

MarkWest Liberty Midstream & Resources, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2126 (800) 730-8388 (303) 290-8700 (303) 825-0920 Fax

June 28, 2022

Mr. Mark Gorog Regional Air Quality Manager PA DEP SW Regional Office 400 Waterfront Drive Pittsburgh, PA 15222



Re: MarkWest Liberty Midstream & Resources, L.L.C. Harmon Creek Gas Plant Plan Approval Application

Dear Mr. Gorog:

MarkWest Liberty Midstream & Resources, L.L.C. (MPLX) hereby submits a plan approval application for the Harmon Creek Gas Plant located at 123 Point Pleasant Rd in Smith Township, Washington County. The Harmon Creek Gas Plant is currently authorized to operate under GP1-63-01011A and GP5-63-01011A. MPLX seeks authorization to install and operate equipment associated with Harmon Creek Cryo II. In addition to the equipment currently authorized at the facility, MPLX proposes the installation and operation of the following equipment at the facility:

- One (1) 260 mmscfd natural gas processing plant;
- One (1) Cryo plant regenerative heater rated at a maximum heat input of 19.62 MMBtu/hr;
- One (1) 500-gallon methanol storage tank;
- Three (3) electric-driven compressors and associated rod-packing venting; and
- Associated fugitive components.

De minimis emission increases associated with the existing pigging and truck loadout operations, in addition to emissions from maintenance blowdowns and some PSVs will be controlled by the existing process flare.

The following are included with this submittal:

- General Information Form
- Compliance Review Form
- Plan Approval Application Forms
- Proof of Municipal Notification
- Process Flow Diagram
- Detailed Emission Estimates
- Manufacturer's Information

If you have any questions about this application, please contact me at (412) 815-8886 or via email at <u>ajuarez@marathonpetroleum.com</u>.

Sincerely,

Alexandra M. Juary

Alexandra M. Juarez G&P Engineer I

General Information Form

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## **GENERAL INFORMATION FORM – AUTHORIZATION APPLICATION**

Before completing this General Information Form (GIF), read the step-by-step instructions provided in this application package. This form is used by the Department of Environmental Protection (DEP) to inform our programs regarding what other DEP permits or authorizations may be needed for the proposed project or activity. This version of the General Information Form (GIF) must be completed and returned with any program-specific application being submitted to the DEP.

| Related ID#s (                             | (If Known)                        |                  | DEP       | USE ON     | LY          |         |
|--------------------------------------------|-----------------------------------|------------------|-----------|------------|-------------|---------|
| Client ID#                                 | APS ID#                           | Da               | te Recei  | ved & Gene | ral Notes   |         |
| Site ID# 823541                            | Auth ID#                          |                  |           |            |             |         |
| Facility ID# 819388                        |                                   |                  |           |            |             |         |
|                                            |                                   |                  |           |            |             |         |
|                                            | CLIENT INFORMA                    | TION             |           |            |             |         |
| DEP Client ID#                             | <b>Client Type / Code</b><br>OWOP | Dun &            | Brade     | street ID# |             |         |
| Legal Organization Name or Regist          | tered Fictitious Name             | Employer ID# (   | EIN)      | Is the El  | N a SSI     | ٧?      |
| MarkWest Liberty Midstream and Res         | sources, L.L.C.                   | 30-0528059       |           | 🗌 Yes      | $\boxtimes$ | NO      |
| State of Incorporation or Registration     | ion of Fictious Name 🛛 🗆 Co       | rporation 🛛 LL(  |           | Partnershi | p 🗌 LI      | LP 🗌 LP |
| Delaware                                   | 🗌 So                              | e Proprietorship |           | Associatio | n/Organ     | ization |
|                                            |                                   | ate/Trust 🗌 Oth  | ner       |            |             |         |
| Individual Last Name                       | First Name                        | МІ               | Suffi     | x          |             |         |
| Additional Individual Last Name            | First Namo                        | MI               | Suff:     | v          |             |         |
| Additional mulvidual East Name             | First Name                        |                  | Sum       | •          |             |         |
| Mailing Address Line 1                     | Mailin                            | g Address Line 2 | 2         |            |             |         |
| 1515 Arapahoe St.                          | Tower                             | 1, Suite 1600    |           |            |             |         |
| Address Last Line – City                   | State                             | ZIP+4            | C         | ountry     |             |         |
| Denver                                     | CO                                | 80202-2137       | U         | SA         |             |         |
| Client Contact Last Name                   | First Name                        | M                | I         | S          | uffix       |         |
| Juarez                                     | Allie                             | M                |           |            |             |         |
| Client Contact Title                       | Phon                              | e E              | xt        | C          | ell Pho     | ne      |
|                                            | 412-8                             | 15-8886          |           |            |             |         |
| Email Address                              |                                   |                  |           | 70 4054    |             |         |
| ajuarez@marathonpetroleum.com              |                                   |                  | 303-5     | / 3-4954   |             |         |
|                                            | SITE INFORMAT                     | ION              |           |            |             |         |
| DEP Site ID# Site Name                     |                                   |                  |           |            |             |         |
| 823541 Harmon Creek G                      | Bas Plant                         |                  |           |            |             |         |
| EPA ID#                                    | Estimated Number of Emplo         | yees to be Pres  | ent at    | Site       | 25          |         |
| Description of Site                        |                                   |                  |           |            |             |         |
| Natural Gas Processing Plant               |                                   |                  |           |            |             |         |
| County Nome(c) Mu                          | aininglity/inc)                   |                  | City      | Poro       | Twn         | Stata   |
| <u>Vashington</u>                          | th                                |                  |           |            |             |         |
|                                            | ui                                |                  | +         |            |             | ГA      |
|                                            |                                   |                  | $\exists$ |            |             |         |
|                                            |                                   |                  | $\exists$ |            |             |         |
| Site Location Line 1                       | Site Lo                           | cation Line 2    |           |            |             |         |
| 123 Point Pleasant Rd                      | 0.10 20                           |                  |           |            |             |         |
| Site Location Last Line – City             | State                             | ZIP+4            |           |            |             |         |
| Bulger                                     | PA                                | 15019            |           |            |             |         |
| <b>Detailed Written Directions to Site</b> |                                   |                  |           |            |             |         |

