

Economic Analysis of Vehicle-to-Grid Fleets for Grid Services

-Phases I and II in BPA and NYISO regions

Sid Sridhar

Christine Holland

Jan 23, 2023

PNNL-SA-181409

PNNL is operated by Battelle for the U.S. Department of Energy

Pacific Northwest

> **Energy Storage** and Our Clean **Energy Future**

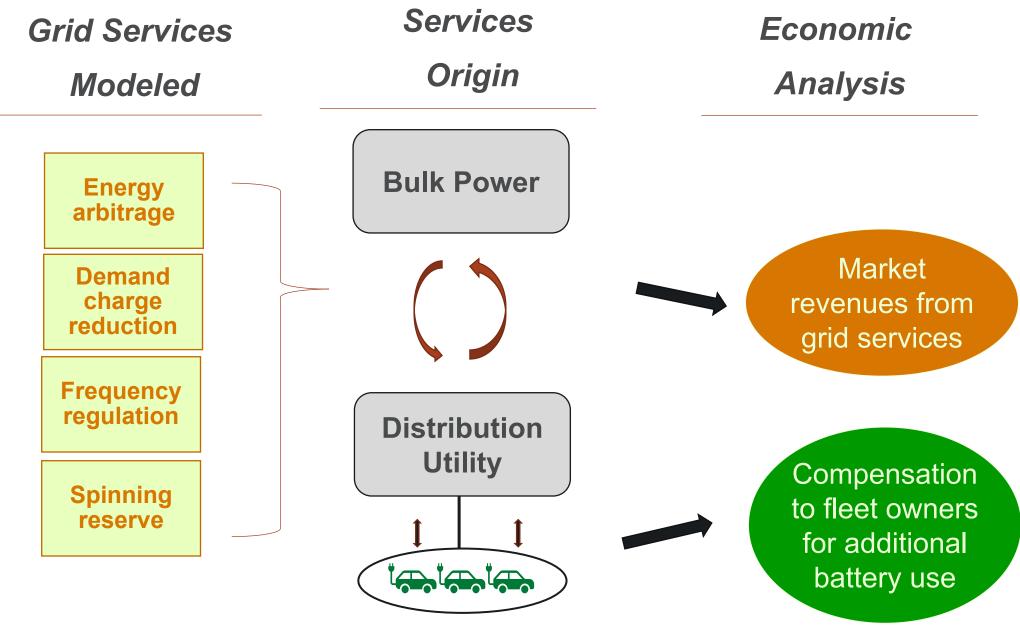
ERG

DRA

A Grid Storage Launchpad Event Series

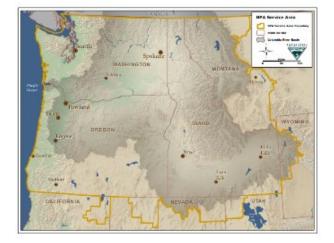
Research questions

>Could 3rd party-owned fleet V2G be an economically viable resource in support of grid services


Stems from a PNNL-Snohomish PUD partnership - Arlington microgrid

Team effort:

- > Sid Sridhar, PNNL, engineer, project lead
- > Christine Holland, PNNL, economist
- > Bowen Huang, PNNL, engineer, distribution system optimization between the fleet and markets
- > Di Wu, PNNL, engineer, optimization consultant
- > Vish Viswanathan, PNNL, engineer, battery consultant, cycling and end-of-life analysis
- > Charlie Vartanian, PNNL, engineer, consultant on electric distribution systems
- > Jeremy Twitchell, PNNL, policy and market specialist
- > Scott Gibson, Arlington Microgrid Manager, use-case feedback
- Consultants from Mitsubishi and Nissan



Fleet V2G Assessment Overview

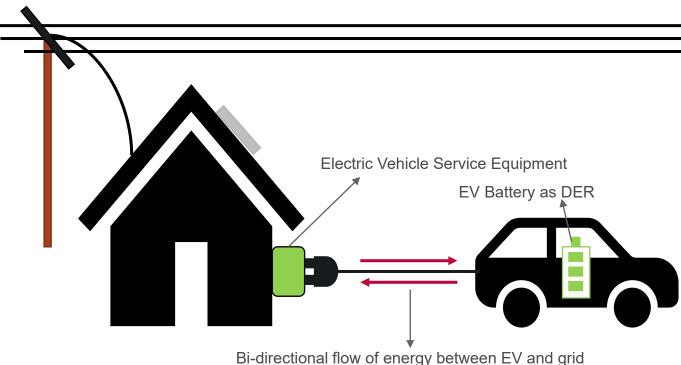
3rd Party fleet owner

Location: Bonneville Power Administration

Vehicle-to-Grid (V2G) Technology Overview

What is it?

