DRAFT

2022

Pennsylvania Greenhouse Gas Inventory Report

July 2022

Table of Contents

List of Figures and Tables	3
Greenhouse Gas Inventory Overview	
Greenhouse Gas Emissions by Sector	11
Residential Sector	11
Commercial Sector	12
Industrial Sector	13
Combustion of Fossil Fuels in the Industrial Sector	13
Industrial Processes	15
Coal Mining and Abandoned Coal Mines	
Natural Gas and Oil Systems	16
Transportation Sector	17
Electricity Production Sector	17
Agriculture Sector	20
Waste Management Sector	22
Forestry and Land Use Sector	24
Conclusion and Looking Forward	25

List of Figures and Tables

Figures	
Figure 1– GHG Emissions by Sector (MMTCO ₂ e)	8
Figure 2 – GHG Emissions by Gas, 2019 (MMTCO ₂ e)	10
Figure 3 – GHG Emissions by Gas, 2005-2019 (MMTCO ₂ e)	10
Figure 4 - Residential Sector GHG Emissions by Fuel Type (MMTCO ₂ e)	12
Figure 5– Commercial Sector GHG Emissions by Fuel Type (MMTCO ₂ e)	13
Figure 6– Industrial Sector GHG Emissions by Fuel Type (MMTCO ₂ e)	
Figure 7– Transportation Sector Fuel Use (BBtu)	
Figure 8– Electricity Generation by Type for 2019	18
Figure 9– Electricity Production Sector GHG Emissions by Fuel Type (MMTCO ₂ e)	19
Tables	
Table 1 - GHG Emissions by Sector (MMTCO ₂ e)	7
Table 2 - GHG Emissions by Gas (MMTCO ₂ e)	9
Table 3– Residential Sector Fuel Consumption by Year (BBtu)	11
Table 4- Commercial Sector Fuel Consumption (BBtu)	12
Table 5 – Industrial Sector Fuel Consumption (BBtu)	14
Table 6– Industrial Sector Process Emissions (MMTCO ₂ e)	15
Table 7– CH ₄ from Coal Mining-Related Process Emissions (MMTCO ₂ e)	16
Table 8 – CH ₄ from Natural Gas Production Process Emissions (MMTCO ₂ e)	
Table 9– Transportation Sector Emissions by Fuel Consumption (MMTCO ₂ e)	
Table 10– Electricity Generation by Fuel Type (%)	
Table 11– Fuel Use for Electricity Generation (BBtu)	
Table 12- Contribution to GHG Emissions, Fuel Type, in the Electricity Sector (%)	20
Table 13 – Electricity Consumption by Sector (TWh)	
Table 14– Electricity Generated, Consumed and Exported (TWh)	
Table 15– Animal Populations Contributing to GHG Emissions (1,000 Head)	
Table 16- GHG Emissions (CH ₄), by Livestock Type, from Enteric Fermentation (MMTCO ₂ e)	
Table 17 – GHG Emissions (CH ₄ and N ₂ O), by Livestock Type, from Manure Management (MMTCO ₂ e)	
Table 18 – GHG Emissions (N ₂ O) from the Management of Agricultural Soils (MMTCO ₂ e)	
Table 19– GHG Emissions Associated with Landfilling Operations (MMTCO ₂ e)	
Table 20– GHG Emissions Associated with Waste Combustion (MMTCO ₂ e)	
Table 21– GHG Emissions Avoided from Recycling	
Table 22 – GHG Emissions Associated with Wastewater Treatment (MMTCO ₂ e)	24

Greenhouse Gas Inventory Overview

Global climate is changing due to increased concentrations of greenhouse gases (GHGs) such as carbon dioxide (CO₂), methane (CH₄), and Nitrous Oxide (N₂O) in Earth's atmosphere during the last century¹. Pennsylvania's Climate Impacts Assessment² projects that the average annual temperature in Pennsylvania will increase by 5.9° F by midcentury from the baseline period (1971-2000), and average annual precipitation will increase by 8 percent over the same timeframes. The Climate Impacts Assessment provides details on how these changes impact Pennsylvanians. These changes in GHG concentrations and global climate have been linked to human activities and are long-lasting, as most GHGs take decades to break down and leave the atmosphere.

The Pennsylvania Climate Change Act (Act 70 of 2008, or Act) requires the Department of Environmental Protection (DEP) to:

- administer a Climate Change Advisory Committee³;
- set up a voluntary registry of GHG emissions⁴;
- prepare a Climate Change Impacts Assessment and provide an update once every three years;
- prepare a Climate Change Action Plan⁵ and provide an update once every three years; and
- develop an inventory of GHGs and update this inventory annually.

Greenhouse gas emissions data presented in this inventory help track overall emissions trends over time. Executive Order 2019-01, signed by Governor Wolf on January 8, 2019, sets GHG emissions reduction goals at 26 percent by 2025 from 2005 levels and 80 percent by 2050 from 2005 levels. The year 2005 is used as a reference point for emissions reductions in order to maintain consistency with goals set forth in the Paris Climate Agreement. As of 2019, Pennsylvania has achieved a nearly 18 percent reduction in net GHG emissions compared to 2005; however, during the last two data years (2018 and 2019), GHG emissions rose slightly in the Commonwealth. An additional reduction of 24.28 million metric tons of carbon dioxide equivalent (MMTCO₂e) from 2019 levels is required to reach the 2025 goal and 180.64 MMTCO₂e to reach the 2050 goal. This underscores the need for policies aimed at reducing Pennsylvania's GHG emissions.

Pennsylvania has several sectors which contribute to GHG emissions, and each of these sectors has undergone fluctuations in GHG emissions since the year 2005. Changes in the amount and type of fuel consumption, growth and contraction in the economy, and duration of severe weather events all have a role in the trends observed in the Commonwealth's GHG emissions.

The following sectors emit GHGs in Pennsylvania and are included in this inventory: residential, commercial, industrial, transportation, electricity production, agriculture, waste management, and forestry and land use. Data for this inventory were primarily obtained from the United States Environmental Protection Agency (EPA) State Inventory Tool (SIT). The SIT is an interactive spreadsheet model designed to help states develop GHG emissions inventories and provides a streamlined way to update an existing inventory or complete a new inventory.

