Company Name

Costs

Passive Treatment

Vertical Flow Pond

Anoxic Limestone Drain

Anaerobic Wetlands

Manganese Removal Bed

Oxic Limestone Channel

Limestone Bed

BIO Reactor

Passive Subtotal:

Active Treatment

Aerobic Wetlands

Big Mack Leasing

Project

proposed chemical

Site Name Iselin #18

AMD TREAT AMD TREAT MAIN COST FORM

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

\$0

AMOTREAT **Water Quality** Calculated Acidity 1273.87 mg/L Alkalinity 13.00 mg/L Calculate Net Acidity (Acid-Alkalinity) C Enter Net Acidity manually **Net Acidity** 1260.87 mg/L (Hot Acidity) Design Flow gpm 60.00 Typical Flow 30.00 gpm 29.80 mg/L **Total Iron** 3.10 mg/L Aluminum Manganese mg/L 61.30 su pН 5.10 0.00 mg/L Ferric Iron mg/L 29.80 Ferrous Iron Sulfate mg/L 3000.00 mg/L Filtered Fe 0.00 Filtered Al 0.00 mg/L 0.00 mg/L Filtered Mn uS/cm Specific Conductivity 0.00 mg/L **Total Dissolved Solids** 0.00 mg/L Dissolved Oxygen 0.00

0 \$12,387 Caustic Soda \$0 Hydrated Lime \$0 Pebble Quick Lime \$0 Ammonia \$0 Oxidants \$0 Soda Ash \$0 Active Subtotal: **Ancillary Cost** \$6,350 2 0 **Ponds** \$0 Roads \$0 Land Access \$0 Ditching 1 0 \$8,797 **Engineering Cost** \$15,147 **Ancillary Subtotal:** \$25,250 Other Cost (Capital Cost) \$52,784 **Total Capital Cost: Annual Costs** 2 0 \$1,226 Sampling 0 \$10,920 1 Labor 1 0 \$372 Maintenance 1 0 \$1,014 Pumping \$35,675 1 0 **Chemical Cost** \$0 Oxidant Chem Cost 0 \$3,150 Sludge Removal \$0 Other Cost (Annual Cost) \$0 Land Access (Annual Cost) \$52,357 **Total Annual Cost:** 0 1 Other Cost

Total Annual Cost: per 1000 Gal of H2O Treated \$3,318

Project proposed chemical

Site Name <u>Iselin #18</u>

AMD TREAT CAUSTIC SODA

Z	Opening Screen Water Parameters	Caustic Soda Name propos	sed caustic			
	Influent Water	Gallons of Caustic per Year	83,619.08	gal/yr	☐ 17. Automatic Sys	stem?
Ī	Parameters that Affect	2. Gallons of Caustic per Month [6,968.25	gal/mo	18. PID pH Proportional Control	\$
	Caustic Soda	3. Gallons of Caustic per Day	229.09	gal/day	19. pH Probe	\$
	Calculated Acidity	☐ 4. Titration?			20. Chemical Metering Pump	\$
	1273.87 mg/L Alkalinity	5. Caustic Titration Volume	The state of the	gal caustic/gal	21. Water Whee	l Dispenser
	13.00 mg/L	6. Purity of Caustic Solution	99.00	water treated purity of 20%	22. Dispenser Cost	4000.00 \$
_		7. Mixing Efficiency of Caustic Solution	80.00	caustic solution %	Caustic Sub-To	otals
С	Calculate Net Acidity	8. Tank Cost	8000	\$	23. Number of Tanks Required	1 nbi
	(Acid-Alkalinity)	9. Tank Volume	10000	gal	24. Tank Cost	8,000 \$
C	Enter Net Acidity manually	10. Delivery Frequency	12	times/yr	25. Automatic System or Wheel	4,000 \$
	Net Acidity	11. Valve Unit Cost	50.00	\$	Dispenser Cost 26. Cost of Valves	100 \$
	(Hot Acidity) 1260.87 mg/L	12. Number of Valves	2	nbr	27. Feeder Line Cost	7 \$
	1200.07	13. Feeder Line Length	20	ft	28. Labor Cost	280 \$
	Design Flow	14. Feeder Line Unit Cost	0.35	\$/ft		· · · · · · · · · · · · · · · · · · ·
	60.00 gpm Typical Flow	15. Installation of System Unit Cost	35.00	\$/hr	29. Total Capital Cost	12,387 \$
	30.00 gpm	16. Installation Hours	8	hours		
	Total Iron 29.80 mg/L					
	Aluminum				Record Number 1	of 1
	3.10 mg/L					
	Manganese 61.30 mg/L					

