Costs

Passive Treatment

Vertical Flow Pond

Anoxic Limestone Drain

Anaerobic Wetlands

Aerobic Wetlands

Manganese Removal Bed

Oxic Limestone Channel

Limestone Bed

BIO Reactor Passive Subtotal:

Active Treatment

Caustic Soda

Hydrated Lime

Pebble Quick Lime

Ammonia

Oxidants

Soda Ash Active Subtotal:

Ancillary Cost

Ponds

Roads

Land Access

Ditching

Engineering Cost

Ancillary Subtotal:

Other Cost (Capital Cost) **Total Capital Cost:**

Annual Costs

Labor

Maintenance

Pumping

Chemical Cost

Oxidant Chem Cost

Sludge Removal

Other Cost (Annual Cost)

Land Access (Annual Cost)

Other Cost

Total Annual Cost:

Sampling

Company Name Bituminous Coals Inc

Project

TOS1,2,3 combined

Site Name Addison

0

1

1

0

0

0

0

0

0

0

5

1

1

1

AMD TREAT AMD TREAT MAIN COST FORM

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$2,277

\$7,277

\$13,664

\$11,909

\$10,920

\$12,877

\$1,648

\$37,578

\$224

\$0

\$0

\$0

\$0

\$5,000

\$6,387

AMDTREAT **Water Quality** Calculated Acidity 0.00 mg/L Alkalinity 0.00 | mg/L

Calculate Net Acidity (Acid-Alkalinity) Enter Net Acidity manually			
Net Acidity (Hot Acidity)	233.00	mg/L	
Design Flow	40.00	gpm	
Typical Flow	20.00	gpm	
Total Iron	2.00	mg/L	
Aluminum	22.00	mg/L	
Manganese	7.30	mg/L	
рН	0.00	su	
Ferric Iron	0.00	mg/L	
Ferrous Iron	0.00	mg/L	
Sulfate	0.00	mg/L	
Filtered Fe	0.00	mg/L	
Filtered Al	0.00	mg/L	
Filtered Mn	0.00	mg/L	
Specific Conductivity	0.00	uS/cm	
Total Dissolved Solids	0.00	mg/L	
Dissolved Oxygen	0.00	mg/L	

Total Annual Cost: per 1000 Gal of H2O Treated \$3,572

Project TOS1,2,3 combined

Site Name Addison

AMD TREAT CAUSTIC SODA

2]	Opening Screen Water Parameters	Caustic Soda Name propos	sed caustic		I.		
_	Influent Water	Gallons of Caustic per Year	10,301.48	gal/yr	☐ 17. Automatic Sys	stem?	
	Parameters that Affect	2. Gallons of Caustic per Month	858.45	gal/mo	18. PID pH Proportional Control] \$
	Caustic Soda	3. Gallons of Caustic per Day	28.22	gal/day	19. pH Probe		\$
	Calculated Acidity	4. Titration?			20. Chemical Metering Pump		\$
	0.00 mg/L Alkalinity	5. Caustic Titration Volume		gal caustic/gal	☑ 21. Water Whee	l Dispenser	
	0.00 mg/L	6. Purity of Caustic Solution	99.00	water treated purity of 20%	22. Dispenser Cost	.4000.00	\$
		7. Mixing Efficiency of Caustic Solution	80.00	caustic solution %	Caustic Sub-To	otals	
С	Calculate Net Acidity	8. Tank Cost	2000	\$	23. Number of Tanks Required	1	nbr
	(Acid-Alkalinity)	9. Tank Volume	2500	gal	24. Tank Cost	2,000	\$
С	Enter Net Acidity manually	10. Delivery Frequency	12	times/yr	25. Automatic System or Wheel	4,000	\$
	Net Acidity	11. Valve Unit Cost	50.00	\$	Dispenser Cost 26. Cost of Valves	100	\$
	(Hot Acidity) 233.00 mg/L	12. Number of Valves	2	nbr	27. Feeder Line Cost	7	\$
	233.00 Hig/L	13. Feeder Line Length	20	ft ,	28. Labor Cost	280	\$
	Design Flow	14. Feeder Line Unit Cost	0.35	\$/ft	'		
	40.00 gpm Typical Flow	15. Installation of System Unit Cost	35.00	\$/hr	29. Total Capital Cost	6,387	\$
	20.00 gpm	16. Installation Hours	8	hours			ノ
	Total Iron 2.00 mg/L					<u> </u>	_
	Aluminum				Record Number 1	of 1	
	22.00 mg/L						
	Manganese						
	7.30 mg/L						