¹ IPCC 2014: https://www.ipcc.ch/report/ar5/syr/

³ https://www.dep.pa.gov/Citizens/climate/Pages/CCAC.aspx

⁴ https://www.theclimateregistry.org/

⁵ https://www.dep.pa.gov/citizens/climate/Pages/PA-Climate-Action-Plan.aspx

The SIT consists of 11 estimation modules applying a top-down approach to calculate GHG emissions and one module to synthesize estimates across all modules. The default data are gathered by federal agencies and incorporate reported data from private, state, and local sources covering fossil fuels, electricity consumption, agriculture, forestry, waste management, and industry. As is customary, the units for the GHG emissions are given in million metric tons of carbon dioxide equivalent (MMTCO₂e). A metric ton is equal to 2,204.6 pounds or approximately 1.1 short tons (US tons). The GHGs the SIT typically accounts for are CO₂, CH₄, and N₂O. Each GHG has a different global warming potential (GWP), which is accounted for when converting emissions to MMTCO₂e. The default GWP used by the SIT is 1.0 for CO₂, 25 for CH₄, and 298 for N₂O. The GWP of a GHG will vary depending on the time scale selected, and the default time scale for the SIT is 100 years. In order to provide consistency with previous updates and other state inventories that use the SIT, the default values were not changed in compiling the inventory. Where default data are not available, state-specific data is incorporated into the SIT modules where it is available. For the current update to 2019 data, the National Inventory report disaggregated energy use and GHG emission totals to the state level. ⁶ This shift ensures consistency with the national inventory, adherence to international standards, and methodological consistency. It also ensures that the state inventory covers the same time series, as well as anthropogenic sources and sinks for GHGs in the national inventory. This access to new estimates in various sectors resulted in some changes to the historic data from previous Commonwealth GHG inventory reports. Most of these changes were small, but some highlighted significant discrepancies in categories such as Ozone Depleting Substances (ODS) substitute emissions and international bunker fuels.

While the complete inventory presented in this report includes GHG emissions data from 2005 through 2019, fuel consumption data is available from the U.S, Energy Information Administration's (EIA) State Energy Data System (SEDS) for 2020⁷ and has been included in relevant tables and figures below. It should be noted that due to impacts from COVID-19 related shutdowns, data from 2020 may be anomalous.

As shown in Table 1, the total statewide gross GHG emissions for Pennsylvania in 2019, the latest year with complete data available from the SIT, were 266.01 MMTCO₂e. This is an increase of 0.15 MMTCO₂e from 2018. Pennsylvania's forestry and land use sector provides a carbon sink for GHG emissions, absorbing 27.47 MMTCO₂e in 2019 and lowering the Commonwealth's net GHG emission for 2019 to 238.55 MMTCO₂e. Table 1 also shows a relative decrease of 17.5 percent in the gross emission totals and 17.6 percent in the net emission totals for 2019 relative to 2005.

Also shown in Table 1, the sectors with the largest contribution to the Commonwealth's GHG emissions are the industrial, electricity production and transportation sectors. Increased emissions were seen across all three of these sectors between 2018 and 2019. The industrial sector was once again the highest GHG producing sector in the state in 2019, producing 32 percent of the Commonwealth's emissions. Emissions from the industrial sector have been trending upward since 2016 with an increase of eight percent between 2016 and 2019. Emissions from the electricity production sector increased slightly in 2019, ending the downward trend observed over the past decade. The relative change for each of these sectors between 2005 and 2019 was an increase of 8.44 MMTCO₂e (10.8 percent) for the industrial sector, a decrease of 50.66 MMTCO₂e (40.3 percent) for the electricity production sector, and a decrease of 9.54 MMTCO₂e (13.8 percent) for the transportation sector. Together, these three sectors annually account for approximately 83 percent of Pennsylvania's gross GHG emissions.

⁶ State GHG Emissions and Removals | US EPA

⁷ 2020 data from SEDS released 7/24/2022. U.S. Energy Information Administration - EIA - Independent Statistics and Analysis

The residential, and commercial sectors experienced decreases in emissions between 2018 and 2019 as well as overall declines in GHG emissions since 2005. The residential and commercial sectors had decreases in GHG emissions of 4.38 and 0.98 MMTCO $_2$ e (18.3 and 7.7 percent), respectively, since 2005. Emissions from the commercial sector, however, have trended upward since 2016 with an 11 percent increase between 2016 and 2019. GHG emissions from the agricultural sector decreased slightly between 2018 and 2019 but have increased overall 1.39 MMTCO $_2$ e (16.8 percent) since 2005.

GHG emissions from the waste management sector experienced a 0.83 MMTCO₂e (17.9 percent) decrease from 2005 to 2019. During this same period, the GHG emissions sequestered in the forestry and land use sector have decreased by 5.57 MMTCO₂e (16.9 percent).

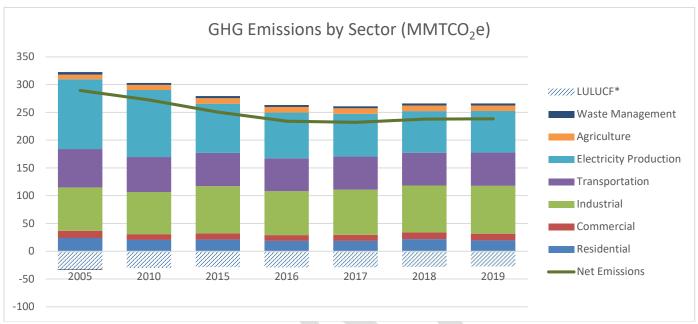

A brief discussion of each individual sector will occur later in the document. The discussions will focus on the trends of various components within each sector, such as fuel mix or subgroups of the sector.

Table 1 - GHG Emissions by Sector (MMTCO₂e)

Sector / Emission Sources (MMTCO₂e)	2005	2010	2015	2016	2017	2018	2019
Residential	23.90	20.21	20.75	18.48	18.53	21.65	19.52
Commercial	12.86	10.53	11.44	10.57	10.85	12.12	11.88
Industrial	77.95	75.82	84.90	79.12	81.46	84.36	86.38
Combustion of Fossil Fuels	46.34	40.01	50.15	45.49	47.29	49.94	49.75
Industrial Process	13.05	12.52	12.42	12.23	11.91	11.66	12.39
Coal Mining and Abandoned Mines	9.82	11.99	10.06	9.25	10.07	10.54	11.91
Natural Gas and Oil Systems	8.74	11.30	12.27	12.15	12.19	12.22	12.33
Transportation	69.25	62.98	60.01	58.95	59.48	59.34	59.71
Petroleum	67.54	60.36	57.59	56.70	57.04	56.75	57.36
Natural Gas	1.71	2.62	2.42	2.25	2.44	2.59	2.34
Electricity Production	125.75	120.80	88.56	82.63	77.04	74.85	75.09
Coal	117.14	106.95	63.98	54.87	47.99	44.77	38.07
Petroleum	4.19	0.51	0.45	0.25	0.22	0.58	0.16
Natural Gas	4.42	13.34	24.13	27.51	28.82	29.50	36.86
Agriculture	8.23	9.26	9.93	9.88	9.97	10.04	9.62
Enteric Fermentation	3.37	3.44	3.43	3.51	3.57	3.59	3.51
Manure Management	1.68	1.93	2.17	2.26	2.22	2.31	2.24
Agricultural Soil Management	3.13	3.49	4.20	3.90	3.98	3.99	3.71
Liming of Soils	0.03	0.38	0.08	0.16	0.15	0.11	0.11
Urea Fertilization	0.02	0.03	0.04	0.04	0.04	0.04	0.04
Burning of Agricultural Crop Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wasta Managament	4.65	2 40	2 62	2 60	2 70	2 01	2 02
Waste Management Solid Waste and Combustion	3.58	3.40 2.25	3.62	3.68 2.51	3.70	3.81 2.63	3.82
Wastewater	1.07	1.15	2.45 1.16	2.51 1.17	2.53 1.17	1.18	2.64
wastewatei	1.07	1.15	1.10	1.17	1.17	1.10	1.18
Total Statewide Gross Emissions (Prod.)	322.58	303.01	279.20	263.31	261.03	266.16	266.01
Change relative to 2005		-6.1%	-13.4%	-18.4%	-19.1%	-17.5%	-17.5%
Forestry and Land Use	-33.04	-30.56	-28.55	-29.31	-28.92	-28.36	-27.47
Total Statewide Net Emissions (Prod w/ Sinks)	289.55	272.46	250.64	234.00	232.11	237.81	238.55
Change relative to 2005		-5.9%	-13.4%	-19.2%	-19.8%	-17.9%	-17.6%

Figure 1 displays the total contribution to the Commonwealth's GHG emissions for the residential, commercial, industrial, transportation, electricity production, agriculture, and waste management sectors.