Project proposed chemical

Site Name Iselin #18

AMD TREAT

PONDS

	, 6,1,56	HMUTIRE	=14 1
Pond Name proposed tre	atment ponds	•	
	Pond Design Based On:	23. Revegetation Cost	1500.00 \$/acre
	Retention Time	24. Number of Ponds for this Design	3 number
	1. Desired Retention Time 18.0 hours	25. Cost of Baffles	0 \$
	2. Include Sludge Removal? 3. Sludge Removal Frequency times/year	Calculated Pond Dimension	ns per Pond
☑ Opening Screen Water Parameters	4. Titration?	26. Length at Top of Freeboard	75 ft
water Parameters	gal sludge/	27. Width at Top of Freeboard	39 ft
Influent Water	5. Sludge Rate gal H2O	28. Freeboard Volume	422 yd3
Parameters	6. Percent Solids %	29. Water Volume	320 yd3
that Affect Ponds	7.Sludge Density lbs./gal	30. Estimated Annual Sludge	0 yd3/yr
Calculated Acidity	C Pond Size	31. Volume of Sludge	0 yd3/ remova
1273.87 mg/L	8. Pond Length at Top of Freeboard ft	per Removal 32. Excavation Volume	0.19 acre ft
Alkalinity	9. Pond Width at Top of Freeboard ft	32. Excavation Volume	320 yd3
13.00 mg/L		34. Clear and Grub Area	0.10 acres
	Run Rise	35. Liner Area	410 yd2
Calculate Net Acidity	10. Slope Ratio of Pond Sides 2.0 : 1	36. Calculated Retention Time	18 hours
(Acid-Alkalinity)	11. Freeboard Depth 1.0 ft		
C Enter Net Acidity	12. Water Depth 6.0 ft	Ponds Sub-Tot	
manually	13. Excavation Unit Cost 2.50 \$/yd3	37. Excavation Cost	3,160 \$
Net Acidity (Hot Acidity)	14 Total Length of Effluent	38. Pipe Cost	158 \$
1260.87 mg/L	/ Influent Pipe	39. Liner Cost	1,358 \$
1200.07 mg/L	15. Unit Cost of Pipe 7.90 \$/ft	40. Clearing and Grubbing Cost	0 \$
Design Flow	Liner Cost	41. Revegetation Cost	153 \$
60.00 gpm	C No Liner	42. Baffle Cost	0 \$
Typical Flow	Clay Liner 16. Clay Liner Unit Cost 4.50 \$/yd3		
30,00 gpm	17. Thickness of Clay Liner 1.0 ft	☑ 43. Estimated Cost	4,830 \$
29.80 mg/L	C Synthetic Liner		
Aluminum	18. Synthetic Liner Unit Cost \$/yd2		
3.10 mg/L	☐ 19. Clearing and Grubbing?	The Recommended Minimum Const Cost of Building a Pond is \$ 5,000	
Manganese 61.30 mg/L	20. Land Multiplier ratio	45. Recommended Minimum Cost	5,000 \$
	21. Clear/Grub Acres acres	J. Neconimended willimidin cost	
Record Number	22. Clear and Grub Unit Cost \$/acre	46. Total Cost	5,000 \$
1 of 2	機能を記述する Wade		