V2G tech enables reverse flow of energy from the Electric Vehicle (EV) back to the grid, in addition to traditional flow from grid to EV.


Fleets provide a potential grid resource

How does it help the grid?

- Renewable energy integration
- Resilience
- Grid services
- T&D upgrade deferral

□What EVs/EVSEs are V2G ready?

- LDV EVs Nissan Leaf, Ford F150 Lightning, Tesla, Lucid Air
- EV buses Lion, Blue Bird, Thomas Built
- EVSE (requires a bidirectional charger) Nuvve, Rhombus, Fermata Energy, Mitsubishi

UV2G Using School Bus Fleets

- White Plains School District, NY: ConEdison testing V2G pilot with five Lion electric school buses and Nuvve chargers for stress relief
- Beverly Public Schools, MA: Thomas Built school bus used for peak shaving for over 50 hours in summer 2021 by National Grid
- Cajon Valley Union School District, CA: Five Blue Bird buses with Nuvve bi-directional chargers will be used to evaluate additional revenue streams by the school district

UV2G Using Light-Duty Vehicles

- Snohomish PUD (SnoPUD), WA: V2G using Nissan Leaf EVs with Mitsubishi V2G chargers as DER at Arlington Microgrid
- National Grid, RI: Electric From Company's Nissan Leaf used with Fermata Energy V2G chargers for peak shaving
- Roanoke Electric Cooperative, NC: Two Nissan Leaf EVs with Fermata Energy chargers used at utility HQ for peak shaving and back up power
- Duke Energy, Charlotte, NC: Demand response pilot using Ford F-150 Lightning trucks; reduced vehicle lease payments

V2G Stakeholders

*

Third Party

Aggregator

Ø

Policy

Makers

Priorities

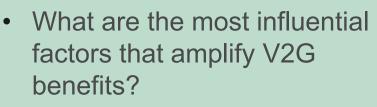
- Sell reasonably-priced EVs with V2G Battery cycling for V2G shouldn't degrade EV Vehicle performance and life OEMs 賽 Make a profit from V2G after deducting infrastructure investments and compensation to EV operators. Power Utility ^tcotcotco EVs ready for primary purpose: moving people and goods Fleet Compensation for battery degradation & replacement Operator
- Make a profit after infrastructure investment
- Increase adoption of EVs for decarbonization and grid resilience

Challenges and Opportunities

- Business models yet to be developed: Driver compensation, discounts on energy, replacement batteries.
- Regulations vary by state. Makes nationwide rollout of technology difficult.
- Fleet participation: Range anxiety, guaranteed minimum SOC levels for primary function
- Battery Degradation: Who would cover the cost of battery degradation/replacement?
- Standards: V2G standards need electric power system and vehicle standards organizations to work together.
- Incentive schemes: Clear understanding of location-specific V2G need and economic viability

