WATER AUDIT PROCEDURE

FOR

LARGE WATER CONSUMERS

INTRODUCTION

This Water Audit Procedure has been developed by the Department of Environmental Protection, Division of Water Use Planning to guide large water consumers in estimating the water and energy savings that can be realized as a result of installing low flow plumbing fixtures and reducing potable water consumption. The procedure consists of four stages:

Background Information

Savings

Investment

Return on Investment

This Water Audit Procedure is intended to serve as a guide for facility management personnel who wish to conduct their own audit. By completing the calculations on the following pages, facility managers will be able to anticipate the capital and labor costs of a plumbing refit program and predict the monetary savings that will result from water conservation measures. Since water-use characteristics and the types of plumbing fixtures vary, some assumptions are necessary when working through the calculations. The Department has provided water consumption data and other information, based on past experience, that is necessary to complete the audit. However, since these assumptions will result in conservation savings figures, actual data should be incorporated wherever possible to improve the accuracy of the results.

BACKGROUND INFORMATION

Utility Rates

Facility Names:

Number of Users: \qquad

Water Utility: \qquad

Sewage Utility: \qquad

Energy Utility:

Water Cost per 1000 gallons: \$ $/ 1000 \mathrm{gal}$.
Sewage Cost per 1000 gallons: \$ $/ 1000 \mathrm{gal}$.
Cost to raise 1000 gallons $80^{\circ} \mathrm{F}$: \$ $/ 1000 \mathrm{gal}$.

BACKGROUND INFORMATION Water Heating Energy Costs

Electricity $\mathbf{\$ / k w h}$	Cost to Raise $\mathbf{1 0 0 0}$ Gallons $\mathbf{8 0}{ }^{\circ} \mathbf{F}$
0.07	13.69
0.08	15.65
0.09	17.61
0.10	19.57
0.11	21.53
0.12	23.49
Natural Gas	Cost to Raise
$\mathbf{\$ / m c f}$	$\mathbf{1 0 0 0}$ gallons $\mathbf{8 0} \mathbf{F}$
4.00	2.67
5.00	3.34
6.00	4.00
7.00	4.67
8.00	5.34
9.00	6.00
10.00	6.48

Fuel Oil $\$ /$ gal	Cost to Raise $\mathbf{1 0 0 0}$ gallons $\mathbf{8 0} \mathbf{F}$
0.50	2.40
0.60	2.89
0.70	3.36
0.80	3.84
0.90	4.32
1.00	4.80

Coal $\$ /$ ton	Codst to Raise $\mathbf{1 0 0 0}{ }^{\circ}$ Gallons $\mathbf{8 0}{ }^{\circ} \mathbf{F}$
40.00	1.03
60.00	1.54
80.00	2.06
100.00	2.57
120.00	3.08
140.00	3.60

BACKGROUND INFORMATION

Determine Plumbing Fixture Flow Rates

Showerheads and Faucets:

To obtain showerhead and faucet flowrates, measure the time necessary for the fixture with both controls open to fill a container. Compare the average of five such test results with the table below:

Time Required to Fill Container (sec)	1 Gallon	Flowrate (gal/min) $\mathbf{1 / 2}$ Gallons	Quart
60	1	0.5	0.25
30	2	1.0	0.5
20	3	1.5	0.75
15	4	2.0	1.0
12	5	2.5	1.25
10	6	3.0	1.5
8.6	7	3.5	1.75
7.5	8	4.0	2.0
6.7	9	4.5	2.25
6	10	5.0	2.5

Since measurements of toilet and urinal flush volumes are difficult to obtain, use the typical flush volumes provided on page 6 . However, in all cases, use manufacturer's information if available.

BACKGROUND INFORMATION
 Flow Rate Tabulation

Fixture	Number of Fixtures	Average Flow Rate/Flush Volume			
Flush Tank Toilets					
		gal/flush	$	$	gal/flush
:---					
Flush Valve Toilets					

SAVINGS

Water Savings

WATER USAGE
 Typical or Measured

WATERUSAGE = WATER
Recommended SAVINGS

Flush Tank Toilet
(gal/flush)
3.5 or
1.6 \qquad
Flush Valve Toilet
(gal/flush)
3.5 or \qquad 1.6

$$
\underline{\square}
$$

Flush Valve Urinal
(gal/flush)
3.5 or \qquad
1.0

$$
=
$$ (gal/flush)

Shower
(gal/min)
Bathroom Faucet
$(\mathrm{gal} / \mathrm{min})$
3.5 or
0.5
$=$
(gal/min)
3.5 or \qquad
\qquad
2.5
(gal/min)
Kitchen Faucet
3.5 or \qquad
2.5
$=$ \qquad
*If plumbing equipment was installed prior to 1978, typical water usage may be greater than noted above.

SAVINGS

Water Savings

$\left.\begin{array}{|lcccc|}\hline & \begin{array}{c}\text { Savings } \\ \text { (gal/flush) }\end{array} & \mathrm{x} & \begin{array}{c}\text { Uses } \\ \text { (flushes/day) }\end{array} & = \\ \text { Flush Tank Toilet } & & & & \\ \hline & \mathrm{x} & & \\ \hline & & & \\ \text { (gal/day) }\end{array}\right]$

	Average Time						Water
	Savings x (gal/min)		Each Use (min/use)	x	Uses (uses/day)	$=$	Savings (gal/day)
Shower		x		x		=	
Faucet		x		x		$=$	
	Total Water Savings (gal/day)						

SAVINGS

Heated Water Savings

| Shower Water Savings | x | 60% | $=$ | Heated Water Savings |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{gal} /$ day $)$ | x | (0.60) | $=$ | $(\mathrm{gal} /$ day $)$ |

Heated Water Savings: =
(gal/day)

SAVINGS

Total Savings

INVESTMENT

Estimated Capital Costs and Labor

Water Saving Device	Typical Capital Cost $(\$)$	Labor (hours)
Low Consumption		
Flush Tank Toilet		
	140	2.0
Low Consumption		
Flush Valve Toilet	180	1.0
		$\mathbf{0 . 2 5}$
Flush Valve Refit Kit		
		$\mathbf{0 . 2 5}$
Low Flow Showerhead		
		$\mathbf{0 . 2 5}$

Use actual information if available

INVESTMENT

Capital Costs and Labor Tabulation

RETURN ON INVESTMENT

Total Investment + (\$)	Total Savings (\$/year)	x	$\begin{gathered} 12 \\ \text { (months/year) } \end{gathered}$	$=$	R.O.I. (months)
			12		
T		X		=	
			Return on Investment: (months)		