Figure 1- GHG Emissions by Sector (MMTCO₂e)

^{*} LULUCF – Land Use, Land Use Change, and Forestry

Table 2, Figure 2, and Figure 3 present GHG emissions by gas in units of MMTCO₂e. As noted above, it is customary to present GHG emissions data in units of MMTCO₂e so that emissions sources can be compared.

Table 2 - GHG Emissions by Gas (MMTCO₂e)

Emissions (MMTCO₂E)	2005	2010	2015	2016	2017	2018	2019
Gross CO₂	292.15	265.54	241.93	227.06	223.83	228.44	227.16
Net CO ₂	259.07	234.90	213.15	197.51	194.71	199.91	199.54
CO2 from Fossil Fuel Combustion	281.40	256.44	232.78	217.98	215.04	219.85	217.94
Industrial Processes	9.12	7.27	7.41	7.21	6.92	6.67	7.29
Waste	1.58	1.43	1.61	1.67	1.68	1.78	1.78
Agriculture	0.05	0.40	0.13	0.20	0.19	0.15	0.15
LULUCF	(33.08)	(30.64)	(28.77)	(29.55)	(29.12)	(28.53)	(27.62)
CH ₄	26.56	30.57	29.97	29.15	30.02	30.65	31.96
Stationary Combustion	0.39	0.42	0.51	0.44	0.44	0.50	0.48
Mobile Combustion	0.13	0.10	0.07	0.07	0.06	0.06	0.06
Coal Mining	9.82	11.99	10.06	9.25	10.07	10.54	11.91
Natural Gas and Oil Systems	8.75	11.31	12.27	12.15	12.20	12.22	12.32
Enteric Fermentation	4.45	4.78	4.96	5.12	5.14	5.23	5.12
Forest Fires	0.01	0.03	0.14	0.16	0.12	0.10	0.08
Waste	1.96	0.80	0.81	0.82	0.82	0.82	0.83
Wastewater	1.06	1.13	1.15	1.16	1.16	1.17	1.16
N ₂ O	6.14	5.96	6.22	5.82	5.82	5.80	5.43
Stationary Combustion	0.84	0.75	0.59	0.51	0.48	0.48	0.44
Mobile Combustion	1.49	1.04	0.66	0.62	0.58	0.54	0.52
Industrial Processes	-	-	-	-	-	-	-
Forest Fires	3.73	4.08	4.85	4.56	4.63	4.65	4.35
N2O from Settlement Soils	0.04	0.05	0.08	0.09	0.08	0.08	0.08
Waste	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Wastewater	0.01	0.01	0.01	0.01	0.01	0.01	0.01
HFC, PFC, SF ₆ and NF ₃ Emissions	3.93	5.25	5.01	5.02	4.99	5.00	5.10
Industrial Processes	3.93	5.25	5.01	5.02	4.99	5.00	5.10
Indirect CO ₂ from Electricity Consumption*	89.46	84.58	64.65	59.36	55.83	55.72	52.80
Gross Emissions	328.79	307.32	283.12	267.06	264.66	269.89	269.66
Sinks	(33.08)	(30.64)	(28.77)	(29.55)	(29.12)	(28.53)	(27.62)
Net Emissions (Sources and Sinks)	295.71	276.68	254.35	237.50	235.54	241.36	242.04

^{*} Emissions from Electricity Consumption are not included in totals in order to avoid double counting with Fossil Fuel Combustion estimates.

The vast majority of GHG emissions are comprised of CO₂ resulting from the combustion of fossil fuels including coal, petroleum products, and natural gas. In total, CO₂ comprises 84 percent of GHG emission, in terms of MMTCO₂e, followed by CH₄ at 12 percent (Figure 2). CO₂ has also seen the greatest reduction of GHGs reported in the SIT as shown in Figure 3. Sources of other GHGs have remained relatively stable from 2005 to 2019.

Note: Totals shown here are slightly different than totals shown in Table 1 due to differences in accounting and rounding errors.

Figure 2 - GHG Emissions by Gas, 2019 (MMTCO₂e)

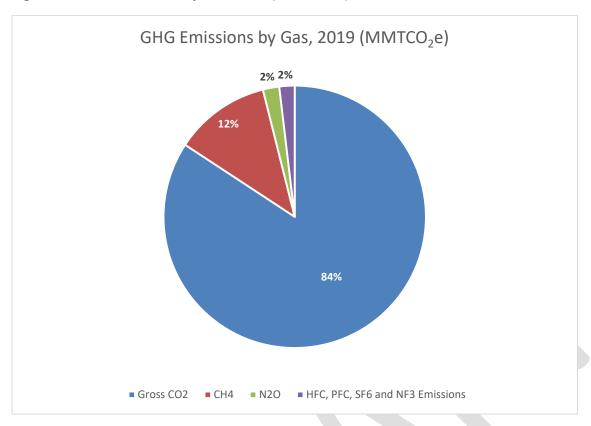
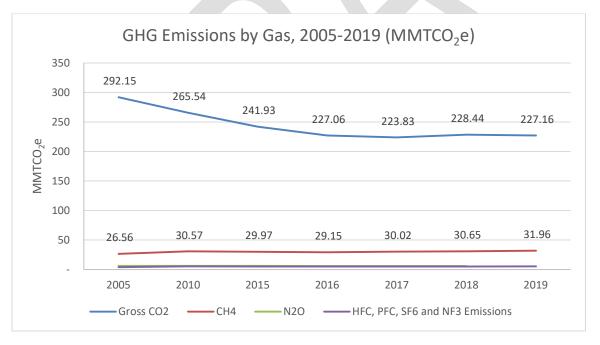



Figure 3 – GHG Emissions by Gas, 2005-2019 (MMTCO₂e)

Greenhouse Gas Emissions by Sector

Residential Sector

The emissions attributed to the residential sector result from fuels combusted to provide heat and hot water to residential homes within the Commonwealth. These fuels, in order of decreasing use in 2019, are natural gas, heating oil, propane, and kerosene. Table 3 shows the amount of each fuel used (BBtu, or billion British thermal units) in residential homes within the Commonwealth. Several factors influence the amount of a fuel being used, including the severity of the weather, efficiency of the heating or hot water system, and the price and availability of a particular fuel. Fuel consumption increased in 2019 relative to 2018. No electricity consumption is included in these values.