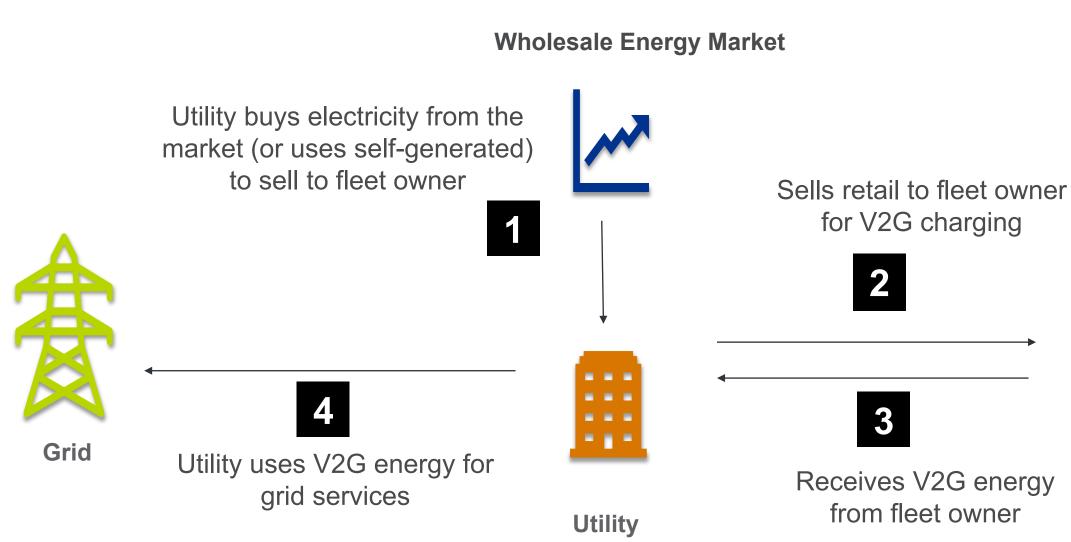
V2G Economic Evaluation – Research Questions

Stakeholder-specific Questions


- What grid services most benefit from V2G?
- What are the annual benefits to a utility?

- How is vehicle battery life impacted?
- What is the net long-term cost/benefit to the fleet operator?

- benefits?
- How do costs/benefits line up against other policy options?



Conceptual V2G Market Overview

Fleet Owner

V2G Economic Evaluation – Fleet Assumptions

Fleet 1: Delivery Vans

- Rivian delivery van
- Battery size per EV: 180 kWh || Total fleet: 9 MWh
- □ Max power in/out: 11 kW
- □ FleetDNA has data for 553 delivery days for 36 vans

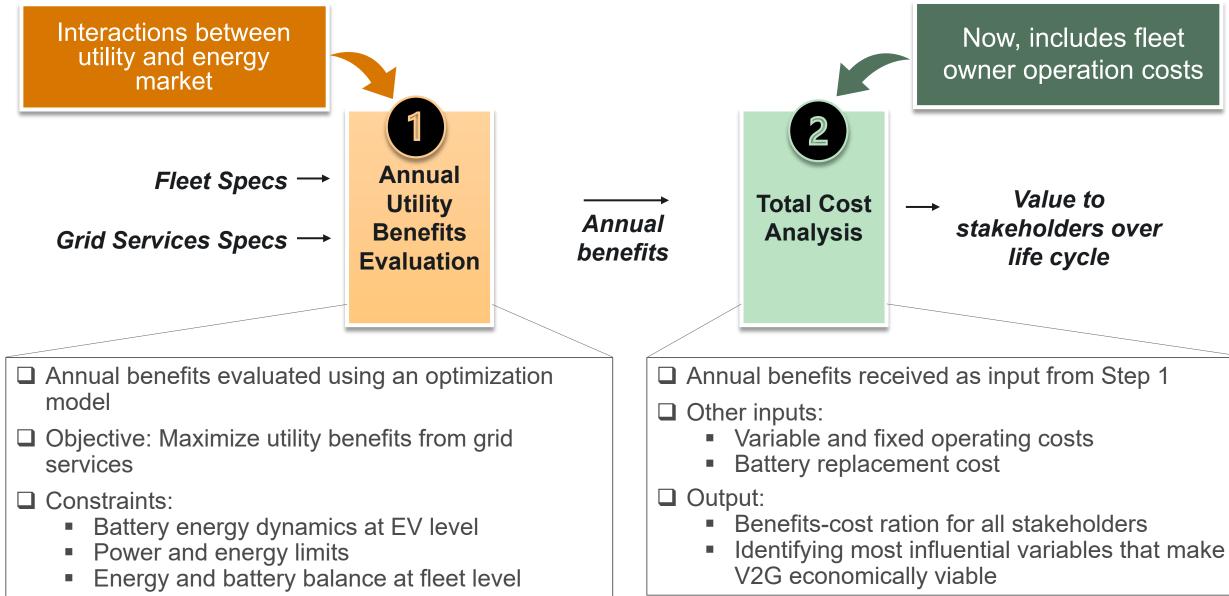
Fleet 2: Maintenance Trucks

- □ Ford F-150 Lightning
- Battery size per EV: 170 kWh || Total fleet: 8.5 MWh
- □ Max power in/out: 22.5 kW
- □ FleetDNA has data for 29 days of operation for four trucks