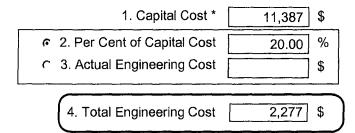
Project TOS1,2,3 combined

Site Name Addison

1 of 1

AMD TREAT PONDS

	TONDO	RMDTRE	AT
ond Name			
	Pond Design Based On:	23. Revegetation Cost	1500.00 \$/acre
	Retention Time	24. Number of Ponds for this Design	3 numbe
	Desired Retention Time 24.0 hours	25. Cost of Baffles	0 \$
	2. Include Sludge Removal? 3. Sludge Removal Frequency times/year	Calculated Pond Dimensions	
Opening Screen Water Parameters	4. Titration?	26. Length at Top of Freeboard	81 ft
vvater i arameters	gal sludge/	27. Width at Top of Freeboard	44 ft
Influent Water	yai 120	28. Freeboard Volume	521 yd3
Parameters that Affect	C. T Groom Solids	29. Water Volume	285 yd3
Ponds	7.Sludge Density lbs./gal	30. Estimated Annual Sludge	0 yd3/yr
Calculated Acidity	C Pond Size	31. Volume of Sludge	0 yd3/ remov
0.00 mg/L	8. Pond Length at Top of Freeboard ft	per Removal 32. Excavation Volume	0.17 acre ft
Alkalinity 0.00 mg/L	9. Pond Width at Top of Freeboard ft	33. Excavation Volume	285 yd3
0.00	Run Rise	34. Clear and Grub Area	0.12 acres
Calculate Net	10. Slope Ratio of Pond Sides 2.0 : 1	35. Liner Area	0 yd2
Acidity	·	36. Calculated Retention Time	24 hours
(Acid-Alkalinity)	11.110000010 20011	Ponds Sub-Tota	ls per Pond
Enter Net Acidity manually	12. Water Depth 4.0 ft	37. Excavation Cost	2,138 \$
Net Acidity	13. Excavation Unit Cost 2.50 \$/yd3	38. Pipe Cost	0 \$
(Hot Acidity)	14. Total Length of Effluent / Influent Pipe 0.00 ft	39. Liner Cost	0 \$
233.00 mg/L	15. Unit Cost of Pipe 0.00 \$/ft	40. Clearing and Grubbing Cost	0 \$
Design Flow	Liner Cost	41. Revegetation Cost	189 \$
40.00 gpm	No Liner	42. Baffle Cost	0 \$
Typical Flow	Clay Liner 16. Clay Liner Unit Cost \$/yd3		
20.00 gpm	17. Thickness of Clay Liner ft	☑ 43. Estimated Cost	2,329 \$
Total Iron 2.00 mg/L	C Synthetic Liner	43. Estimated Cost	
2.00 mg/L Aluminum	18. Synthetic Liner Unit Cost \$/yd2		ond Cost?
22.00 mg/L Manganese	19. Clearing and Grubbing?	The Recommended Minimum Constru Cost of Building a Pond is \$ 5,000	uction
7.30 mg/L	O 20. Land Multiplier ratio	5. Recommended Minimum Cost	5,000 \$
Record Number	21. Clear/Grub Acres acres 22. Clear and Grub Unit Cost \$/acre	46. Total Cost	5,000 \$
	E E E E E E E E E E E E E E E E E E E	1.0	


