.05	10.90	10.81
93.00	0+89.40	1,097.37	14.35	15.98	12.90	13.58	16.35	16.21
124.00	1+19.20	1,088.82	19.13	21.30	17.20	18.11	21.79	21.61
155.00	1+49.00	1,080.28	23.91	26.63	21.50	22.63	27.24	27.02
186.00	1+78.79	1,071.73	28.70	31.96	25.80	27.16	32.69	32.42
217.00	2+08.59	1,063.19	33.48	37.28	30.10	31.69	38.14	37.82
248.00	2+38.39	1,054.64	38.26	42.61	34.40	36.21	43.59	43.23
279.00	2+68.19	1,046.10	43.04	47.93	38.70	40.74	49.04	48.63
310.00	2+97.99	1,037.55	47.83	53.26	43.00	45.27	54.49	54.04
341.00	3+27.79	1,029.01	52.61	58.59	47.30	49.79	59.94	59.44

Drill Path		Assumed Re	eturn Density	Low Retu	rn Density	High Return Density			
			Density, $\gamma_{fE} = 78$		Density, $\gamma_{fL} =$	70	Density, γ _{fH} = 89		
Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	
ft	ft	ft	psi	psi	psi	psi	psi	psi	
372.00	3+57.59	1,020.46	57.39	63.91	51.60	54.32	65.38	64.84	
403.00	3+87.43	1,012.06	62.10	69.16	55.83	58.78	70.75	70.16	
434.00	4+17.37	1,004.01	66.61	74.22	59.89	63.06	75.89	75.25	
465.00	4+47.42	996.41	70.88	79.03	63.73	67.13	80.75	80.07	
496.00 527.00	4+77.58 5+07.85	989.26 982.55	74.91 78.70	83.61 87.94	67.36 70.77	70.98 74.62	85.34 89.66	84.62 88.89	
558.00	5+38.21	976.28	82.25	92.03	73.96	74.02	93.70	92.88	
589.00	5+68.66	970.47	85.55	95.88	76.93	81.24	97.46	96.60	
620.00	5+99.19	965.10	88.61	99.48	79.68	84.22	100.94	100.04	
651.00	6+29.80	960.19	91.42	102.84	82.22	86.98	104.14	103.20	
682.00	6+60.48	955.73	94.00	105.95	84.53	89.52	107.07	106.08	
713.00	6+91.22	951.72	96.32	108.82	86.63	91.84	109.71	108.67	
744.00	7+22.01	948.17	98.40	111.44	88.50	93.94	112.08	110.99	
775.00	7+52.86	945.07	100.23	113.82	90.15	95.82	114.16	113.03	
806.00	7+83.74	942.43	101.82	115.95	91.58	97.48	115.96	114.79	
837.00	8+14.67	940.24	103.15 104.25	117.83 119.46	92.79 93.78	98.91 100.13	117.48 118.71	116.26 117.45	
868.00 899.00	8+45.62 8+76.59	938.51 937.24	104.25	120.85	94.55	101.12	119.67	117.45	
930.00	9+07.58	936.43	105.68	120.00	95.09	101.89	120.34	118.99	
961.00	9+38.58	936.07	106.03	122.88	95.41	102.43	120.73	119.33	
992.00	9+69.58	936.00	106.22	123.61	95.59	102.84	120.94	119.49	
1023.00	10+00.58	936.00	106.38	124.31	95.73	103.21	121.10	119.61	
1054.00	10+31.58	936.15	106.45	124.93	95.81	103.51	121.18	119.64	
1085.00	10+62.57	936.68	106.32	125.34	95.70	103.63	121.02	119.44	
1116.00	10+93.56	937.67	105.94	125.50	95.36	103.52	120.58	118.95	
1147.00	11+24.53	939.11	105.31	125.42	94.81	103.19	119.85	118.18	
1178.00	11+55.47	941.01	104.43	125.09	94.03	102.64	118.85	117.13	
1209.00	11+86.38	943.37	103.31	124.51	93.03	101.87	117.56	115.80	
1240.00 1271.00	12+17.25 12+48.08	946.18 949.45	101.94 100.33	123.68 122.61	91.81 90.37	100.88 99.66	115.99 114.13	114.18 112.28	
1302.00	12+78.85	953.17	98.46	121.29	88.71	98.23	112.00	112.20	
1333.00	13+09.57	957.35	96.36	119.73	86.82	96.57	109.59	107.65	
1364.00	13+40.22	961.98	94.00	117.92	84.72	94.69	106.89	104.91	
1395.00	13+70.80	967.06	91.40	115.86	82.39	92.59	103.92	101.89	
1426.00	14+01.30	972.59	88.56	113.56	79.85	90.28	100.67	98.59	
1457.00	14+31.72	978.57	85.48	111.02	77.09	87.74	97.14	95.02	
1488.00	14+62.05	985.00	82.15	108.24	74.11	84.99	93.33	91.17	
1519.00	14+92.28	991.88	78.58	105.21	70.91	82.02	89.25	87.04	
1550.00	15+22.40	999.20	74.76 70.71	101.94	67.50 63.87	78.83 75.43	84.89 80.26	82.63 77.96	
1581.00 1612.00	15+52.41 15+82.30	1,006.97 1,015.18	66.42	98.43 94.68	63.87 60.03	75.43	80.26 75.35	77.96	
1643.00	16+12.12	1,015.18	61.97	94.66	56.05	68.06	75.35	67.88	
1674.00	16+41.92	1,032.21	57.50	86.85	52.04	64.28	65.16	62.72	
1705.00	16+71.72	1,040.75	53.03	82.92	48.03	60.50	60.05	57.56	
1736.00	17+01.52	1,049.30	48.55	78.99	44.03	56.72	54.93	52.41	
1767.00	17+31.32	1,057.84	44.08	75.06	40.02	52.94	49.82	47.25	
1798.00	17+61.11	1,066.39	39.60	71.13	36.01	49.16	44.71	42.09	
1829.00	17+90.91	1,074.93	35.13	67.20	32.00	45.38	39.59	36.93	
1860.00	18+20.71	1,083.48	30.65	63.27	28.00	41.60	34.48	31.77	
1891.00	18+50.51	1,092.02	26.18	59.34	23.99	37.82	29.37	26.61	
1922.00	18+80.31	1,100.57	21.71	55.41 51.47	19.98	34.03	24.25	21.45 16.30	
1953.00 1984.00	19+10.11 19+39.91	1,109.11 1,117.66	17.23 12.76	47.54	15.98 11.97	30.25 26.47	19.14 14.03	16.30	
2015.00	19+39.91	1,117.66	0.00	0.00	0.00	0.00	0.00	0.00	
2015.00	19+89.98	1,132.01	0.00	0.00	0.00	0.00	0.00	0.00	

