E&S WORKSHEET #11

Channel Design Data

PROJECT NAME: __ATLANTIC SUNRISE PROJECT - COMPRESSOR STATION # 605

LOCATION: CLINTON TOWNSHIP, WYOMING COUNTY, PA

 PREPARED BY: __AOE
 DATE: __08/01/2017

 CHECKED BY: __AJB
 DATE: __08/01/2017

CHANNEL OR CHANNEL SECTION	DITCH 1	DITCH 5	DITCH 6	DITCH 8	
TEMPORARY OR PERMANENT? (T OR F	P) P	Р	Р	Р	
DESIGN STORM (2, 5, OR 10 YE	₹) 10	10	10	10	
ACRES (AC	C) 1.05	1.65	1.38	1.08	
MULTIPLIER ¹ (1.6, 2.25, or 2.75) ¹ 2.75	2.75	2.75	2.75	
Qr (REQUIRED CAPACITY) (CFS		4.54	3.80	2.97	
Q (CALCULATED AT FLOW DEPTH d) (CFS	5) 7.44	4.61	3.81	2.98	
PROTECTIVE LINING ²	R-4	R-4	R-4	R-4	
n (MANNING'S COEFFICIENT) ²	0.05	0.063	0.063	0.063	
Va (ALLOWABLE VELOCITY) (FPS	S) N/A	N/A	N/A	N/A	
V (CALCULATED AT FLOW DEPTH d) (FPS	3) 2.07	2.99	2.47	2.50	
та (MAX ALLOWABLE SHEAR STRESS) (LB/FT	²) 2.00	2.00	2.00	2.00	
Td (CALC'D SHEAR STRESS AT FLOW DEPTH d) (LB/FT	²) 0.58	2.00	1.37	1.42	
CHANNEL BOTTOM WIDTH (F	Γ) 2	2	2	2	
CHANNEL SIDE SLOPES (H:\	/) 2	2	2	2	
D (TOTAL DEPTH) (F	Γ) 3.0	4.0	5.0	4.0	
CHANNEL TOP WIDTH @ D (F	Γ) 14	18	22	18	
d (CALCULATED FLOW DEPTH) (F	Γ) 0.93	0.51	0.51	0.42	
CHANNEL TOP WIDTH @ FLOW DEPTH d (F	Γ) 5.72	4.04	4.04	3.68	
BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MA)	() 2.15	3.92	3.92	4.76	
d50 STONE SIZE (II	N) 6	6	6	6	
A (CROSS-SECTIONAL AREA) (SQ. FT	3.59	1.54	1.54	1.19	
R (HYDRAULIC RADIUS)	0.58	0.36	0.36	0.31	
S (BED SLOPE) ³ (FT/F	Γ) 0.01	0.063	0.043	0.054	
Sc (CRITICAL SLOPE) (FT/F	Γ) 0.052	0.089	0.089	0.094	
.7Sc (FT/F	Γ) 0.036	0.062	0.062	0.066	
1.3Sc (FT/F	Γ) 0.068	0.116	0.116	0.122	
STABLE FLOW? (Y/N	N) Y	N	Υ	Y	
FREEBOARD BASED ON UNSTABLE FLOW (F	Γ) 0.1	0.1	0.1	0.1	
FREEBOARD BASED ON STABLE FLOW (F	Γ) 0.5	0.5	0.5	0.5	
MINIMUM REQUIRED FREEBOARD ⁴ (F	Γ) 0.5	0.5	0.5	0.5	
DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)	S	s	S	S	

^{1.} Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.

- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

Source: 363-2134-008 / March 31, 2012 / Page 382

^{2.} Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.

E&S WORKSHEET #11

Channel Design Data

PROJECT NAME: ATLANTIC SUNRISE PROJECT - COMPRESSOR STATION # 605

LOCATION: CLINTON TOWNSHIP, WYOMING COUNTY, PA

 PREPARED BY:
 AOE
 DATE:
 08/01/2017

 CHECKED BY:
 AJB
 DATE:
 08/01/2017

CHECKED BT. AJB DATE. 00/01/2017						
CHANNEL OR CHANNEL SECTION		DITCH 9	DITCH 10	DITCH 11	DITCH 13	
TEMPORARY OR PERMANENT?	(T OR P)	Р	Р	Р	Р	
DESIGN STORM (2, 5, OR 10 YR)	10	10	10	10	
ACRES	(AC)	0.86	3.07	0.42	0.91	
MULTIPLIER ¹ (1.6	5, 2.25, or 2.75) ¹	2.75	2.75	2.75	2.75	
Qr (REQUIRED CAPACITY)	(CFS)	2.37	8.44	1.16	2.50	
Q (CALCULATED AT FLOW DEPTH d)	(CFS)	2.38	12.02	1.21	2.56	
PROTECTIVE LINING ²		R-4	R-4	R-4	R-4	
n (MANNING'S COEFFICIENT) ²		0.063	0.047	0.063	0.063	
Va (ALLOWABLE VELOCITY)	(FPS)	N/A	N/A	N/A	N/A	
V (CALCULATED AT FLOW DEPTH d)	(FPS)	1.88	2.46	1.55	2.15	
та (MAX ALLOWABLE SHEAR STRESS)	(LB/FT ²)	2.00	2.00	2.00	2.00	
тd (CALC'D SHEAR STRESS AT FLOW DEPT	H d) (LB/FT ²)	0.80	0.71	0.56	1.05	
CHANNEL BOTTOM WIDTH	(FT)	2	2	2	2	
CHANNEL SIDE SLOPES	(H:V)	2	2	2	2	
D (TOTAL DEPTH)	(FT)	5.0	5.0	6.0	5.0	
CHANNEL TOP WIDTH @ D	(FT)	22	22	26	22	
d (CALCULATED FLOW DEPTH)	(FT)	0.44	1.14	0.30	0.42	
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	3.76	6.56	3.20	3.68	
BOTTOM WIDTH: FLOW DEPTH RATIO	(12:1 MAX)	4.55	1.75	6.67	4.76	
d50 STONE SIZE	(IN)	6	6	6	6	
A (CROSS-SECTIONAL AREA)	(SQ. FT.)	1.27	4.88	0.78	1.19	
R (HYDRAULIC RADIUS)		0.32	0.69	0.23	0.31	
S (BED SLOPE) ³	(FT/FT)	0.029	0.01	0.03	0.04	
Sc (CRITICAL SLOPE)	(FT/FT)	0.097	0.043	0.108	0.096	
.7Sc	(FT/FT)	0.068	0.030	0.076	0.067	
1.3Sc	(FT/FT)	0.126	0.056	0.140	0.125	
STABLE FLOW?	(Y/N)	Υ	Υ	Υ	Y	
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	0.1	0.2	0.0	0.1	
FREEBOARD BASED ON STABLE FLOW	(FT)	0.5	0.5	0.5	0.5	
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.5	0.5	0.5	
DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STI		S	s	S	S	

Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.

Source: 363-2134-008 / March 31, 2012 / Page 382

^{2.} Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.

^{3.} Slopes may not be averaged.

^{4.} Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater

^{5.} Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.