Table 3– Residential Sector Fuel Consumption by Year (BBtu)

	2005	2010	2015	2016	2017	2018	2019	2020 ⁸
Coal ⁹	1,253	0	0	0	0	0	0	0
Heating Oil	115,753	85,432	86,789	73,049	71,250	86,087	66,666	59,300
Kerosene	10,330	4,211	1,350	1,513	921	930	1,056	1,000
Propane	15,122	20,812	18,230	16,909	17,668	20,768	23,752	18,625
Natural Gas	255,038	231,854	247,059	224,764	228,190	262,667	245,942	230,053
Total	397,496	342,309	353,428	316,235	318,029	370,452	337,416	308,978

Each fuel used in residential homes will emit GHGs at different rates. Figure 4 shows the GHG emission (MMTCO₂e) attributed to each fuel used in the residential sector. The emissions related to electricity use for residential homes using electricity for heating or cooling purposes are accounted for in the electricity production sector.

⁸ 2020 data was compiled from U.S. Energy Information Administration's State Energy Data System (SEDS), released 7/24/2022. 2020 data is not available for all sectors presented in this inventory and will be presented in full in the 2023 Pennsylvania Greenhouse Gas Inventory Report.

⁹ The U.S. Energy Information Administration, which is the source of default fuel consumption data used in the SIT, assumes that coal use for residential heating is zero from 2008 on.

Residential Sector GHG Emissions by Fuel Type (MMTCO₂e) ■ Heating Oil ■ Kerosene Propane Natural Gas

Figure 4 - Residential Sector GHG Emissions by Fuel Type (MMTCO₂e)

Commercial Sector

The emissions attributed to the commercial sector result from fuels that are combusted to provide heat and hot water to commercial buildings within the Commonwealth. These fuels, in order of decreasing use in 2019, are natural gas, heating oil, motor gasoline, propane, coal, kerosene, and residual fuel. Table 4 shows the amount of each fuel used (billion Btu) in commercial buildings within the Commonwealth. Several factors will influence the amount of a fuel being used, including the severity of the weather, efficiency of the heating or hot water system, and the price and availability of a particular fuel. No electricity consumption is included in these values.

Table 4- Commercial Sector Fuel Consumption (BBtu)

_	2005	2010	2015	2016	2017	2018	2019	2020 ¹⁰
Coal	14,407	4,729	1,963	1,031	645	362	311	224
Heating Oil	35,632	23,625	18,765	15,272	17,907	20,328	19,943	13,707
Kerosene	2,610	755	144	222	143	179	217	176
Propane	5,480	6,853	7,829	8,135	7,225	8,409	8,019	7,966
Motor Gasoline ¹¹	462	428	13,062	13,142	13,331	13,533	13,620	14,747
Residual Fuel	3,934	570	53	127	3	5	-	-
Natural Gas	150,849	146,902	159,442	148,851	152,220	171,616	167,984	154,048
Total	213,374	183,862	201,258	186,780	191,474	214,432	210,094	190,868

¹⁰ Ibid.

¹¹ Beginning in 2015, the Federal Highway Administration (FHWA) has revised its methods of estimating non-highway use of motor gasoline. Therefore, estimates for motor gasoline consumption by sector from 2015 forward are not compatible with data before 2015.

As in the residential sector, each fuel used in commercial buildings will have different rates of GHG emissions. Figure 5 shows the GHG emissions (MMTCO $_2$ e) attributed to each fuel used in the commercial sector. The emissions from burning firewood to heat commercial buildings are accounted for in the forestry and land use sector. The emissions related to electricity use for commercial buildings using electricity for heating or cooling purposes are accounted for in the electricity production sector.

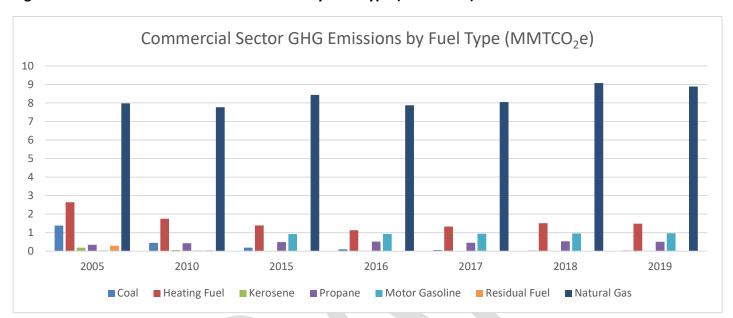


Figure 5- Commercial Sector GHG Emissions by Fuel Type (MMTCO₂e)

Industrial Sector

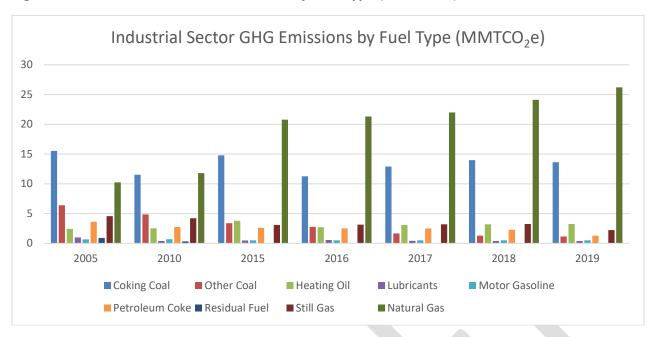
Greenhouse gas emissions from the industrial sector differ from the residential and commercial sectors in that these emissions come from four separate subgroups: combustion of fossil fuels, industrial processes, activities involving coal mining and abandoned coal mines, and activities involving natural gas and oil systems. Within the four subgroups, combustion of fossil fuels consistently accounts annually for over half of the GHG emissions from the industrial sector.

Combustion of Fossil Fuels in the Industrial Sector

The emissions attributed to the industrial sector result from fuels combusted to heat and cool industrial buildings and equipment within the Commonwealth. These fuels, in order of decreasing use in 2019 are natural gas, coal/coke, heating oil, and various other fuels. Table 5 shows the amount of each fuel used (BBtu) in the industrial sector within the Commonwealth. Several factors will influence the amount of a fuel being used, including the severity of the weather, efficiency of the heating or cooling system, and the price and availability of a particular fuel.