\$/acre

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT ENGINEERING COST

* Total Capital Cost minus Engineering and **Land Access Capital Cost**

Printed on 03/20/2008

Sampling Name monthly - final

Company Name Bituminous Coals Inc

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT

SAMPLING

© Estimate Sampling Cost	
1. Unit Labor Cost	35.00 \$/hr
2. Collection Time per Sample	0.25 hours/sample
3. Travel Time	1.00 hr
4. Sample Frequency	1.00 samples/mo
5. Lab Cost Per Sample	25.00 \$/sample
6. Number of Sample Points	1 points
Enter Established Annual Sa	mpling Cost
7 Actual Annual Sampling Cost	\$

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 300 \$
 - 9. Yearly Travel Cost 420 \$
 - 10. Yearly Collection Cost 105 \$

11. Sampling Cost 825 \$

Record Number 1 of 5

Company Name Bituminous Coals Inc

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT

SAMPLING

1. Unit Labor Cost	35.00 \$/hr
2. Collection Time per Sample	0.33 hours/sample
3. Travel Time	1.00 hr
4. Sample Frequency	2.00 samples/mo
5. Lab Cost Per Sample	25.00 \$/sample
6. Number of Sample Points	3 points
 Enter Established Annual Sa 	mpling Cost
7. Actual Annual Sampling Cost	\$

Sampling Sub-Totals

- 1,800 \$ 8. Yearly Sample Analysis Cost
 - 9. Yearly Travel Cost 840 \$
 - 10. Yearly Collection Cost 832 \$

11. Sampling Cost 3,472 \$

Record Number 2 of 5

Company Name <u>Bituminous Coals Inc</u>

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT

SAMPLING

© Estimate Sampling Cost	
1. Unit Labor Cost	35.00 \$/hr
2. Collection Time per Sample	0.33 hours/sample
3. Travel Time	1.00 hr
4. Sample Frequency	2.00 samples/mo
5. Lab Cost Per Sample	25.00 \$/sample
6. Number of Sample Points	3 points
C Enter Established Annual Sai	mpling Cost
7. Actual Annual Sampling Cost	\$

Sampling Sub-Totals

8. Yearly Sample Analysis Cost 1,800 \$

> 9. Yearly Travel Cost 840 \$

832 \$ 10. Yearly Collection Cost

> 11. Sampling Cost 3,472 \$

Record Number 3 of 5

Company Name Bituminous Coals Inc

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT

SAMPLING

© Estimate Sampling Cost	
1. Unit Labor Cost	35.00 \$/hr
2. Collection Time per Sample	0.33 hours/sample
3. Travel Time	1.00 hr
4. Sample Frequency	2.00 samples/mo
5. Lab Cost Per Sample	25.00 \$/sample
6. Number of Sample Points	3 points
 Enter Established Annual Sa 	ampling Cost
7. Actual Annual Sampling Cost	\$

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 1,800 \$
 - 9. Yearly Travel Cost 840 \$
 - 832 \$ 10. Yearly Collection Cost

11. Sampling Cost 3,472 \$

Record Number 4 of 5

Company Name Bituminous Coals Inc

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT SAMPLING

© Estimate Sampling Cost		
1. Unit Labor Cost	35.00	\$/hr
2. Collection Time per Sample	0.25	hours/sample
3. Travel Time	0.00	hr
4. Sample Frequency	0.33	samples/mo
5. Lab Cost Per Sample	25.00	\$/sample
6. Number of Sample Points	5	points
 Enter Established Annual Sar 	npling Cost	
7. Actual Annual Sampling Cost		\$

quarterly - 3 raw, upstr, downst

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 495 \$
 - 0 \$ 9. Yearly Travel Cost
 - 10. Yearly Collection Cost 173 \$

11. Sampling Cost 668 \$

Record Number 5 of 5

Project TOS1,2,3 combined

Site Name Addison

AMD TREAT

LABOR

abor Name	Weekly Visits

Ģ	Estimate Labor Cost	
	1. Site Visits per Week	3.00
	2. Site Labor Time per Visit	1.00 hours
	3. Travel Time per Visit	1.00 hours
	4. Unit Labor Cost	35.00 \$/hour
C	Enter Established Annual Labor (Cost
	5 Actual Annual Labor Cost	\$