Fleet 3: School Buses

- □ Lion-C Electric school bus
- fleet: 10.5 MWh
- □ Max power in/out: 19.2 kW
- and 204 bus routes
- summer

Fleet size of 50 vehicles assumed for all fleet types


Battery size per EV: 210 kWh || Total

□ FleetDNA has data for 857 school days

□ Available 24*7 for three months in the

V2G Economic Evaluation - Methodology

Now, includes fleet owner operation costs

Value to stakeholders over life cycle

Economic Overview

The view in this analysis: all benefits go to SnoPUD, and all associated costs go to the fleet owner

Net Present Value (NPV) - Net Present Value is the present value of future cash flows at the required rate of return

Utility Perspective

Fleet Owner

Levelized Cost of Electricity – Cost per kwh of electricity used for just for V2G

What should fleet owners receive to be compensated for V2G services?

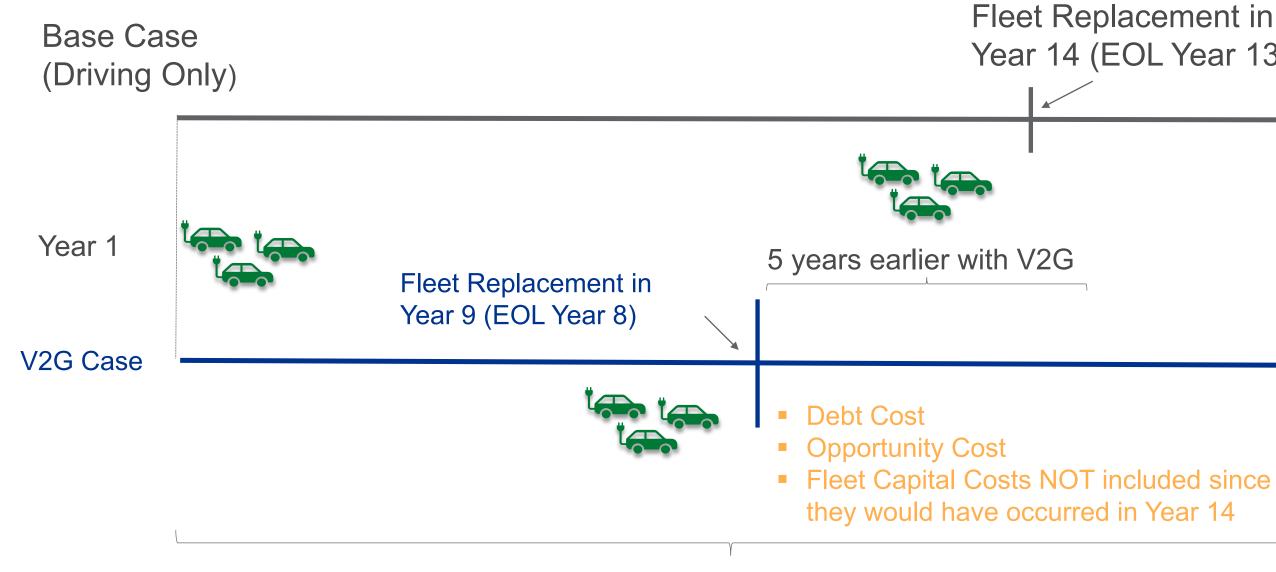
Step 1 – Annual Benefits Estimation Model

Maximize revenues from individually and jointly optimized grid services:

- Energy arbitrage benefits
- Frequency regulation benefits
- Spinning reserve benefits •

Subject to Constraints:

Pacific


hwest

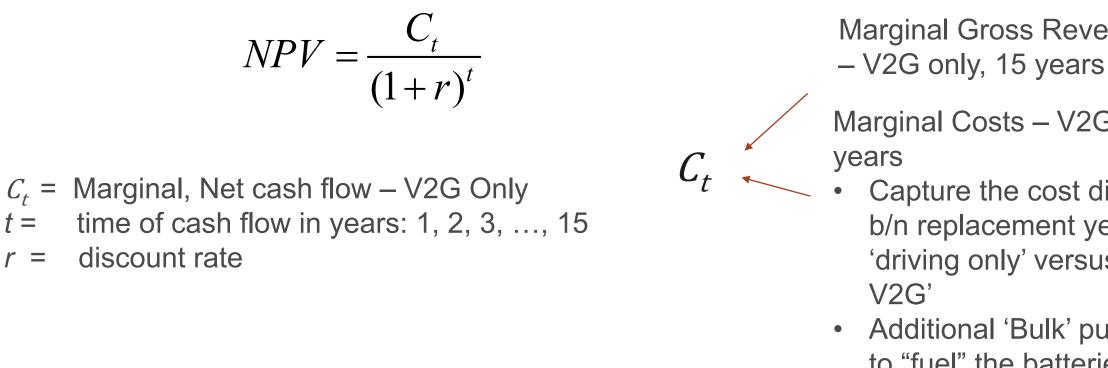
- Battery energy dynamics at EV level •
- Recommended state of charge and depth of discharge
- Power and energy limits
- Energy and battery balance at fleet level
- Non-negativity constraints
- Driving mode constraints based on daily trips
- Individual services constraints (frequency regulation, spinning reserve, and demand charge reduction) •

• Demand charge cost (peak load based on load profile from SnoPUD)

Step 2 – Overview of Costs with and without V2G

15 Years – All Marginal Operation Costs associated with V2G

Fleet Replacement in Year 14 (EOL Year 13)

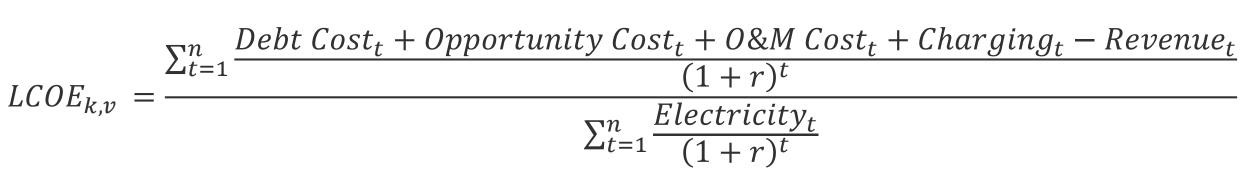

Year 15

t =

r =

Net Present Value is the present value of future cash flows at the required rate of return of your project (discount rate). It's a way to calculate your return on investment.

Marginal Gross Revenues


Marginal Costs – V2G only, 15

• Capture the cost difference b/n replacement years of 'driving only' versus 'with

 Additional 'Bulk' purchases to "fuel" the batteries for non-driving purposes

Net Levelized Cost of Electricity

Other Assumptio	ons
Federal Tax Rate	0.21
Utility Tax Rate	0.039
% Financed with Equity	0.2
% Financed with Debt	0.8
Discount Rate	0.045
Inflation Rate*	0.02
Annual Labor Fee Interactive Controllers and Software(24	
hrs @\$200/hr)	\$4,800
Variable O&M for Battery	
Usage (\$/kwh)	\$0.00052

- k = energy service
- v = fleet type
- r = Discount rate
- t = 15 years

	Cost for a 50 Vehicle Fleet (\$2020)
Bus	\$19,100,000
Van	\$4,200,000
Truck	¢\$3,450,000

Results – Market Revenues (Step 1)

			Annual Cash Flow - V2G only*
Vehicle	Energy Service	Revenue	Charging Cost
	Energy arbitrage	\$357,854	\$334,498
Bus	Demand charge reduction	\$26,890	\$25,135
645	Frequency regulation	\$4,076	\$3,810
	Spinning Reserve	\$2,237	\$2,091
	Energy arbitrage	\$658 <i>,</i> 064	\$643,083
Van	Demand charge reduction	\$46,167	\$45,116
Vari	Frequency regulation	\$7,028	\$6,868
	Spinning Reserve	\$2,152	\$2,103
	Energy arbitrage	\$358,147	\$345,107
Truck	Demand charge reduction	\$28,152	\$27,127
HUCK	Frequency regulation	\$4,202	\$4,049
	Spinning Reserve	\$2,005	\$1,932

*First year only (\$2020). Revenues and costs decline according to degradation rates.