TABLE 4 **ESTIMATED FORMATION PRESSURE CURVE (FPC) EXAMPLE CALCULATION** Sunoco Pipeline, L.P. **Mariner East Pipeline** Blair County, Pennsylvania

LOWER PINEY CREEK HDD #S2-0142 **16-INCH STEEL PIPE** INPUT

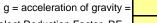
1. Drill path data from vertical path calculations

	Measured Dista	nce	Elevations	Angles	Lengths	Angle Change		
Entry	0.000 ft		1123	-16	Entry to PC	383.292 ft		
PC	383.292 ft				PC to PT	586.431 ft	-0.027 deg/ft	
PT	969.723 ft			0	Invert Tangent	63.987 ft		
PC	1033.710 ft				PC to PT	586.431 ft	0.027 deg/ft	
PT	1620.140 ft				PT to Exit	415.943 ft		
Exit	2036.084 ft		1132.00 ft	16		2036.084 ft	Length Ck	Oł
2. Drill Fluid Hydraulio	Data for Estimated D	orill Fluid						
Dynar	nic annulus pressure =	0.00497 psi/LF						
Upho	ole Drill Fluid Density =	78	10.4 lb/gal					
Γ	Drill fluid viscosity, cp =	15 ср						
Up hole dri	Il fluid velocity, ft/sec =	51.55 ft/sec						
	Pump rate, gpm =	252 gal/min		Radius		_		
Diameter of hole D _H , in =		12.25		R _H =	6.125 in			
Diame	ter of Drill Rod D _R , in =	5.5		R _R =	2.750 in			
Yield point of	drill fluid, lb/100 ft^2 =	30.00 Lb/*	100FT^2					