Table 5 – Industrial Sector Fuel Consumption (BBtu)

	2005	2010	2015	2016	2017	2018	2019	2020 ¹²
Coking Coal	182,475	134,939	172,216	130,860	149,838	162,218	158,335	105,660
Other Coal	67,654	51,240	35,377	28,876	17,257	13,516	12,035	12,323
Asphalt and Road Oil	60,964	46,840	47,228	46,510	47,515	43,561	45,301	37,252
Aviation Gasoline								
Blending	390	-11	-12	-9	-6	-50	-28	-12
Components	22.055	24.000	F1 101	26.700	41 020	42 220	42 022	32,112
Heating Oil	33,055	34,088	51,101	36,780	41,820	43,320	43,822	,
Kerosene	663	281	68	82	58	79	63	60
Propane	22,823	29,562	20,734	21,201	20,946	21,252	20,765	5,948
Lubricants ¹³	14,716	5,910	7,060	6,970	6,461	6,101	5,966	5,303
Motor Gasoline	9,486	9,712	7,055	7,004	7,079	7,163	7,150	7,748
Misc. Petro Products	1,493	1,795	2,508	2,540	2,593	2,582	2,349	2,226
Petroleum Coke	36,889	26,859	25,424	24,379	24,432	22,396	12,613	7,802
Residual Fuel	12,039	4,272	565	770	598	477	580	705
Still Gas	70,200	67,173	49,515	50,075	51,235	51,797	35,455	20,781
Special Naphthas	3,265	1,653	6,891	6,496	6,883	6,314	6,559	5,937
Unfinished Oils ¹⁴	131	1,276	-589	268	2,472	992	3,142	2,818
Waxes	1,871	894	722	751	625	764	641	566
Natural Gas	197,525	228,806	404,961	418,060	432,717	475,033	516,241	490,266
Total	715,639	645,289	830,824	781,613	812,523	857,515	870,989	737,495


As in the residential and commercial sectors, each fuel used in the industrial sector emits GHGs at different rates. Figure 6 shows the GHG emissions (MMTCO $_2$ e) attributed to each fuel used in the industrial sector. The emissions related to electricity within the industrial sector are accounted for in the electricity production sector.

¹² Ibid.

¹³ EIA's State Energy Data System (SEDS) modified the methodology for deriving lubricants consumption in data year 2016. https://www.eia.gov/state/seds/seds-data-changes.php?sid=US#2016

¹⁴ Negative values represent storage of energy since oils are manufactured from other fuels. Negative emissions serve to correct the overestimation of emissions attributed to the parent fuel. (Source: SIT)

Figure 6- Industrial Sector GHG Emissions by Fuel Type (MMTCO₂e)

Industrial Processes

Some of the industrial processes that are accounted for in this group include cement manufacturing, lime manufacturing, limestone and dolomite use, iron and steel production, substitutes for ODS, and electric power transmission and distribution systems. Table 6 shows the GHG emissions (MMTCO₂e) attributed to each of the processes included within the industrial sector.

Table 6- Industrial Sector Process Emissions (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
CO ₂ Emissions							
Cement Manufacture	3.13	1.65	1.85	1.83	1.74	1.61	1.80
Lime Manufacture	0.85	0.85	0.73	0.69	0.62	0.65	0.71
Limestone and Dolomite Use	0.55	0.87	0.95	0.80	0.67	0.51	0.90
Soda Ash	0.11	0.09	0.08	0.08	0.08	0.08	0.08
Iron & Steel Production	4.48	3.80	3.80	3.80	3.80	3.80	3.80
Urea Consumption	0.00	0.00	0.01	0.01	0.01	0.01	0.01
HFC, PFC, SF ₆ , and NF₃ Emissions							
ODS Substitutes ¹⁵	3.56	5.00	4.84	4.85	4.82	4.83	4.93
Semiconductor Manufacturing	0.03	0.02	0.02	0.02	0.01	0.01	0.01
Electric Power Transmission and Distribution Systems	0.34	0.22	0.15	0.16	0.16	0.15	0.16
Total	13.05	12.52	12.42	12.23	11.91	11.66	12.39

¹⁵ There is a significant difference in current ODS substitutes data from previous GHG inventory reports due to a change in the calculation methodology for EPA SIT data.

Coal Mining and Abandoned Coal Mines

The GHG emissions associated with underground and surface mining coal processing, and abandoned coal mines are accounted for in this section. Most emissions accounted for come from underground mining activity. The results are determined by measuring ventilation air from underground mines and applying emission factors for surface mines, abandoned mines, and coal processing. Table 7 shows the GHG emissions (MMTCO₂e) attributed to underground and surface coal mining, coal processing, and abandoned underground mines.

Table 7– CH₄ from Coal Mining-Related Process Emissions (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Underground Mining	6.51	9.39	8.00	7.38	8.09	8.57	9.93
Surface Mining	0.73	0.61	0.35	0.24	0.31	0.30	0.31
Underground Processing	1.16	1.01	0.93	0.88	0.93	0.95	0.95
Surface Processing	0.12	0.10	0.06	0.04	0.05	0.05	0.05
Abandoned Mines	1.30	0.87	0.73	0.71	0.70	0.68	0.67
Total	9.82	11.99	10.06	9.25	10.07	10.54	11.91

Natural Gas and Oil Systems

The GHG emissions associated with natural gas production, transmission, and distribution are accounted for in this section; however, emissions from orphaned and abandoned oil and gas wells are not accounted for in this inventory. Emission factors are used in determining the total GHG emissions based on the number of natural gas wells, miles of transmission pipeline, and number and types of services used for distribution in the Commonwealth¹6. The natural gas transmission data became available in 2001. An emission factor is also used to determine the GHG emissions based on the total oil production within the Commonwealth. Table 8 shows the GHG emissions (MMTCO₂e) attributed to natural gas production, transmission and distribution, and oil production.

Table 8 – CH₄ from Natural Gas Production Process Emissions (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Natural Gas Production	4.81	7.26	8.14	8.00	8.01	8.01	8.11
Natural Gas Transmission	1.92	1.97	1.98	2.00	2.02	2.06	2.07
Natural Gas Distribution	1.97	2.02	2.07	2.08	2.09	2.09	2.09
Oil Production	0.04	0.05	0.08	0.07	0.07	0.06	0.06
Total	8.74	11.30	12.27	12.15	12.19	12.22	12.33

¹⁶ Transmission and distribution pipeline data from the U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administrations. https://www.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids

Transportation Sector

The emissions attributed to the transportation sector result from fuels combusted to provide transportation for various types of vehicles within the Commonwealth. In order of decreasing use in 2019, these fuels include gasoline, diesel, jet fuel, and natural gas. Several factors will influence the amount of a fuel being used such as the mode of transportation, efficiency of the vehicle, and the price and availability of a particular fuel. The emissions related to electricity use in transportation are accounted for in the electricity production sector.

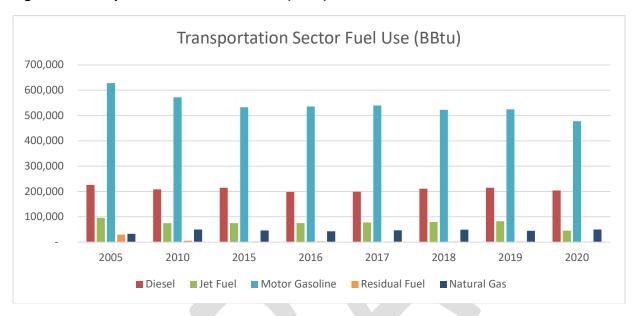


Figure 7- Transportation Sector Fuel Use (BBtu)

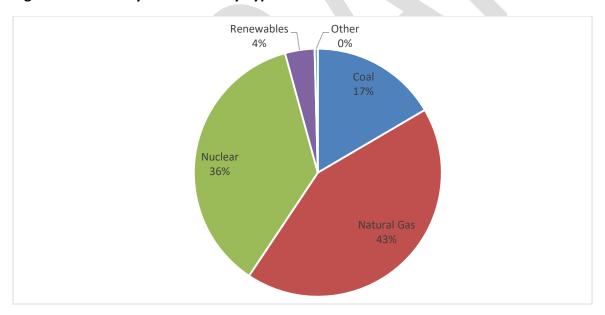
As in the previous sectors, each fuel used in transportation will have different rates of GHG emissions. Table 9 shows the GHG emission (MMTCO₂e) attributed to each fuel used in the transportation sector.

