

Extreme Weather Vulnerability Studies - Designing for Resilience

Update on PennDOT Efforts

Doug Zimmerman, Bureau of Planning and Research

4-23-19

Agenda

o Phase 1:

- o PennDOT's Extreme Weather Vulnerability Study
- o FHWA Pilot Project

o Phase 2:

Designing for Resilience

Ouestions:

Impetus for Resiliency Efforts

PennDOT Concern with Number and Intensity of Storms and Damage

FHWA Order 5520 and Pilot Studies Emphasis from DEP
/ Climate Change
Advisory
Committee

Asset Management Requirements

FAST Act

CEQ Final Guidance (Rescinded)

Federal Flood Risk Management Standard

AASHTO

Emergency Funds
Obligated:
\$140 million spent on
Federal Aid System
since 2006

Climate and Weather-Related Hazards

Flooding Considered a Primary Issue in Pennsylvania

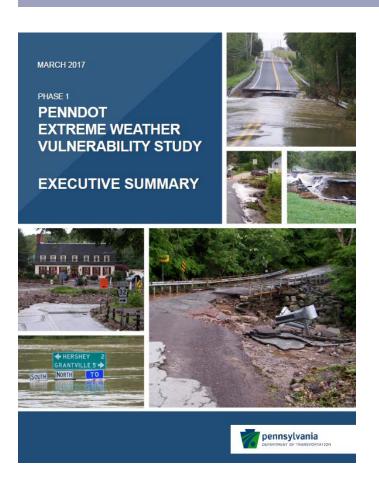
Flooding

Sea-Level Rise

Fires

Landslides

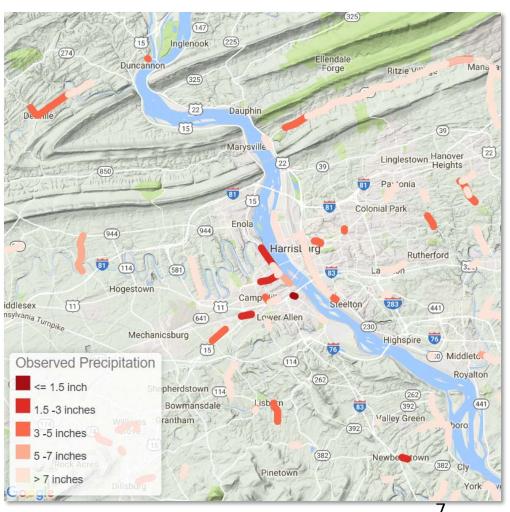
Earthquakes


High Winds

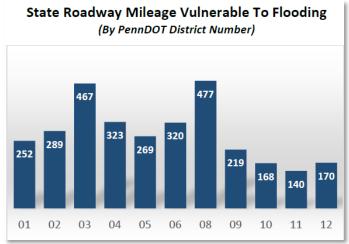
High Temperature Days

Extreme Weather Vulnerability Study

Status of Vulnerability Study



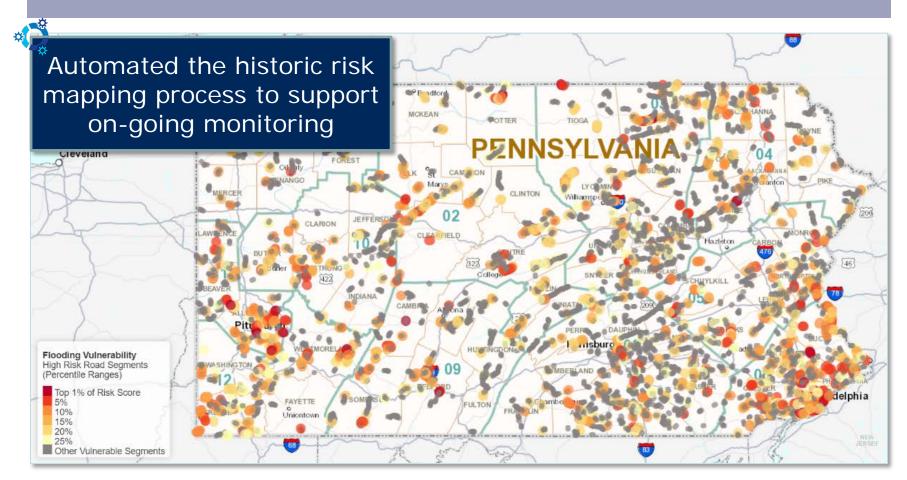
- Initial study completed in March 2017
- Distributed to Districts, MPOs, other state agencies for planning purposes
- Updated in Fall 2017
- Additional updates underway



Historic Flooding Vulnerabilities

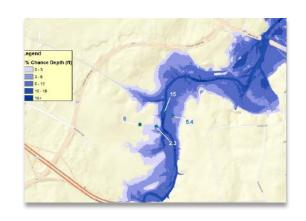
Sources:

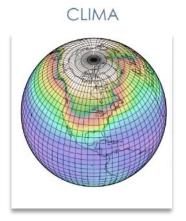
- ☐ Road Condition Reporting System (RCRS)
- ☐ FEMA Floodplain Maps
- NOAA Weather Data


Risk Assessment Criteria

Consequence Sensitivity Exposure **Flooding Bridge Condition** Traffic and Truck Volume Frequency (Scour) In FEMA **Pavement Functional Class** Floodplain Condition (OPI) Precipitation **Deficient Pipes Detour Route Amount**