6. Total Cost 10,920 \$

Record Number 1 of 1

Project

TOS1,2,3 combined

Site Name

Addison

AMD TREAT

MAINTANENCE

Estimate Maintenance Cost

1. Percent of Active Cost

3.50 %

2. Percent of Passive Cost

1.00 %

3. Percent of Ancillary Cost * 4. Percent of Other Capital Cost

0.01 %

0.01 %

Enter Established Annual Maintenance Cost

5. Annual Maintenance Cost

Maintenance Sub-Totals

6 Total Maintenance Active Cost

224 \$

7. Total Maintenance Passive Cost

0 \$

8. Total Maintenance Ancillary Cost

0 \$

9. Total Maintenance Other Capital Cost

0 \$

10. Total Maintenance Cost

224 \$

^{*} Ancillary Cost does int include Cost for Land Access and Engineering Cost

Project TOS1,2,3 combined

Site Name Addison

AMD TREAT CHEMICAL COST

			INIOTI REITT
		Chemical Cost Name:	
	Opening Screen	A. Hydrated Lime?	E. Anhydrous Ammonia ?
ப	Water Parameters	1 Titration?	21. Titration?
_	Influent Water	2. Hydrated Lime Titration Amount lime / gal of H2O	22. AmmoniaTitration Amount Ibs of ammonia / gal H2O
	Parameters	3. Hydrated Lime Purity %	23. Ammonia Purity %
	that Affect Chemical Cost	4. Mixing Efficiency of Hydrated Lime %	24. Mixing Efficiency of Ammonia %
	Calculated Acidity	5. Hydrated Lime Unit Cost \$/lb	Non-Bulk Delivery
	0.00 mg/L		25. Ammonia Non-Bulk Unit Cost \$/lb
	Alkalinity	C B. Pebble Quick Lime?	Bulk Delivery
	0.00 mg/L	6. Titration? 7. Pebble Lime Titration Amount lbs of Pebble	26. Ammonia Bulk Unit Cost \$/lb
-		Lime / gal of H2O	F. Soda Ash?
11/	Calculate Net	8. Pebble Lime Purity / %	27. Titration?
	Acidity (Acid-Alkalinity)	9. Mixing Efficiency of Pebble Lime %	28 Soda Ash Titration Amount lbs of soda ash / gal of H2O
11	Enter Net Acidity	O Delivered in Bags	29. Soda Ash Purity %
°	manually	10. Pebble Lime Bag Unit Cost \$/lb	30. Mixing Efficiency of Soda Ash %
П	Net Acidity (Hot Acidity)	Bulk Delivery	30. Wixing Enrolency of Soda Ash
$\ $		11. Pebble Lime Bulk Unit Cost \$/lb	31 Soda Ash Unit Cost \$//b
	233.00 mg/L	C. Caustic Soda ?	G. Known Chemical Cost ?
-	Design Flow	☐ 12. Titration?	32. Known Annual Chemical Cost \$
ļ	40.00 gpm	13. Caustic Titration Amount gal ofcaustic	Annual Amount of
	Typical Flow	14. Caustic Purity 99.00 purity of 20%	Gliefficals Collisative
	20.00 gpm	caustic solution	33. Total Hydrated Lime Cost 0 \$ 0 lbs
Ì	Total Iron	15. Mixing Efficiency of Caustic 80.00 %	34. Total Pebble Lime Cost 0 \$ 0 lbs
	2.00 mg/L	Non-Bulk Delivery	35. Total Caustic Soda Cost 12,877 \$ 10,301 gals
	Aluminum	16. Caustic Non-Bulk Unit Cost 1.25 \$/gal	36. Total Limestone Cost 0 \$ 0 tons
1	22.00 mg/L	€ Bulk Delivery	
١	Manganese	17. Caustic Bulk Unit Cost \$/gal	
	7.30 mg/L	C D. Limestone ?	38. Total Soda Ash Cost 0 \$ 0 lbs
\geq		18. Limestone Purity %	39. Total Known Chemical Cost 0 \$
I	Record Number	19. Limestone Efficiency %	40. Selected Chemical: CAUSTIC SODA
	1 of 1	20 Limestone Unit Cost \$/ton	Annual Chemical Cost 12,877 \$
		20 Linestone One Oost	