Project proposed chemical

Site Name Iselin #18

AMD TREAT

PONDS

Pond Name Sludge drying b	asin		
i	Pond Design Based On:	23. Revegetation Cost 150	0.00 \$/acre
	C Retention Time	24. Number of Ponds for this Design	1 numbe
	Desired Retention Time hours	25. Cost of Baffles	0 \$
	2. Include Sludge Removal?		
	3. Sludge Removal Frequency times/year	Calculated Pond Dimensions per	Pond
☑ Opening Screen Water Parameters	☐ 4. Titration?	26. Length at Top of Freeboard	75 ft
	5. Sludge Rate gal sludge/	27. Width at Top of Freeboard	50 ft
Influent Water	6. Percent Solids %	28. Freeboard Volume	644 yd3
Parameters that Affect	7. Sludge Density Ibs./gal	29. Water Volume	514 yd3
Ponds	7. Studge Delisity 105./gal	30. Estimated Annual Sludge	0 yd3/yr
Calculated Acidity 1273.87 mg/L	€ Pond Size	31. Volume of Sludge per Removal	0 yd3/ remov
Alkalinity	8. Pond Length at Top of Freeboard 75.000 ft		0.31 acre ft
13.00 mg/L	9. Pond Width at Top of Freeboard 50.000 ft	33. Excavation Volume	514 yd3
	Run Rise	34. Clear and Grub Area	.12 acres
Calculate Net	10. Slope Ratio of Pond Sides 2.0 : 1	35. Liner Area	0 yd2
Acidity (Acid-Alkalinity)	11. Freeboard Depth 1.0 ft	36. Calculated Retention Time	28 hours
C Enter Net Acidity 12. Water Depth 8.0 ft		Ponds Sub-Totals per Pond	
manually		37. Excavation Cost 1	,285 \$
Net Acidity (Hot Acidity)	13. Excavation Unit Cost 2.50 \$/yd3 14. Total Length of Effluent 6.000 ft	38. Pipe Cost	0 \$
1260.87 mg/L	/ Influent Pipe 0.00 ft	39. Liner Cost	0 \$
1200.07	15. Unit Cost of Pipe 0.00 \$/ft	40. Clearing and Grubbing Cost	0 \$
Design Flow	© No Liner	41. Revegetation Cost	64 \$
60.00 gpm	C Clay Liner	42. Baffle Cost	0 \$
Typical Flow 16. Clay Liner Unit Cost \$/yd3			
Total Iron	17. Thickness of Clay Liner ft	43. Estimated Cost	,350 \$
29.80 mg/L	C Synthetic Liner		
Aluminum	18. Synthetic Liner Unit Cost \$/yd2	44. Accept Minimum Pond C	ost?
3.10 mg/L Manganese	☐ 19. Clearing and Grubbing?	The Recommended Minimum Construction Cost of Building a Pond is \$ 5,000	
61.30 mg/L	O 20. Land Multiplier ratio		\$
	() 21. Clear/Grub Acres acres	5. Recommended Minimum Cost	
Record Number 2 of 2	22. Clear and Grub Unit Cost \$/acre	46. Total Cost	,350 \$

Project proposed chemical

Site Name Iselin #18

AMD TREAT ENGINEERING COST

1. Capital Cost * 43,987 \$

• 2. Per Cent of Capital Cost 20.00 %

• 3. Actual Engineering Cost \$

4. Total Engineering Cost 8,797 \$

* Total Capital Cost minus Engineering and Land Access Capital Cost Printed on 03/24/2008