From Pittsburgh head west on Hwy 22 to Exit 60A, stay left on Steubenville Pike (0.9 mi.), turn left onto Creek Road (0.5 mi.), keep left to stay on Point Pleasant Road (1.3 mi.), turn left into Harmon Creek Gas Plant

| Site Contact Last Name            |               | First Name               |                   | Γ                | MI            | Suffix      |
|-----------------------------------|---------------|--------------------------|-------------------|------------------|---------------|-------------|
| Ettore                            |               | David                    |                   | (                | G             |             |
| Site Contact Title                |               |                          | Site Conta        | ct Firm          |               |             |
| Environmental Supervisor          |               |                          | MarkWest I        | _iberty Midstrea | am and Resour | ces, L.L.C. |
| Mailing Address Line 1            |               |                          | <b>Mailing Ad</b> | dress Line 2     |               |             |
| 4600 J. Barry Court               |               |                          | Suite 500         |                  |               |             |
| Mailing Address Last Lin          | e – City      |                          | State             | ZIP+4            |               |             |
| Canonsburg                        | -             |                          | PA                | 15317            |               |             |
| Phone                             | Ext           | FAX                      | Email Add         | ress             |               |             |
| 724-873-2803                      |               |                          | DGEttore@         | marathonpetro    | leum.com      |             |
| NAICS Codes (Two- & Three         | e-Digit Codes | s – List All That Apply) |                   | 6-Digit          | Code (Optiona | l)          |
| 211130                            |               |                          |                   | NA               |               |             |
| <b>Client to Site Relationshi</b> | р             |                          |                   |                  |               |             |
| OWNOP                             |               |                          |                   |                  |               |             |

## **FACILITY INFORMATION**

No

 $\boxtimes$ 

Yes

## **Modification of Existing Facility**

Will this project modify an existing facility, system, or activity? 1. 2.

Will this project involve an addition to an existing facility, system, or activity? If "Yes", check all relevant facility types and provide DEP facility identification numbers below.

|             | Facility Type                            | DEP Fac ID# | Facility Type                                                | DEP Fac ID# |
|-------------|------------------------------------------|-------------|--------------------------------------------------------------|-------------|
| $\boxtimes$ | Air Emission Plant                       | 819388      | Industrial Minerals Mining Operation                         |             |
|             | Beneficial Use (water)                   |             | Laboratory Location                                          |             |
|             | Blasting Operation                       |             | Land Recycling Cleanup Location                              |             |
|             | Captive Hazardous Waste Operation        |             | Mine Drainage Treatment / Land<br>Recycling Project Location |             |
|             | Coal Ash Beneficial Use Operation        |             | Municipal Waste Operation                                    |             |
|             | Coal Mining Operation                    |             | Oil & Gas Encroachment Location                              |             |
|             | Coal Pillar Location                     |             | Oil & Gas Location                                           |             |
|             | Commercial Hazardous Waste Operation     |             | Oil & Gas Water Poll Control Facility                        |             |
|             | Dam Location                             |             | Public Water Supply System                                   |             |
|             | Deep Mine Safety Operation -Anthracite   |             | Radiation Facility                                           |             |
|             | Deep Mine Safety Operation -Bituminous   |             | Residual Waste Operation                                     |             |
|             | Deep Mine Safety Operation -Ind Minerals |             | Storage Tank Location                                        |             |
|             | Encroachment Location (water, wetland)   |             | Water Pollution Control Facility                             |             |
|             | Erosion & Sediment Control Facility      |             | Water Resource                                               |             |
|             | Explosive Storage Location               |             | Other:                                                       |             |