Company Name Bituminous Coals Inc Project TOS1,2,3 combined

Site Name Addison

AMD TREAT

☐ Opening ScreenWater Parameters	Sludge Removal Name	SLUDGE	REMOVAL	AMDTREAT
Influent Water Parameters that Affect	1. Select One	Selection for of Removing		14. Iron Concentration
Sludge Removal	Sludge Remova	il by \$ per Gallon		15. Manganese Concentration
Calculated Acidity 0.00 mg/L	2. Sludge Remov	al Unit Cost	0.05 \$/gal	16. Aluminum Concentration
Alkalinity	Sludge Remova	al by Vacuum Truck		17. Total Miscellaneous Concentration
0.00 mg/L	3. Vacuum Tru	ck Unit Cost	\$/hr	18. Percent Solids
	4. Mobil	ization Cost	\$	19. Sludge Density
C Calculate Net Acidity	5. Hours	s to be Used	hr	□ 20 Titration?
(Acid-Alkalinity)	C Sludge Remova	al by Mechanical Exca	vation	
Enter Net Acidity	6. Mechanical Excavation	on Unit Rate	\$/hr	21. Gal. of Sludge per Gal of Water Treated
manually Net Acidity	7. Mobi	lization Cost	\$	
(Hot Acidity)	8. Hours	s to be Used	hr	22. Estimated Sludge Volume
233.00 mg/L	C Sludge Remova	al by Lagoon Cleaner		Cost for Sludge
Design Flow	9. Lagoon Cleani	ng Unit Rate	\$/hr	23. Removal by \$ per Gallon
40.00 gpm		lization Cost	s	24. Removal by Vacuum Truck
Typical Flow		<u> </u>	hr	25. Removal by Mechanical Excavation
Z0.00 gpm Total Iron		s to be Used		26. Removal by Lagoon Cleaner
2 mg/L	C Actual Sludge F	Removal Cost		27. Actual Sludge Removal Cost
Aluminum 22 mg/L	12. Actual Sludge R	emoval Cost	\$	Sludge Removal S
Manganese 7 mg/L	13. Off Site D	isposal Cost	0.00 \$	28. Currently Selected Removal Cost Plus Off Site Disposal Cost

Record Number 1 of 1

	14. Iron Concentration 2.00	mg/L			
	15. Manganese Concentration 7.30	mg/L			
_	16. Aluminum Concentration 22.00	mg/L			
	17. Total Miscellaneous Concentration 0	mg/L			
	18. Percent Solids 1.00	%			
	19. Sludge Density 8.33	lbs/gal			
	☐ 20 Titration?				
	21. Gal. of Sludge per Gal of Water Treated	gal			
	22. Estimated Sludge Volume 163	yd3/yr			
	Cost for Sludge Removal Type	es			
	23. Removal by \$ per Gallon 1,648	\$			
	24. Removal by Vacuum Truck 0	\$			
	25. Removal by Mechanical Excavation 0	\$			
l	26. Removal by Lagoon Cleaner 0	\$			
	27. Actual Sludge Removal Cost 0	\$			
Sludge Removal Sub-Totals					
	28. Currently Selected Removal Cost 1,648	\$			

Project TOS1,2,3 combined

Site Name Addison

AMD TREAT RECAPITIZALITION COST

Calculation Period 75 yrs Inflation Rate 3.10 % Net Return Rate 6.00 %

Recapitizalition Name TOS1,2,3 -bond

A.	В	С	D	E	F	G
Description of Item	Unit Cost Per Item	Quantity	Total Item Cost	Life Cycle	Number of Periods	Total PV
replace entire caustic system	6,387	1	6,387	25	3	5,586
2. replace ponds	5,000	1	5,000	25	3	4,373
3.	0	0	0	0	0	0
4.	0	0	0	0	0	0
5.	0	0	0	0	0	0
6.	0	0	0	0	0	0
7.	0	0	0	0	0	0
8.	0	0	0	0	0	0
9.	0	0	0	0	0	0
10.	0	0	0	0	0	0
11.	0	0	0	0	0	0
12.	0	0	0	0	0	0
13.	0	0	0	0	0	0
14.	0	0	0	0	0	0
15.	0	0	0	0	0	0
16.	0	0	0	0	0	0
17.	0	0	0	0	0	0
18.	0	0	0	0	0	0
19.	0	0	0	0	0	0
20.	0	0	0	0	0	0

