

Intro to Data Centers and Air Quality

Susan Barnes November 6, 2025

Susan Barnes

- ► Principal Consultant
- ► Office Manager of DC Office
- ▶ 15+ years at Trinity
 - Permitting data centers in Northern VA and Maryland since 2017

sbarnes@trinityconsultants.com
240.379.6492

Data Center Emissions Sources

Emergency Generators

Prime Generators

- Typically rated 2 to 3 MW each and diesel-fired
- Enough to power data center operations during power outages

Ancillary Generator

- Typically smaller generators (2 MW or less) and diesel-fired
- Supply backup power to other operations (lights, security, etc.)

Possible Other Emission Sources

- Prime Power (engines or turbines)
- Fire Pumps

Why So Many Generators?

- ▶ Data centers require continuous power to ensure data retention
 - For data centers supporting computations (AI), if power is interrupted, the computations being completed would be lost.
- ▶ When they lose power from the grid, the backup generators need to work
- ► To ensure reliable power availability the emergency generators are designed for backup redundancy.

40 CFR 63.6640(f)(1)

Emergency RICE Operational Requirements

- ► No time limit on emergency operation
- ► Examples of Emergency Operation include:
 - When electrical power from local utility or normal power supply is interrupted
 - When RICE used to pump water in case of fires, floods, etc.
- Up to 100 hours per year allowed for any combination of the following
 - Maintenance checks and readiness testing
- ▶ Up to 50 hours per year of non-emergency use allowed
 - Except those 50 hours cannot be used for peak shaving or nonemergency DR, or as part of financial arrangement or supplying power to grid

Engine Emissions Tiers

Tier 2

- Certified to EPA's Tier 2 Emission Standards
- Only can be used as an emergency generator under NSPS and MACT Regulations

Tier 4 Compliant

- Engine certified to EPA's Tier 2
 Emission Standards
- ► After market add-on controls (SCR, CatOx, and DPF) installed
- Only can be used as an emergency generator under NSPS and MACT Regulations

Tier 4 Certified

- Engine certified to EPA Tier 4
 Emission Standards
- Can be used as a nonemergency generator under NSPS and MACT Regulations

Which Engines are Data Centers Using

Smaller or Older Data Centers

- ► Typically using **Tier 2**
- ► Tier 2 engine-generators are cheaper, more readily available, and generally less monitoring, recordkeeping and testing in permits

Larger or Newer Data Centers

- ▶ Often using Tier 4 Compliant
- ► Tier 4 compliant units provide additional emissions control allowing greater available runtime while maintaining compliance with regulatory standards
- ► Certified Tier 4 engine-generators suffer from supply chain availability, reliability challenges, and are more

For Data Centers that are not Co-Located with Other Sources

Permitting Data Centers

- ► Generally permitted as synthetic minor sources
 - In Pennsylvania, NOx is the pollutant of concern in most cases
 - Facilities take site-wide emissions or operational limits to keep actual emissions below NOx major source threshold
 - Limits are typically either tons per year, hours per year, or gallons of fuel per year

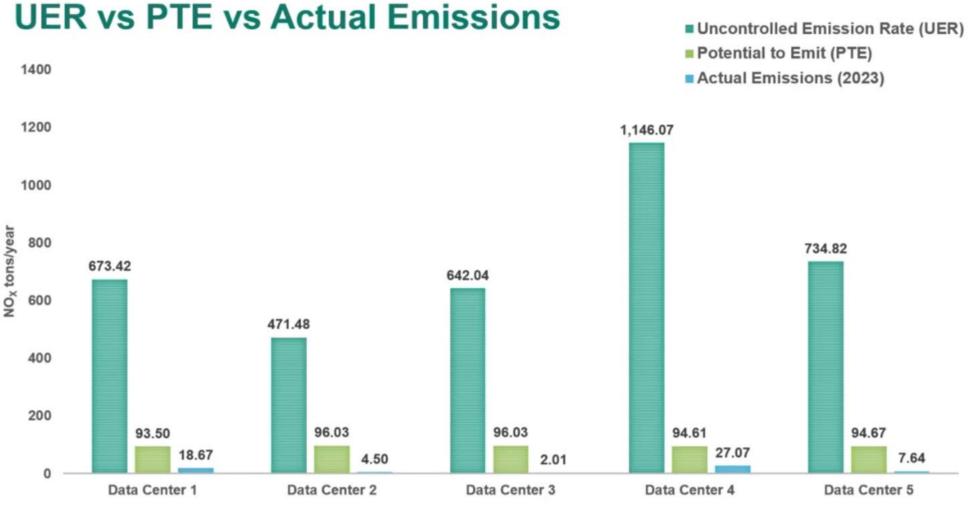
Emission Calculation Methods

- ▶ Varies agency, permittee company internal policy, and project
- ► Generally using not-to-exceed (or potential site variation) emissions data from the manufacturer and evaluating across a variety of loads
- ► Emission factors developed based on manufacturer data:
 - Permits may allow varying emission factors depending on actual load during the operation
 - Important that the potential emissions and permit limits align with the desired compliance demonstration

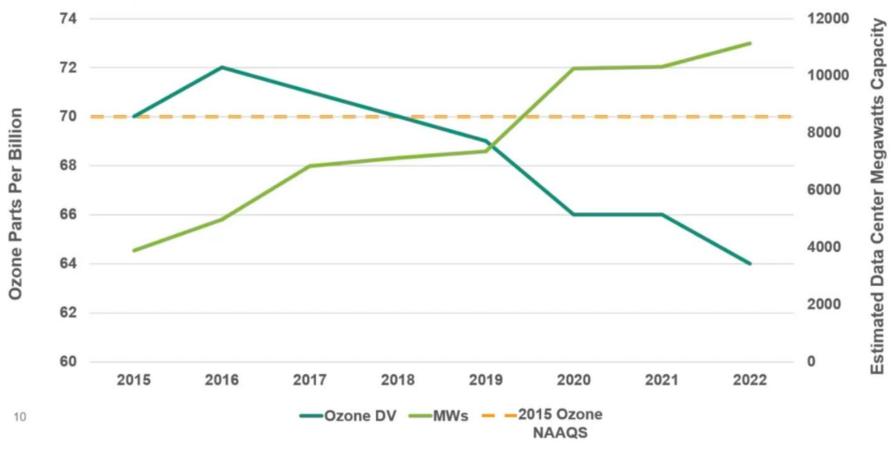
Actual versus Potential Emissions

Data Centers don't want to run their emergency generators

They run for annual testing and maintenance



Typically, weekly to monthly brief runs (<30 minutes) for readiness testing and some amount of annual load testing and other testing


Total annual testing ~10 hours per year per generator

Actual versus Potential Emissions in Virginia

Air Quality versus MWs in Virginia

Ozone Air Quality vs Data Center Capacity

Thank you!

Any Questions?