3. Soil Profile Data

Technical approach to generate data as no testing available

Undrained conditions use v = 0.5


Material Layer	Dry Density γ (pcf)	Moisture Content %	Insitu Saturated Density (pcf)	Effective UW (pcf)	Phi, Φ	Undrained Cohesion c, psf	Poisson Ratio µ	Slow Shear Modulus, G psf	OCR Cohessive (Use 0 if non- cohessive)	Model Material Layer Description	Cohesive
1	100	25.0%	125	37.60 pcf	22	1000	0.5	260,000	1	Lean Clay/Clayey Silt	Y
2	160	10.0%	176	97.60 pcf	40	20	0.3	1,000,000	1	Mudstone/Dolomite	Y
3	160	10.0%	176	97.60 pcf	40	20	0.3	1,000,000	1	Mudstone/dolomite	Y
4								0			
5								0			
6								0			
7								0			
8								0			
9								0			
10								0			
Water	62.4	4 62.40 pcf									

Dynamic Shear Velocity, $V_s = 61.4^* N_{60}^{1/2}$


Based on Seed and Idris approximation

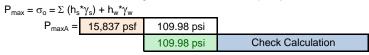
Dynamic Shear Modulus, $G_{max} = (\gamma/g)^* Vs^2$

Extended Strain Shear Modulus G is typically between 5% and 20% of G_{max}

4 Select Controlling Location and list properties (Based on inspection of Figure 1 plot

30

Joint =


Away Distance from Entry = 907.58 ft

Depth of Cover = 90.11 ft

Layers	Surface 1-2	Surface 2-3	Surface 3-4	Surface 4-5	Surface 5-6	Surface 6-7	Surface 7-8	Surface 8-9	Surface 9-10	TOTAL	
Soil Type in Layer =	1	2	3								
Dry Density in Layer, γ_d =	100.00 pcf	160.00 pcf	160.00 pcf								
Insitu Density in Layer, γ_s =	125.00 pcf	176.00 pcf	176.00 pcf								
Effective Weight in Layer, $\gamma'_e =$	37.60 pcf	97.60 pcf	97.60 pcf								Total CK
Total Layer Thickness over drill, $h_s =$	8.25 ft	81.86 ft	0.00 ft							90.11 ft	90.11 ft
Saturated Thickness over drill, $h_{sat} =$	8.25 ft	81.86 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	90.11 ft	
Dry Thickness over drill, h _{dry} =	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
Contribution Effective Stress, $\sigma' =$	516.27 psf	9,299.71 psf	0.00 psf								
Contribution Total Stress, $\sigma = h_s^* \gamma_s$	1,428.76 psf	14,407.99 psf	0.00 psf								
Shear Modulus, G =	260,000 psf	1,000,000 psf	1,000,000 psf								
							Height of	Water above S	oil Surface, $h_w =$	6.38 ft	
						-	Total soil and wa	ater height abov	e drill path, $H_T =$	96.49 ft	
Properties At Drill Depth for	Selected Joint	_					Total wa	ter height above	e drill path, H_W =	96.49 ft	
R _H =	0.51 ft	Radius of drill ho	Radius of drill hole								
$R_{max} = h_s/FS_D =$	45.06 ft	Maximum allowa	Maximum allowable radius of plastic zone = Height of soil above Drill Path (h_s) divided by Delft & Queens Equation FS _D								
	2	Soil Layer At Dri	ll Depth								
G _w =	1,000,000 psf	Large Strain She	ear Modulus at d	Irill depth							
$S_u = c = q_u/2$	20 psf	Cohessive mate	rial: cohession c	= unconfined co	ompressive strer	ngth (q _u) divided	by 2				
$\phi =$	40 deg	0.6981 rad									
H _W =	96.49 ft	Total water heig	ht above drill pa	th							
FS _D =	2	Factor of Safety	for Delft & Quee	ens Equation soi	I type: Use 1.5 fo	or Sand and 2 fo	or Clay at Drill De	epth - Apply to F	R_{max} and P_{max}		
μ =	0.3	Poisson ration o	Granular Soil: A	angle of internal	friction of layer a	at drill path depth	ı				
OCR =	1	Over Consolidat	ion Ratio								
K _o =	0.429	Coefficient of lat	eral earth press	ure at rest. For	OCR = 1 use rel	ation $K_o = \mu/(1 - \mu)$	μ); For OCR >1	use $K_o = (K_{onorm})$	nally consolidated) * O	CR ^{-1/2}	
$\sigma_{o} =$	15,837 psf	Total Stress at d	rill depth, $\sigma = \gamma_d$	(above water)*he	dry + γ _s (saturated	d)*h _{sat}					
u =	6,021 psf	Water pressure	at drill depth, u =	= γ _W * H _W							
σ' =	$\sigma' = 9,816 \text{ psf}$ Effective Stress at drill depth, $\sigma' = \sigma - u$										
C Mathed A Tatal Otaca M											