| Latitude/Longitude                       | Latitude               |                                                   |                                              | Longitude       |             |         |
|------------------------------------------|------------------------|---------------------------------------------------|----------------------------------------------|-----------------|-------------|---------|
| Point of Origin                          | Degrees                | Minutes                                           | Seconds                                      | Degrees         | Minutes     | Seconds |
| Harmon Creek Gas Plant                   | 40                     | 24                                                | 4                                            | 80              | 21          | 26      |
| Horizontal Accuracy Measure              | Feet                   |                                                   | or-                                          | - Me            | eters       |         |
| Horizontal Reference Datum Code          | □ Nor<br>□ Nor<br>⊠ Wo | th American  <br>th American  <br>rld Geodetic \$ | Datum of 192<br>Datum of 198<br>System of 19 | 27<br>33<br>184 |             |         |
| Horizontal Collection Method Code        |                        |                                                   |                                              |                 |             |         |
| Reference Point Code                     |                        |                                                   |                                              |                 |             |         |
| Altitude                                 | Feet 1                 | 171                                               | or-                                          | - Me            | eters       |         |
| Altitude Datum Name                      | 🗌 The                  | National Ge                                       | odetic Vertic                                | al Datum of '   | 1929        |         |
|                                          | 🗌 The                  | North Ameri                                       | can Vertical                                 | Datum of 198    | 88 (NAVD88) |         |
| Altitude (Vertical) Location Datum Colle | ection Meth            | od Code                                           |                                              |                 |             |         |
| Geometric Type Code                      |                        |                                                   |                                              |                 |             |         |
| Data Collection Date                     |                        |                                                   |                                              |                 |             |         |
| Source Map Scale Number                  |                        | Inch(es)                                          | =                                            |                 | Feet        |         |
| Or                                       |                        | Centimete                                         | r(s) =                                       |                 | Meter       | S       |

## **PROJECT INFORMATION**

| Project Name                             |                                                |                |                                     |                   |             |         |             |               |                |              |
|------------------------------------------|------------------------------------------------|----------------|-------------------------------------|-------------------|-------------|---------|-------------|---------------|----------------|--------------|
| Harmon Creek Gas Plant GP-5 Modification |                                                |                |                                     |                   |             |         |             |               |                |              |
| Proposed cons                            | truction :                                     | and operati    | on of Harmon Cree                   | k 2 which in      | -ludes t    | hroo (' | R) electr   | ic-driven c   | omores         | sors and     |
| associated blov                          | vdowns/v                                       | venting on     | e (1) 19 62 MMBtu                   | /hr regenerati    | on heat     | er and  |             | iated funitiv | /e comr        | onents       |
| Project Consu                            | Itant La                                       | st Name        | First N                             | Name              | onnoat      | or, and | <u>MI</u>   | latoa lagiti  | Suffix         |              |
| None used                                |                                                | otituiito      |                                     |                   |             |         |             |               | <b>C</b> ullix |              |
| Project Consu                            | Itant Tit                                      | le             |                                     | Consultin         | g Firm      |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
| Mailing Addres                           | ss Line                                        | 1              |                                     | Mailing A         | ddress      | Line 2  | 2           |               |                |              |
| Address Last                             | Line – C                                       | ity            |                                     | State             |             |         | ZIP+4       |               |                |              |
| Dhama                                    |                                                | <b>F</b> 4     | FAV                                 |                   |             |         |             |               |                |              |
| Phone                                    |                                                | EXt            | FAX                                 | Email A           | aaress      |         |             |               |                |              |
| Time Schedule                            | es                                             | Project M      | lilestone (Optiona                  | al)               |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             | N             |                |              |
| 1. Is the pr                             | oject loo                                      | cated in or    | within a 0.5-mile                   | radius            |             | Yes     | $\boxtimes$ | NO            |                |              |
| of an                                    | Environ                                        | imental J      | ustice communit                     | ty as             |             |         |             |               |                |              |
| denned                                   |                                                | ſ              |                                     |                   |             |         |             |               |                |              |
| To d                                     | letermine                                      | if the projec  | t is located in or with             | in a 0.5-mile ra  | dius of a   | an envi | ronment     | al justice co | mmunity        | , please use |
| the o                                    | online <u>Env</u>                              | /ironmental    | Justice Areas Viewer                |                   |             |         |             |               |                |              |
| 2. Have yo                               | ou infori                                      | med the s      | urrounding com                      | nunity            | $\boxtimes$ | Yes     |             | No            |                |              |
| prior to                                 | o subn                                         | nitting the    | e application to                    | b the             |             |         |             |               |                |              |
| Departm                                  | nent?                                          | -              |                                     |                   |             |         |             |               |                |              |
|                                          |                                                | _              |                                     |                   |             |         |             |               |                |              |
| Method                                   | of notifi                                      | cation: Mu     | nicipal notifications p             | er 25 Pa. Cod     | <u>e</u>    |         |             |               |                |              |
| <u>§ 127.41</u>                          | 3                                              |                | •4                                  | - 41 - 4          |             | Vaa     |             | Ne            |                | N1/A         |
| 3. Have yo                               | ou addr                                        | essea cor      | nmunity concerns                    | s that            |             | res     |             | INO           |                | IN/A         |
| lf no                                    | ntineu r                                       | oriefly descri | be the community co                 | ocerns that hav   | ve been i   | express | sed and     | not address   | ed             |              |
| 1110                                     | , piedee c                                     |                |                                     |                   | 0.00011     | onproo  |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
| 4. Is your p                             | oroject f                                      | unded by s     | state or federal grades             | ants?             |             | Yes     | $\boxtimes$ | No            |                |              |
| Note: If                                 | f "Yes", sp                                    | ecify what a   | spect of the project is             | s related to the  | grant ar    | nd prov | ide the g   | rant source,  | contact        | person       |
| a                                        | and grant                                      | expiration da  | ate.                                |                   |             |         |             |               |                |              |
| Δ                                        | spect of F                                     | Project Relat  | ed to Grant                         |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
| Grant Contact Person:                    |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                |                                     |                   |             |         |             |               |                |              |
|                                          |                                                |                | an authoritati                      |                   |             | Vac     |             | No            |                |              |
| 5. Is this                               | applica                                        | ation for      | an authorizatio                     | n on              |             | res     | 凶           | NO            |                |              |
| reference                                | IX A 01                                        | see Annor      | iu use Policy?<br>ndix A of the Lan | (ror<br>d lise    |             |         |             |               |                |              |
| Policy a                                 | ttached                                        | to GIF iner    | ructions)                           | u U3 <del>c</del> |             |         |             |               |                |              |
| Note: If                                 | "No" to C                                      | Question 5. th | ne application is not s             | ubject to the L   | and Use     | Policy. |             |               |                |              |
| lf                                       | "Yes" to                                       | Question 5.    | the application is sub              | ject to this poli | cy and th   | ne Appl | icant sho   | ould answer   | the addi       | tional       |
| n                                        | questions in the Land Use Information section. |                |                                     |                   |             |         |             |               |                |              |