Table 9- Transportation Sector Emissions by Fuel Consumption (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Diesel	16.73	15.43	15.90	14.70	14.72	15.63	15.90
Jet Fuel	6.89	5.40	5.39	5.41	5.58	5.72	5.93
Motor Gasoline	44.50	40.64	37.60	37.88	38.12	36.92	37.06
Natural Gas	1.71	2.62	2.42	2.25	2.44	2.59	2.34
Other	2.73	0.79	0.57	0.57	0.46	0.43	0.46
Total	72.56	64.89	61.89	60.81	61.33	61.29	61.70

Electricity Production Sector

The emissions attributed to the electricity production sector result from fuels that are combusted to generate electricity within the Commonwealth. Electricity production is one of the largest contributors of GHG emissions in Pennsylvania. Twenty-eight percent of the statewide gross emissions in 2019 came from the electricity production sector; however, a sizable percentage of these emissions are associated with electricity that is produced and exported to meet the needs of surrounding states. Electricity is produced several


different ways within the Commonwealth. The three primary forms of electricity generation in Pennsylvania are natural gas, nuclear, and coal.

The largest changes in the production of electricity since 2005 have occurred in the use of coal and natural gas. From 2018 to 2019, electricity generation from coal continued its decline from 20.5 percent of total generation to 16.6 percent, while electricity generation from natural gas increased from 35.5 percent of total generation to 42.8 percent. Table 10 and Figure 8 give the relative percentages of each fuel used to generate electricity in Pennsylvania.

Table 10- Electricity Generation by Fuel Type (%)17

	2005	2010	2015	2016	2017	2018	2019	2020 ¹⁸
Coal	55.5	48.0	30.1	25.4	22.3	20.5	16.6	10.2
Nuclear	35.0	33.9	37.5	38.6	39.0	38.8	36.3	33.2
Natural Gas	5.0	14.7	27.7	31.6	33.9	35.5	42.8	52.5
Petroleum	2.3	0.2	0.3	0.2	0.2	0.3	0.1	0.0
Biomass	0.9	1.0	1.1	1.1	1.1	1.1	0.9	0.8
Hydroelectric	1.0	1.0	1.2	1.1	1.5	2.0	1.5	1.2
Solar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	0.1	0.8	1.6	1.6	1.7	1.7	1.4	1.6
Other	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.4

Figure 8- Electricity Generation by Type for 2019

Since electricity produced from nuclear fuel, hydroelectric, solar, and wind creates no direct GHG emissions, the primary fuels associated with GHG emissions from electricity production are coal and natural gas. Table 11 shows the amount of each of these fuels consumed (BBtu) for electricity generation in Pennsylvania.

¹⁷ U.S. Energy Information Administration (EIA). 2022. Net Generation by State by Type of Producer by Energy Source (EIA-906, EIA-920, and EIA-923). Accessed 106/121/2022. https://www.eia.gov/electricity/data/state/
¹⁸ Ibid.

Table 11- Fuel Use for Electricity Generation (BBtu)

	2005	2010	2015	2016	2017	2018	2019	2020 ¹⁹
Coal	1,224,911	1,119,758	669,244	574,070	501,784	467,959	398,101	256,047
Natural Gas	83,531	252,182	456,219	520,118	544,924	557,750	696,798	859,161
Oil	51,783	6,810	6,008	3,369	2,985	7,847	2,222	1,015
Total	1,360,225	1,378,750	1,131,471	1,097,557	1,049,693	1,033,556	1,097,121	1,116,223

As in the previous sectors, each fuel used in electricity production emits GHGs at different rates. Figure 9 shows the GHG emission (MMTCO₂e) attributed to the three primary fossil fuels used in the electricity production sector.

Figure 9– Electricity Production Sector GHG Emissions by Fuel Type (MMTCO₂e)

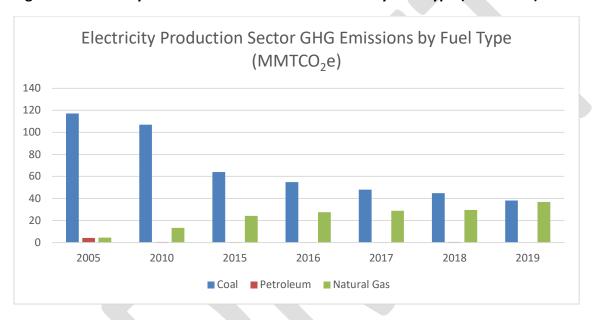


Table 12 gives the relative percentage of GHG emissions attributed to the three primary fossil fuels used in the electricity production sector.

19

¹⁹ Ibid.

Table 12- Contribution to GHG Emissions, Fuel Type, in the Electricity Sector (%)

	2005	2010	2015	2016	2017	2018	2019
Coal	93.2	88.5	72.2	66.4	62.3	59.8	50.7
Oil	3.3	0.4	0.5	0.3	0.3	0.8	0.2
Natural Gas	3.5	11.0	27.2	33.3	37.4	39.4	49.1

As noted in Table 10 and Table 12, for Pennsylvania's electricity generation sector in 2019, coal produced 50.7 percent of the GHG emissions while producing 16.6 percent of the electricity. Natural gas produced 49.1 percent of the GHG emissions while producing 42.8 percent of the electricity. Nuclear fuel, which produces no GHG emissions, was responsible for generating 36.3 percent of the Commonwealth's electricity.

As has been noted in previous inventory reports, Pennsylvania has historically been, and is projected to remain, an exporter of electricity to neighboring states. Table 13 shows the total consumption of electricity (TWh) within the residential, commercial, industrial, and transportation sectors.

Table 13 – Electricity Consumption by Sector (TWh)

_	2005	2010	2015	2016	2017	2018	2019	2020 ²⁰
Residential	53.66	55.25	54.42	53.88	51.72	55.90	54.40	55.31
Commercial	45.78	47.37	43.75	43.54	42.62	43.22	40.14	35.38
Industrial	47.95	45.46	47.40	47.13	47.89	49.16	50.42	48.61
Transportation	0.88	0.89	0.78	0.79	0.75	0.70	0.62	0.43
Line Loss	6.41%	5.82%	4.97%	4.49%	4.49%	4.88%	5.10%	5.10%

Table 14 gives the total amount of electricity (TWh) consumed in Pennsylvania and the total amount of electricity (TWh) generated. The difference between the two values is the total amount of electricity (TWh) exported from Pennsylvania.