				$\overline{}$
Total Capital Cost	11,387 \$	PV Grand Total	9,958	\$

Project

TOS1,2,3 combined

Site Name Addison

AMD TREAT MASS BALANCE CALCULATOR

The Mass Balance Calculator is used to determine the final flow and concentration (loading) for a chemical specie(s) after two discharges are combined.

Equation Used: $C_3 = ((Q_1 \times C_1) + (Q_2 \times C_2)) / Q_3$

Where:

Q = Flow Rate (gpm)

C = Concentration of Chemical Specie(s) (mg/L)

Discharge 2 = Combined Discharge Discharge 1

Flow Rate	16.00 gpm	3.00 gpm	19.00 gpm
Iron	1.90 mg/L	2.50 mg/L	1.99 mg/L
Concentration	0.36532842 lbs/day	0.09013036 lbs/day	0.45545878 lbs/day
	133.3 lbs/year	32.8 lbs/year	166.2 lbs/year
Aluminum	22.31 mg/L	18.00 mg/L	21.62 mg/L
Concentration	4.28972478 lbs/day	0.64893864 lbs/day	4.93866343 lbs/day
	1,565.7 lbs/year	236.8 lbs/year□	1,802.6 lbs/year
Manganese	4.53 mg/L	22.00 mg/L	7.28 mg/L
Concentration	0.87101986 lbs/day	0.79314723 lbs/day	1.66416710 lbs/day
	317.9 lbs/year	289.4 lbs/year	607.4 lbs/year
Acidity	243.12 mg/L	175.00 mg/L	232.36 mg/L
Concentration	46.74665575 lbs/day	6.30912570 lbs/day	53.05578146 lbs/day
	17,062.5 lbs/year	2,302.8 lbs/year	19,365.3 lbs/year

TOS1,2,3 combined

Site Name Addison

AMD TREAT MASS BALANCE CALCULATOR

The Mass Balance Calculator is used to determine the final flow and concentration (loading) for a chemical specie(s) after two discharges are combined.

Equation Used: $C_3 = ((Q_1 \times C_1) + (Q_2 \times C_2)) / Q_3$

Where:

Q = Flow Rate (gpm)

C = Concentration of Chemical Specie(s) (mg/L)

Discharge 2 = Combined Discharge Discharge 1

				4
Flow Rate	1.00 gpm	15.00 gpm	16.00	gpm
Iron	0.50 mg/L	2.00 mg/L	1.90	mg/L
Concentration	0.00600869 lbs/day	0.36052146 lbs/day	0.36653016	lbs/day
	2.1 lbs/year	131.5 lbs/yea	ar 133.7	lbs/year
Aluminum	12.00 mg/L	23.00 mg/L	22.31	mg/L
Concentration	0.14420858 lbs/day	4.14599689 lbs/day	4.29020548	lbs/day
	52.6 lbs/year	1,513.2 lbs/yea	ur□ 1,565.9	lbs/year
Manganese	20.00 mg/L	3.50 mg/L	4.53	mg/L
Concentration	0.24034764 lbs/day	0.63091257 lbs/day	0.87126021	lbs/day
	87.7 lbs/year	230.2 lbs/yea	ar 318.0	lbs/year
Acidity	140.00 mg/L	250.00 mg/L	243.12	mg/L
Concentration	1.68243352 lbs/day	45.06518362 lbs/day	46.74761714	lbs/day
	614.0 lbs/year	16,448.7 lbs/yea	17,062.8	lbs/year