5. Method A - Total Stress Method (Conservative)

Calculate Allowable Controlling Formation Pressure Capacity

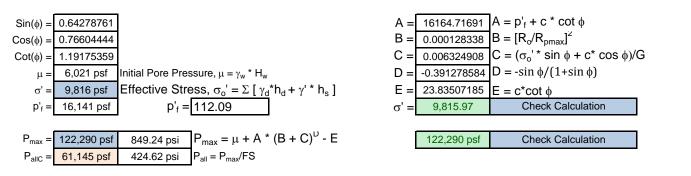
6. Method B - Total Stress Method + Local Formation Strength

Calculate Allowable Controlling Formation Pressure Capacity

$$P_{max} = \Sigma (h_s^* \gamma_s) + h_w^* \gamma_w + S$$

$$P_{maxB} 24,093 \text{ psf} 167.31 \text{ psi}$$

$$167.31 \text{ psi} Check Calculation$$


Based on Mohr-Coulomb

Strength = $c + \sigma' * tan(\phi)$

8,257 psf 57.34 psi

7. Method C - Delft Equation for cavity expansion (Assumes undrained properties)

 $P_{max} = \mu + [p'_{f} + c^{*} \cot \phi]^{*} \{ [R_{o}/R_{pmax}]^{2} + [(\sigma_{o}'^{*} \sin \phi + c^{*} \cos \phi)/G] \}^{-\sin \phi/(1+\sin \phi)} - c^{*} \cot(\phi)$

Checks 16164.71691 0.000128338 0.006324908 -0.391278584 23.83507185

8. Method D - Queens Equation (Cohessive Soils Only) better for softer clay soils

 $K_o < 1$ $P_i = S_u + (1/2)^* (3K_o - 1)^* \sigma_o - S_u^* ln[(R_o/R_{omax})^2 + (S_u/G)]$

 $K_o > 1$ $P_i = S_u + (1/2)^* (3-K_o)^* \sigma_o - S_u^* ln[(R_o/R_{pmax})^2 + S_u/G]$

To Determine if hydraulic fracturing or blowout occurs

 $K_{o} < 1 \qquad \qquad F_{1}(K_{o},\sigma_{o},S_{u}) = (3^{*}K_{o} - 1)^{*}\sigma_{o}$

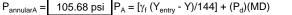
 $K_o > 1$ $F_1(K_o, \sigma_o, S_u) = (3 - K_o)^* \sigma_o$

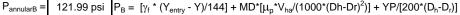
Method D

$$K_{o} = 0.429$$
 $P_{i} = 2,459 \text{ psf}$ 17.07 psi
 $F_{1} = \text{Expect Blowout}$

(<2Su) indicates hydraulic fracturing; (>2Su) indicates blowout

17.07 psi Check Calculation


(Assumes undrained properties)


9. SUMMARY and Assessment of Estimated Drilling Annular Pressure and Formation Capacity

(See Annular Pressure Calculations for joint by joint calculations)

Method A - (API RP) 13D

Method B - HDD Good Practices Cavity Expansion Annular Pressure

Method A 109.98 psi FS = 1 Total Stress

Method B 167.31 psi FS = 1 Total Stress + Strength

Method C 424.62 psi At $FS_D = 2$ Delft Equation

17.07 psi At FS_D = 2 Queens Equation

Comparitive Factor of Safety against Drill Fluid Loss at Critical Joint

Critical Joint =	30	D	epth of Cover =	90.1 ft	
Confining Pressure Cal	Method A	Method B	Method C	Method D	
Met	hod (X)/P _{annularA}	1.04	1.58	4.02	0.16
Method (X)/P _{annularB}		0.90	1.37	3.48	0.14

Acceptable if Factor of Safety >=1.0