Table 14- Electricity Generated, Consumed and Exported (TWh)

	2005	2010	2015	2016	2017	2018	2019	2020 ²¹
Electricity Consumed	151.56	151.75	150.67	150.53	148.33	154.37	150.40	144.86
Electricity Generated	218.09	229.75	214.57	215.07	213.64	215.39	229.00	230.14
Electricity Exported	52.86	68.26	54.93	55.49	56.61	52.57	70.48	77.81

Agriculture Sector

At approximately ten MMTCO₂e annually, the GHG emissions from the agriculture sector are significantly lower than emissions from the industrial, transportation, and electricity production sectors. Like the industrial sector, GHG emissions in the agriculture sector are broken down into smaller groups consisting of enteric

²⁰ Ibid.

²¹ Ibid.

fermentation, manure management, and soil management. Table 15 lists the number (1,000 head) of each type of farm animal accounted for in the SIT.

Table 15– Animal Populations Contributing to GHG Emissions (1,000 Head)

	2005	2010	2015	2016	2017	2018	2019
Dairy Cows	566	540	530	530	525	525	505
Dairy Replacement Heifers	275	300	305	325	315	310	290
Beef Cows	154	160	150	170	185	215	225
Beef Replacement Heifers	40	40	55	60	65	60	65
Heifer Stockers	55	50	55	55	60	60	55
Steer Stockers	170	150	145	140	160	130	135
Feedlot Heifers	24	24	24	24	24	24	24
Feedlot Steer	44	46	46	46	46	46	46
Bulls	25	25	25	25	25	25	25
Sheep	100	94	86	94	93	96	95
Goats	52	54	52	52	53	53	53
Swine	1,088	1,133	1,165	1,163	1,195	1,280	1,270
Horses	115	118	101	95	88	82	88

The enteric fermentation group includes animals that produce methane emissions due to their unique digestive process. Each type of farm animal has an associated methane emission factor associated with the enteric fermentation process. The total estimated GHG emissions from enteric fermentation is a summation of the product of the size of the statewide herd of each particular farm animal and the emission factor for that animal. Table 16 shows the GHG emissions (MMTCO₂e) attributed to each animal in the agriculture sector due to enteric fermentation.

Table 16– GHG Emissions (CH₄), by Livestock Type, from Enteric Fermentation (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Dairy Cows	1.936	1.950	1.932	1.934	1.935	1.935	1.861
Dairy Replacement Heifers	0.440	0.495	0.503	0.536	0.519	0.511	0.478
Beef Cows	0.357	0.377	0.354	0.401	0.436	0.507	0.531
Beef Replacement Heifers	0.065	0.071	0.098	0.107	0.116	0.107	0.116
Heifer Stockers	0.082	0.075	0.083	0.083	0.091	0.091	0.083
Steer Stockers	0.245	0.217	0.210	0.203	0.232	0.189	0.196
Feedlot Heifers	0.024	0.026	0.026	0.026	0.026	0.026	0.026
Feedlot Steer	0.042	0.048	0.048	0.048	0.048	0.048	0.048
Bulls	0.060	0.061	0.061	0.061	0.061	0.061	0.061
Sheep	0.020	0.019	0.017	0.019	0.019	0.019	0.019
Goats	0.006	0.007	0.006	0.007	0.007	0.007	0.007
Swine	0.041	0.042	0.044	0.044	0.045	0.048	0.048
Horses	0.052	0.053	0.045	0.043	0.040	0.037	0.040
Total	3.370	3.442	3.427	3.511	3.575	3.586	3.513

The second agricultural subgroup is manure management. As with the enteric fermentation subgroup, each type of farm animal has an associated emission factor for the GHG emission (CH₄ and N₂O) based on the amount of manure that animal produces. The total GHG emissions from manure management are equal to

the summation of the product of the statewide livestock herd size by animal and the emission factor for that animal. Table 17 shows the GHG emission (MMTCO₂e) attributed to each animal type in the agriculture sector from manure management. The "other" category includes sheep, goats, and horses.

Table 17 – GHG Emissions (CH₄ and N₂O), by Livestock Type, from Manure Management (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Dairy Cattle	1.092	1.353	1.583	1.661	1.626	1.661	1.595
Beef Cattle	0.055	0.057	0.058	0.059	0.060	0.060	0.061
Swine	0.308	0.320	0.305	0.311	0.305	0.347	0.347
Poultry	0.209	0.190	0.216	0.220	0.222	0.228	0.223
Other	0.013	0.011	0.010	0.010	0.010	0.010	0.010
Total	1.676	1.931	2.172	2.260	2.222	2.306	2.235

The third sub-group of the agriculture sector is the soil management group. GHG emissions (N_2O) from agricultural soils are calculated from the direct and indirect biochemical interactions of fertilizers, livestock, and crop residue with the soil. Table 18 below shows the estimated GHG emissions (MMTCO₂e) resulting from agriculture soils management.

Table 18 – GHG Emissions (N2O) from the Management of Agricultural Soils (MMTCO2e)

_	2005	2010	2015	2016	2017	2018	2019
Direct	2.43	2.46	2.75	2.81	2.92	2.88	2.72
Indirect	0.21	0.21	0.23	0.24	0.24	0.24	0.21
Leaching and Runoff	0.27	0.27	0.32	0.32	0.32	0.33	0.28
Total	2.91	2.94	3.30	3.37	3.48	3.44	3.21

Waste Management Sector

GHG emissions in the waste management sector primarily come from the following three subgroups: landfill gas, solid waste combustion, and wastewater treatment. Landfill gas, which is approximately 50 percent methane, is generated by the decomposition of solid waste within a landfill. Some solid waste in the Commonwealth is combusted in waste-to-energy plants, thus avoiding the production of methane that would otherwise be produced in a landfill, but also resulting in the release of carbon dioxide. Both municipal wastewater treatment and industrial wastewater treatment are accounted for in the third subgroup.

Data in the SIT regarding the amount of landfilled solid waste in Pennsylvania was used to calculate the potential landfill methane emissions. The methane avoided value in Table 19 was calculated using data in the SIT and reflects the amount of methane that otherwise could have entered the atmosphere but was instead combusted in either a flare or a landfill gas to energy project. A small amount of oxidation occurs in landfills each year, which reduces the amount of methane emitted by approximately ten percent. Table 19 shows the GHG emissions (MMTCO₂e) attributable to the potential landfill gas, the avoided methane emissions, and the avoided emissions due to solid waste oxidation.