Project proposed chemical

Site Name <u>Iselin #18</u>

AMD TREAT OTHER COST

Oher Cost Name			IAMDII KEIA	
A. Description of Item	B. Unit Cost Per Item	C. Quantity	D. Total Item Cost	E. Capital Cost Annual Cost
construct/install power line	15,000.00	1	15,000	CAnnual Cost
2. pump	8,000.00	1	8,000	Capital CostC Annual Cost
3. building 15'X15' @ \$10/sqft	2,250.00	1	2,250	CApital Cost CAnnual Cost
4.	0.00	0	0	Capital Cost Annual Cost
5.	0.00	0	0	C∵Annual Cost
6.	0.00	0	0	← Capital Cost ← Annual Cost
7.	0.00	0	0	C Capikal Cost C Annual Cost
8.	0.00	0	0	Capital Cost Annual Cost
9.	0.00	0	0	Capital Cost C Annual Cost
10.	0.00	0	0	Capital Cost Annual Cost
11.	0.00	0	0	C Capital Cost
12.	0.00	0	0	Capital Cost C Annual Cost
13.	0.00	0	0	Capital Cost Annual Cost
14.	0.00	0	0	Capital Cost Annual Cost
15.	0.00	0	0	Capital Cost Annual Cost

Curent Capital Cost	25,250 \$
Current Annual Cost	C \$

Total Capital Cost	25,250 \$
Total Annual Cost	0 \$

Project proposed chemical

Site Name <u>Iselin #18</u>

final - monthly

Sampling Name

AMD TREAT

SAMPLING

F Estimate Sampling Cost		
1. Unit Labor Cost	35.00	\$/hr
2. Collection Time per Sample	0.25	hours/sample
3. Travel Time	1.00	hr
4. Sample Frequency	1.00	samples/mo
5. Lab Cost Per Sample	25.00	\$/sample
6. Number of Sample Points	1	points
C Enter Established Annual Sar	npling Cost	
7. Actual Annual Sampling Cost		\$

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 300 \$
 - 9. Yearly Travel Cost 420 \$
 - 10. Yearly Collection Cost 105 \$

11. Sampling Cost 825 \$

Project proposed chemical

Site Name Iselin #18

AMD TREAT SAMPLING

Compline Name	quarterly - raw, upstr, downstr
Samound Name	LOUATIENV - TAW. DOSIL. DOWNSH
g	qualitating turning appears are trained
	<u></u>

Estimate	Sampling Cost			
	1. Unit Labor Cost	35.00	\$/hr	
Collection	Time per Sample	0.25	hours/sample	
	3. Travel Time	0.00	hr	
4. 9	Sample Frequency	0.33	samples/mo	
5. Lat	Cost Per Sample	25.00	\$/sample	
6. Numbe	r of Sample Points	3	points	
C Enter Established Annual Sampling Cost				
7. Actual Ann	ual Sampling Cost		\$	

Sampling Sub-Totals

- 8. Yearly Sample Analysis Cost 297 \$
 - 9. Yearly Travel Cost 0 \$
 - 10. Yearly Collection Cost 104 \$

11. Sampling Cost 401 \$

Labor Name

Project proposed chemical

Site Name Iselin #18

weekly labor

AMD TREAT

LABOR

© Estimate Labor Cost	
1. Site Visits per Week	3.00
2. Site Labor Time per Visit	1.00 hours
3. Travel Time per Visit	1.00 hours
4. Unit Labor Cost	35.00 \$/hour
C Enter Established Annual Labor	Cost
5. Actual Annual Labor Cost	\$

6. Total Cost 10,920 \$

Project proposed chemical

Site Name Iselin #18

AMD TREAT

MAINTANENCE

 Estimate Maintenance Cost 	
1. Percent of Active Cost	3.00 %
2. Percent of Passive Cost	1.00 %
3. Percent of Ancillary Cost *	0.00 %
4. Percent of Other Capital Cost	0.00 %
C Enter Established Annual Mainter	nance Cost
5. Annual Maintenance Cost	\$
Mainter	ance Sub-Totals
6 Total Maintenance Active Cost	372 \$
7. Total Maintenance Passive Cost	0 \$
8. Total Maintenance Ancillary Cost	0 \$
9. Total Maintenance Other Capital Cost	0 \$
10. Total Maintenance Cost	372 \$