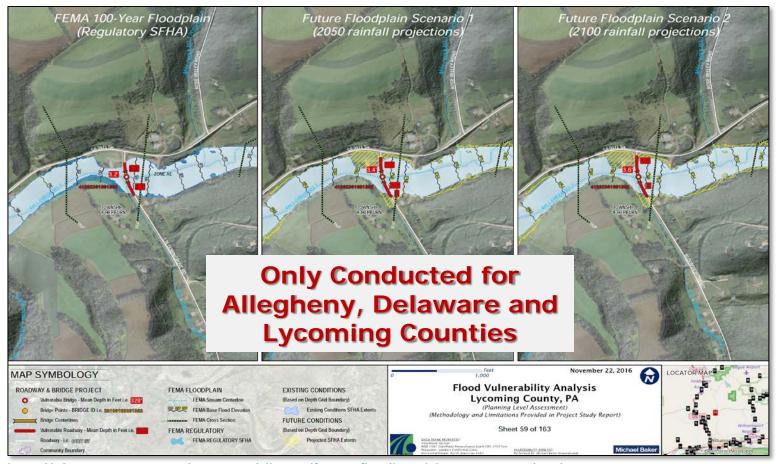
Flood Risk Mapping





Forecast Climate Impact on Flooding

- Planning level analyses to assess changes to FEMA 1% floodplain maps based on increased rainfall scenarios
- Assessment of global climate model outputs
- Utilized stream gauge, forecast impervious area, and digital elevation data.
- Assessed inundation of PennDOT roads and bridges based on increased stream depths and sea-level rise
- Compare to historic data



Pilot Forecast Analyses [Climate Change Scenarios]

http://s3.amazonaws.com/tmp-map/climate/future-flooding-risk-assessment.html

Addressing Sea-Level Rise

Literature review of available climate science on sea-level rise

IPCC NOAA FHWA USACE Historical Tide gage records

- IPCC and NOAA chosen for scenario analyses
- Adjusted for local tide data

Scenario	Sea Level Rise by 2050 (m)	Sea level rise by 2100 (m)
NOAA Highest	0.7	2.1
IPCC 2013 Upper Estimate	0.4	1.1

Current Home for Resiliency Data

PennDOT PennShare Site

http://pennshare.maps.arcgis.com/apps/MapSeries/index.html?appid=29bf9f06045f47feb9888193674f8a95

FHWA Pilot Study

Project Goals

Study Locations and Coordination

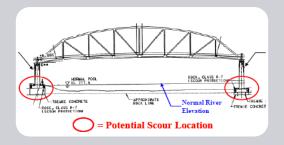
1 site location in:

- ☐ Allegheny County
- □ Delaware County
- □ York County

Metropolitan Planning Organizations (MPOs)

PennDOT Central Office:

- PennDOT Bureau of Planning & Research
- ☐ Planning and Programming
- ☐ Highway Design
- Bridge Design


PennDOT District Offices

Project Goals

DESIGN MANUAL, PART 2
HIGHWAY DESIGN
TABLE OF CONTENTS
SUBJECT
DRAINAGE DESIGN AND RELATED PROCEDURES

Provide a detailed template for conducting H&H studies that include climate change impacts

Case study in evaluation of adaptation strategies and costeffectiveness

Evaluating planninglevel climate flooding forecasts from PennDOT's Extreme Weather Vulnerability Study

Pilot Study Next Steps

- Finalize site locations
- Initiate download of projected precipitation data
- Conduct detailed H&H studies incorporating climate projections
- Field visit 3 locations

Designing for Resilience

Workgroup Focus Areas

- Internal Workgroup
 - Focusing on design, construction and maintenance aspects.
 - Traffic Operations separate workgroup
- Multiyear initiative
 - Some items implemented in 6-12 months; others will take longer.
- Short term items
 - Use of geotextiles to prevent loss of approach embankments and to encapsulate pipe backfill.
- Update H & H Manual
 - Incorporate revised USGS regression equations, as well as updates to stream stats database.

Designing for Resilience - preliminary

- Bridge Design
- Opening sized so that design flood/storm to satisfy limitations on backwater increase:
 - Detailed FEMA flood Zone 0.00" increase in backwater
 - Approximate FEMA flood Zone -1.00' increase in backwater
- Scour design evaluates 100yr and 500yr storm events and uses storm with highest velocity (typically the 100yr event)
- Foundation design 100 year storm event, but check stability of 500 year storm event

Designing for Resilience - preliminary

Culvert Design

 Basic design similar to bridge, size opening for design flood per DM2 Table 10.6.1.

Mitigation measures

- Check opening for 100 year event
- Increase opening by 20%?
- Downstream impacts must be considered
- Rock the embankment slope, interlocking block (DEP coordination required)
- Proper construction procedures, flowable fill at inlet

Designing for Resilience

- H&H Design Flood Considerations
 - Changing drainage area characteristics
 - Stream stats is being updated in conjunction with regression equations
 - Other hydrologic methods can evaluate land use changes

Questions

Designing for Resilience – H&H- Current Return Periods

TABLE 10.6.1
DESIGN FLOOD SELECTION GUIDELINES

FUNCTIONAL CLASSIFICATION	MAXIMUM EXCEEDANCE PROBABILITY (%)	MINIMUM RETURN PERIOD (YEARS)
Interstate and Limited Access Highways	2	50
Principal Arterial System	2	50
Minor Arterial System	4	25
Rural Collector System, Major	4	25
Other Collector Systems	10	10
Local Road and Street Systems	10	10

Note: Federal Policy states that the design flood for encroachments by through lanes of Interstate highways shall not be less than the flood with a 2 percent chance of being exceeded in any given year. Interstate highways should be designed to accommodate the 2% (50-year) flood event.