Net Revenue
\$23,356
\$1,755
\$266
\$146
\$14,981
\$1,051
\$160
\$49
\$13,040
\$1,025
\$153
\$73

Results – Cycles and Battery Life

			Annual Cycles of V2G Service								
Vehicle	Cycles Without V2G	Energy arbitrage	Demand charge reduction	Frequency regulation	Spinning Reserve						
Bus	191	582	475	192	182						
Van	422	664	475	192	183						
Truck	401	696	466	190	182						

			Battery Life: Driving + V2G								
Vehicle	Battery Life from Driving Only	Energy arbitrage	Demand charge reduction	Frequency regulation	Spinning Reserve						
Bus	13	9.15	10.62	13	13						
Van	13	6.51	7.88	11.51	11.69						
Truck	13	6.44	8.15	11.96	12.13						

Implications BESS Cycling and Early Fleet Replacement

Buses Used for Arbitrage		
Battery Life	9 Yrs	
Fleet Replacement Cost in 2031	\$15,237,430	
Present Value		% of Cost
Foregone Interest on alternative use of equity (4 Yrs)	-\$2,543,513	25%
Debt on Earlier Loan (4 Yrs)	-\$4,326,465	42%
Operating Cost (includes taxes)	-\$3,487,278	34%
Total Costs	-\$10,357,255	
Buses Used for Frequency Regulation		
Battery Life	13 Yrs	
Fleet Replacement Cost in 2035	Net zero	
Present Value		% of Cost
Foregone Interest on alternative use of equity (4 Yrs)	\$0	0%
Debt on Earlier Loan (4 Yrs)	\$0	0%
Operating Cost (includes taxes)	-\$127,178	100%
Total Costs	-\$127,178	

Results – BPA Total Cost Analysis (Steps 1 & 2)

	All Costs and Revenues of V2G											
Fleet Type	Service	Net Present Value of V2G (\$)	LCOE (\$/kWh)									
Bus	Arbitrage	(\$10,026,501)	\$0.224									
Bus	DemCharge	(\$4,739,606)	\$0.130									
Bus	FreqReg	(\$84,038)	\$0.006									
Bus	SpinRes	(\$84,004)	\$0.006									
Truck	Arbitrage	(\$3,995,416)	\$0.087									
Truck	DemCharge	(\$2,475,894)	\$0.080									
Truck	SpinRes	(\$490,559)	\$0.041									
Truck	FreqReg	(\$490,908)	\$0.039									
Van	Arbitrage	(\$3,684,064)	\$0.089									
Van	DemCharge	(\$2,396,648)	\$0.081									
Van	FreqReg	(\$551,967)	\$0.037									
Van	SpinRes	(\$549,496)	\$0.048									

Phase II – Rerun with cycling/discharge constraints Do not allow battery to degrade beyond typical life span

DRAFT BPA Net Revenues and Battery Discharge - Step 1

		Annual C	ash Flow - V2G	only*
Vehicle	Energy Service	Revenue	Charging Cost	Net Revenue
	Energy arbitrage	\$322,262	\$301,229	\$21,033
Bus	Demand charge reduction	\$23,534	\$21,998	\$1,536
	Frequency regulation	\$3,539	\$3,308	\$231
	Spinning Reserve	\$1,639	\$1,532	\$107
	Energy arbitrage	\$610,799	\$596,894	\$13,905
Van	Demand charge reduction	\$35,185	\$34,384	\$801
Vall	Frequency regulation	\$4,481	\$4,379	\$102
	Spinning Reserve	\$1,406	\$1,374	\$32
	Energy arbitrage	\$301,431	\$290,456	\$10,975
Truck	Demand charge reduction	\$25,460	\$24,533	\$927
HUCK	Frequency regulation	\$3,131	\$3,017	\$114
	Spinning Reserve	\$1,620	\$1,561	\$59