^{*} Ancillary Cost does int include Cost for Land Access and Engineering Cost

Project proposed chemical

Site Name Iselin #18

AMD TREAT PUMPING

Pumping Name

Estimated Electricity Cost for	Pumping	C Estimated Fuel Cost for Pumping
1. Pump Rate	30.00 gal/min	12. Fuel Rate gal/hr
2. Total Pump Head	70.00 feet	13. Fuel Cost \$/gal
3. Electricity Cost	0.09 \$/kwhour	14. Hours Per Day hours
4. Hours Per Day	24.00 hours	15. Days Per Year days
5. Days Per Year	365 days	16. Pump Maintenance Cost %**
6. Pump Efficiency	75.00 %	17. Estimated Annual Fuel Cost \$
7. Motor Efficiency	85.00 %	18. Estimated Maintenance Cost \$
8. Pump Maintenance Cost	18.00 %*	** Percent of Annual Fuel Cost
9. Est. Annual Electricity Cost	859 \$	1 order of Allindar 1 doi oost
10. Est. Maintenance Cost	155 \$	
* Percent of Annual Electricity	y Cost	
C Enter Established Annual Pum	ping Cost	
11. Actual Annual Pumping Cost	\$	

19. Total Pumping Cost 1,014 \$

Project proposed chemical

Site Name | Iselin #18

AMD TREAT CHEMICAL COST

Chemical Cost Name: A. Hydrated Lime? E. Anhydrous Ammonia? Opening Screen 21. Titration? Water Parameters 1 Titration? lbs of ammonia lbs of hydrated 22. AmmoniaTitration Amount 2. Hydrated Lime Titration Amount / gal H2O lime / gal of H2O Influent Water 23. Ammonia Purity % 3. Hydrated Lime Purity **Parameters** that Affect % 24. Mixing Efficiency of Ammonia 4. Mixing Efficiency of Hydrated Lime % **Chemical Cost** Non-Bulk Delivery 5. Hydrated Lime Unit Cost \$/lb Calculated Acidity 25. Ammonia Non-Bulk Unit Cost \$/lb 1273.87 mg/L B. Pebble Quick Lime? Bulk Delivery Alkalinity 6. Titration? 26. Ammonia Bulk Unit Cost \$/lb 13.00 mg/L lbs of Pebble 7. Pebble Lime Titration Amount Lime / gal of H2O F. Soda Ash? 8. Pebble Lime Purity Calculate Net 27. Titration? Acidity 9. Mixing Efficiency of Pebble Lime % lbs of soda ash 28 Soda Ash Titration Amount (Acid-Alkalinity) gal of H2O (Delivered in Bags Enter Net Acidity 29. Soda Ash Purity % S manually 10. Pebble Lime Bag Unit Cost \$/lb 30. Mixing Efficiency of Soda Ash % Net Acidity Bulk Delivery (Hot Acidity) \$/lb 11. Pebble Lime Bulk Unit Cost 31 Soda Ash Unit Cost \$/lb 1260.87 mg/L C. Caustic Soda? G. Known Chemical Cost? ✓ 12. Titration? 32. Known Annual Chemical Cost Design Flow gal ofcaustic **Annual Amount of** 13. Caustic Titration Amount .0014480000 60.00 gpm gal H2O **Chemical Cost Sub-Totals Chemicals Consumed** purity of 20% Typical Flow 14. Caustic Purity lbs 33. Total Hydrated Lime Cost ol \$ ol caustic solution 30.00 gpm 15. Mixing Efficiency of Caustic 80.00 \$ ibs 34. Total Pebble Lime Cost Total Iron Non-Bulk Delivery Total Caustic Soda Cost 35.675 \$ 28,540 gals 29.80 mg/L \$/gal 16. Caustic Non-Bulk Unit Cost Aluminum 36. Total Limestone Cost \$ tons 0 Bulk Delivery 3.10 mg/L 37. Total Anhydrous Ammonia Cost \$ lbs O 0 1.25 \$/gal 17. Caustic Bulk Unit Cost Manganese 38. Total Soda Ash Cost lbs 0 61.30 mg/L C D. Limestone? 39. Total Known Chemical Cost \$ 18. Limestone Purity 40. Selected Chemical: CAUSTIC SODA Record Number 19. Limestone Efficiency Annual Chemical Cost \$ 35,675 20 Limestone Unit Cost 1 of 1 \$/ton