Table 19– GHG Emissions Associated with Landfilling Operations (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Potential Landfill CH ₄	8.81	9.78	9.93	9.97	10.02	10.07	10.15
CH ₄ Avoided	-6.62	-8.89	-9.03	-9.07	-9.11	-9.15	-9.23
Oxidation	-0.22	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09
Total CH ₄ Emissions (Landfills)	1.97	0.80	0.81	0.82	0.82	0.82	0.83

The GHG emissions in the solid waste combustion subgroup result from the combustion of certain types of solid waste including plastics, synthetic rubber, and synthetic fibers. To avoid the potential for double counting, the emissions from the combustion of natural or biogenic materials such as cotton and paper are omitted because the combustion of these items returns CO₂ that was already part of the natural carbon cycle back into the atmosphere. Along with CO₂ emissions from waste combustion, this section accounts for N₂O and CH₄ gases that are generated in the waste combustion process. Data from the SIT for total solid waste combusted and the relative percentage of each of the materials listed previously were used in the calculation. Table 20 shows the GHG emissions (MMTCO₂e) attributable to the combustion of plastics, synthetic rubber, and synthetic fibers included in the waste combustion portion of the waste management sector.

Table 20– GHG Emissions Associated with Waste Combustion (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
CO ₂	1.58	1.43	1.61	1.66	1.68	1.78	1.78
N ₂ O	0.03	0.03	0.03	0.03	0.03	0.03	0.03
CH ₄	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.62	1.45	1.64	1.69	1.71	1.81	1.81

Recycling diverts material from solid waste landfills that would otherwise be contributing to GHG emissions from this sector. While these avoided emissions are not accounted for in the SIT, they can be estimated based on tons of recycled materials. Table 21 shows estimated CO_2 emissions avoided by recycling for the years 2012 through 2019^{22} .

Table 21- GHG Emissions Avoided from Recycling

	Tone Degrated (in	Equivalents (in millions)							
Year	Tons Recycled (in millions)	Tons of CO ₂ saved per year	Passenger Vehicles Taken off the Road for One Year	Homes Worth of Electricity Use Per Year Saved					
2019	4.76	6.70	1.6	1.34					
2018	4.96	8.35	2.2	1.56					
2017	5.77	8.78	2.09	1.64					
2016	7.11	9.28	2.21	1.73					
2015	7.06	9.61	2.29	1.79					
2014	15.34	14.85	3.53	2.77					
2013	5.55	6.96	1.66	1.3					
2012	7.71	15.97	3.81	2.99					

The GHG emissions from the wastewater portion of the waste management sector are a combination of municipal wastewater treatment (CH₄ and N₂O) and some types of industrial wastewater treatment (red meat,

²² Statewide Recycling Data (pa.gov), values converted to metric tons here.

poultry, pulp and paper, and fruit and vegetable production). The SIT was used to calculate the municipal and industrial wastewater GHG emissions. Production data was collected from the United States Department of Agriculture's National Agricultural Statistics Service for the poultry and fruit and vegetable industrial wastewater treatment sector, which was multiplied by the SIT-supplied emission factors to determine the total GHG emissions. Table 22 shows the GHG emissions (MMTCO₂e) attributed to the treatment of wastewater from municipal and industrial sources in the waste management sector.

Table 22 – GHG Emissions Associated with Wastewater Treatment (MMTCO₂e)

_	2005	2010	2015	2016	2017	2018	2019
Municipal CH ₄	0.99	1.02	1.02	1.02	1.02	1.02	1.03
Municipal N ₂ O	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Industrial CH ₄	0.07	0.12	0.13	0.13	0.14	0.14	0.14
Total	1.07	1.15	1.16	1.17	1.17	1.18	1.18

Table 23 shows the GHG emissions (MMTCO₂e) totals for the solid waste and wastewater treatment portions of the waste management sector.

Table 23– Total GHG Emissions (CO₂, CH₄, N₂O) from the Waste Management Sector (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Solid Waste	3.59	2.25	2.45	2.50	2.53	2.63	2.64
Wastewater	1.07	1.15	1.16	1.17	1.17	1.18	1.18
Total	4.65	3.40	3.62	3.67	3.70	3.81	3.82

Forestry and Land Use Sector

The forestry and land use sector sequesters or absorbs CO₂, reducing the net GHG emission in the Commonwealth. In 2019, the forestry and land use sector sequestered 27.47 MMTCO₂ of GHG and includes forested lands and soils, trees located in urban settings, yard waste, and forest fires. Prior to the 2018 release of the SIT, liming and fertilization of agricultural soils were included in this sector, but those sources are now accounted for in the agricultural sector. Data from the SIT was the primary source of information for this section; however, forest fire acreage is collected from the National Interagency Fire Center²³ and Pennsylvania's Department of Conservation & Natural Resources.

Table 24 shows the total GHG emissions produced (positive values) and emissions sequestered (negative values) (MMTCO₂e) totals for the forestry and land use sector.

Table 24– Total GHG Emissions from the Forestry and Land Use Sector (MMTCO₂e)

	2005	2010	2015	2016	2017	2018	2019
Forest Carbon Flux	-24.74	-23.89	-22.72	-22.38	-22.07	-21.75	-21.34
Urban Trees, Carbon	-3.15	-3.31	-3.46	-3.49	-3.52	-3.56	-3.59
Landfilled Yard Trimmings and Food Scraps,							
Carbon	-0.38	-0.43	-0.40	-0.36	-0.33	-0.42	-0.42
Forest Fires, CH₄ and N₂O	0.01	0.04	0.16	0.18	0.14	0.11	0.10
N ₂ O from Settlement Soils	0.04	0.04	0.06	0.06	0.06	0.06	0.06

²³ https://www.nifc.gov/fireInfo/fireInfo_statistics.html

Conclusion and Looking Forward

As noted previously, Pennsylvania achieved a nearly 18 percent reduction in GHG emissions by 2019 compared to 2005. The two most recent years (2018 and 2019) saw a slight increase in total GHG emissions for Pennsylvania. This increase can primarily be attributed to an increase in natural gas use for both the electricity generation sector (as can be seen in Tables 10-12) and the industrial sector (Table 5). While CH₄ based emissions increased overall, CO₂ (Table 2) emissions decreased. This is to be expected given the continual reduction in coal-based electricity generation and overall use, but there has also been a decline in electricity generation from nuclear power with reactor one of Three Mile Island being taken offline in September of 2019.²⁴ Nuclear power generation levels are expected to remain the same, and renewable electricity generation from sources such as wind and solar are expected to continue to increase going forward.

The EPA's SIT is updated and rereleased annually, and as methods for compiling GHG emissions data are refined, estimates for previous years may change with each iteration of the inventory. As this is the first report with some fuel data from 2020, it should be noted that due to impacts related to the COVID-19 pandemic and the consequent lockdowns, data presented for 2020 may be anomalous. The Intergovernmental Panel on Climate Change (IPCC) reports that carbon-based fossil fuel emissions were reduced significantly in the first half of 2020. The annual average CO₂ emissions in 2020 decreased relative to 2019 by an estimated 5.8 percent per the IPCC's Climate Change 2022 Mitigation of Climate Change Summary for Policymakers.²⁵ It was also noted in the summary report that the full GHG emissions impact of the COVID-19 pandemic could not be assessed due to a lack of data on non-CO₂ GHG emissions.

²⁴ Three Mile Island shuts down | ABC27

²⁵ IPCC AR6 WGIII SummaryForPolicymakers.pdf (P. 6, B.1.4)