		MWh of V2G								
			Year 1		Year 6		Year 11			
Bus	Energy arbitrage	\$	3,301	\$	3,136	\$	2,979			
Bus	Demand charge reduction	\$	3,101	\$	2,946	\$	2,799			
Bus	Frequency regulation	\$	1,232	\$	1,170	\$	1,112			
Bus	Spinning Reserve	\$	1,152	\$	1,094	\$	1,040			
Van	Energy arbitrage	\$	3,193	\$	3,033	\$	2,881			
Van	Demand charge reduction	\$	2,186	\$	2,076	\$	1,973			
Van	Frequency regulation	\$	1,271	\$	1,207	\$	1,147			
Van	Spinning Reserve	\$	922	\$	876	\$	832			
Truck	Energy arbitrage	\$	3,534	\$	3,357	\$	3,189			
Truck	Demand charge reduction	\$	2,771	\$	2,632	\$	2,501			
Truck	Frequency regulation	\$	939	\$	872	\$	828			
Truck	Spinning Reserve	\$	802	\$	762	\$	724			

DRAFT BPA Full Cost and Benefits Results – Step 2

	V2G Economic Analysis										
Vehicle	Service	LCOE (\$/kwh) V2G Electricity	V2G Present Value Costs Benefit		Benefits to Cost Ratio (BCR)						
Bus	FreqReg	\$0.0041	(\$89,698)	\$37,485	0.42						
Bus	SpinRes	\$0.0044	(\$69,594)	\$17,402	0.25						
Bus	DemCharge	\$0.0018	(\$307,355)	\$249,252	0.81						
Bus	Arbitrage	(\$0.0002)	(\$3,406,075)	\$3,413,094	1.00						
Truck	SpinRes	\$0.0061	(\$67,789)	\$17,130	0.25						
Truck	FreqReg	\$0.0054	(\$84,589)	\$33,147	0.39						
Truck	DemCharge	\$0.0022	(\$331,515)	\$269,537	0.81						
Truck	Arbitrage	\$0.0020	(\$3,262,700)	\$3,191,121	0.98						
Van	FreqReg	\$0.0041	(\$101,262)	\$47,449	0.47						
Van	SpinRes	\$0.0054	(\$66,472)	\$14,997	0.23						
Van	DemCharge	\$0.0028	(\$435,585)	\$372,616	0.86						
Van	Arbitrage	\$0.0044	(\$6,613,923)	\$6,468,443	0.98						

DRAFT New York ISO Net Revenues and Battery Discharge – Step 1

	New York ISO	Annua	I Ca	sh Flow - V20	G onl	У*					MWh of V2G	
Vehicle	Energy Service	Revenue	Ch	arging Cost	Ne	et Revenue				Year 1	Year 6	Year 11
	Energy arbitrage	\$ 120,456	\$	104,223	\$	16,233			Energy arbitrage	4888	4643	4411
Due	Demand charge reduction	\$ 8,155	\$	7,056	\$	1,099		Bus	Demand charge reduction	2220	2109	2003
Bus	Frequency regulation	\$ 156,542	\$	135,446	\$	21,096		DUS	Frequency regulation	1219	1161	1103
	Spinning Reserve	\$ 48,500	\$	41,964	\$	6,536			Spinning Reserve	1186	1129	1073
	Energy arbitrage	\$ 160,011	\$	154,134	\$	5,877		Van	Energy arbitrage	4914	4668	4435
	Demand charge reduction	\$ 24,831	\$	23,919	\$	912			Demand charge reduction	2747	2609	2479
Van	Frequency regulation	\$ 328,054	\$	316,005	\$	12,049			Frequency regulation	984	937	890
	Spinning Reserve	\$ 100,957	\$	97,249	\$	3,708			Spinning Reserve	848	808	767
	Energy arbitrage	\$ 253,760	\$	250,886	\$	2,874			Energy arbitrage	4644	4411	4191
Truck	Demand charge reduction	\$ 71,254	\$	70,447	\$	807		Truck	Demand charge reduction	2832	2690	2556
Truck	Frequency regulation	\$ 1,062,630	\$	1,050,595	\$	12,035			Frequency regulation	1289	1074	1020
	Spinning Reserve	\$ 312,917	\$	309,373	\$	3,544			Spinning Reserve	1115	929	883

*First year only (\$2020). Revenues and costs decline according to degradation rates.