Project proposed chemical

Site Name <u>Iselin #18</u>

AMD TREAT

☐ Opening Screen Water Parameters	Sludge Removal Name	GMD.		
Influent Water Parameters that Affect	1. Select One	Selection for Method of Removing Sludge	14. Iron Conce	
Sludge Removal	Sludge Removal	15. Manganese Conc		
Calculated Acidity 1273.87 mg/L	2. Sludge Remova	al Unit Cost 0.05 \$/gal	16. Aluminum Conce	
Alkalinity 13.00 mg/L	C Sludge Removal 3. Vacuum Truc		17. Total Miscellaneous Conce	
	4. Mobiliz	zation Cost \$	19. Sludge	
Calculate Net Acidity		to be Used hr by Mechanical Excavation	□ 20 T	
(Acid-Alkalinity) C Enter Net Acidity manually	6. Mechanical Excavation		21. Gal. of Sludge per Gal of Wate	
Net Acidity (Hot Acidity)	1	zation Cost \$ to be Used hr	22. Estimated Sludge	
1260.87 mg/L		by Lagoon Cleaner	Cost	
Design Flow	9. Lagoon Cleanin		23. Removal by \$ pe	
60.00 gpm Typical Flow 30.00 gpm	10. Mobili	zation Cost \$ to be Used hr	24. Removal by Vacuu 25. Removal by Mechanical Ex	
Total Iron	C Actual Sludge R		26. Removal by Lagoon 27. Actual Sludge Remo	
25 mg/L Aluminum 4 mg/L	12. Actual Sludge Re	emoval Cost \$	Sludge Re	
Manganese 50 mg/L	13. Off Site Di	sposal Cost 0.00 \$	28. Currently Selected Remo	

14. Iron Concentration	29.80 mg/L					
15. Manganese Concentration	61.30 mg/L					
16. Aluminum Concentration	3.10 mg/L					
17. Total Miscellaneous Concentration	0 mg/L					
18. Percent Solids	1.00 %					
19. Sludge Density	8.33 lbs/gal					
☐ 20 Titration?						
21. Gal. of Sludge per Gal of Water Treated	gal					
22. Estimated Sludge Volume	311 yd3/yr					
Cost for Sludge Removal Types						
23. Removal by \$ per Gallon	3,150 \$					
24. Removal by Vacuum Truck	0 \$					
25. Removal by Mechanical Excavation	0 \$					
26. Removal by Lagoon Cleaner	0 \$					
27. Actual Sludge Removal Cost	0 \$					
Sludge Removal Sub-Totals						
28. Currently Selected Removal Cost Plus Off Site Disposal Cost	3,150 \$					

Project proposed chemical

Site Name Iselin #18

AMD TREAT RECAPITIZALITION COST

AMDTREAT

Calculation Period 75 yrs Inflation Rate 3.10 % Net Return Rate 6.00 %

Recapitizalition Name Chemical - bond

A.	В	С	D	E	F	G
Description of Item	Unit Cost Per Item	Quantity	Total Item Cost	Life Cycle	Number of Periods	Total PV
replace caustic components	12,387	1	12,387	25	3	10,833
2. replace pump	8,000	1	8,000	5	15	47,057
3. replace ponds	6,350	1	6,350	25	3	5,553
4.	0	0	0	0	0	0
5.	0	0	. 0	0	. 0	Q.
6.	0	0	0	0	0	0
7.	0	0	0	0	0	0
8.	0	0	0	0	0	0
9.	0	0	0	0	0	0
10.	0	0	0	0	0	0
11.	0	0	0	0	0	0
12.	0	0	0	0	0	0
13.	0	0	0	0	0	0
14.	0	0	0	0	0	0
15.	0	0	0	0	0	0
16.	0	0	0	.0	0	0
17.	0	0	0	0	0	0
18.	0	0	0	0	0	0
19.	0	0	0	0	0	0
20.	0	0	0	0	0	0

Total Capital Cost 26,737 PV Grand Total 63,443 \$