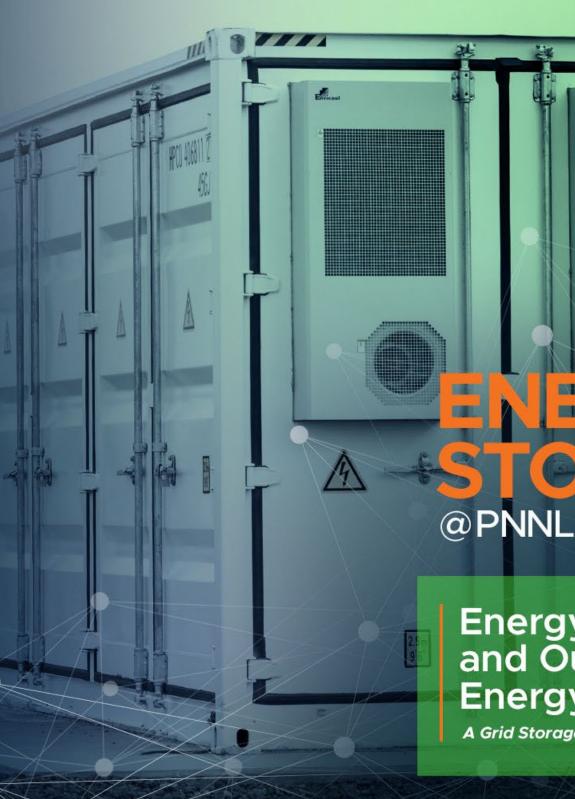
DRAFT New York ISO Full Cost and Benefits Results – Step 2

V2G Economic Analysis					
Vehicle	Service	LCOE (\$/kwh) V2G Electricity	Present Value Costs	Present Value Benefits	Benefits to Cost Ratio
Bus	Arbitrage	(\$0.00)	(\$1,248,687)	\$1,266,233	1.01
Bus	DemCharge	\$0.00	(\$138,036)	\$85,726	0.62
Bus	FreqReg	(\$0.01)	(\$1,580,597)	\$1,645,565	1.04
Bus	SpinRes	\$0.00	(\$526,060)	\$509,832	0.97
Truck	Arbitrage	\$0.00	(\$2,829,245)	\$2,685,956	0.95
Truck	DemCharge	\$0.08	(\$3,037,981)	\$754,198	0.25
Truck	FreqReg	\$0.08	(\$8,822,330)	\$7,873,289	0.89
Truck	SpinRes	\$0.01	(\$3,452,790)	\$3,312,321	0.96
Van	Arbitrage	\$0.06	(\$4,808,810)	\$1,693,728	0.35
Van	DemCharge	\$0.08	(\$2,529,984)	\$262,835	0.10
Van	FreqReg	\$0.06	(\$4,036,999)	\$3,472,475	0.86
Van	SpinRes	\$0.06	(\$1,616,777)	\$1,068,713	0.66


Conclusions

- Number of cycles drives early replacement cost oftentimes the largest part of cost.
- Arbitrage, followed by demand charge, consistently has the highest market revenues, highest number of cycles, and correspondingly highest fleet lifecycle costs in BPA.
- Frequency regulation and spinning reserve have the lowest cycles (lowest depth of discharge) and lowest fleet costs in BPA.
- Frequency regulation and spinning reserve have the best overall economic value when cycles were not constrained in BPA.
- With cycling constraints Arbitrage and Demand Charge Reduction perform the best in BPA
- With cycling constraints Freq Reg performs the best in NYISO; Arbitrage is cost effective for bus fleets.
- Currently, no V2G application to grid services is economically viable if **batteries have to be replaced prematurely**

Fleet V2G – Future work


- Allow for increased/decreased market price volatility with known resource and demand additions
- V2G for grid resilience (medium duration battery during outage?)
 - How much resilience could the fleet provide with no lead time?
 - How much lead time would you need for 4 6 hours of power
 - What kind of controls are necessary?
 - What kind of coordination is necessary?
 - How can you triage loads?
 - What kind of controls are necessary at the EVSE level?
- Examine other regions: MISO, CISO

Thank You

Special thanks to Jeremy Twitchell (PNNL) and Imre Gyuk (DOE)

Christine Holland christine.holland@pnnl.gov

Energy Storage and Our Clean Energy Future

ERG

O RAG

A Grid Storage Launchpad Event Series