### LAND USE INFORMATION

**<u>Note</u>**: Applicants should submit copies of local land use approvals or other evidence of compliance with local comprehensive plans and zoning ordinances.

| 1. | Is there an adopted county or multi-county comprehensive plan?                    |             | Yes         |          | No            |
|----|-----------------------------------------------------------------------------------|-------------|-------------|----------|---------------|
| 2. | Is there a county stormwater management plan?                                     |             | Yes         |          | No            |
| 3. | Is there an adopted municipal or multi-municipal comprehensive                    |             | Yes         |          | No            |
|    | plan?                                                                             |             |             |          |               |
| 4. | Is there an adopted county-wide zoning ordinance, municipal zoning                |             | Yes         |          | No            |
|    | ordinance or joint municipal zoning ordinance?                                    |             |             |          |               |
|    | Note: If the Applicant answers "No" to either Questions 1, 2 or 3, the provisions | of the PA N | IPC are no  | ot appli | cable and the |
|    | Applicant does not need to respond to questions 4 and 5 below.                    |             |             |          |               |
|    | If the Applicant answers "Yes" to questions 1, 2 and 3, the Applicant shou        | Id respond  | to questior | ns 4 ar  | nd 5 below.   |
| 5. | Does the proposed project meet the provisions of the zoning                       |             | Yes         |          | No            |
|    | ordinance or does the proposed project have zoning approval? If                   |             |             |          |               |
|    | zoning approval has been received, attach documentation.                          |             |             |          |               |
| 6. | Have you attached Municipal and County Land Use Letters for the                   |             | Yes         |          | No            |
|    | project?                                                                          |             |             |          |               |

## **COORDINATION INFORMATION**

<u>Note</u>: The PA Historical and Museum Commission must be notified of proposed projects in accordance with DEP Technical Guidance Document 012-0700-001 utilizing the Project Review Form.

**If the activity will be a mining project** (i.e., mining of coal or industrial minerals, coal refuse disposal and/or the operation of a coal or industrial minerals preparation/processing facility), respond to questions 1.0 through 2.5 below.

If the activity will not be a mining project, skip questions 1.0 through 2.5 and begin with question 3.0.

| 1.0 | Is this a coal mining project? If "Yes", respond to 1.1-1.6. If "No", skip to Question 2.0                                                                                                                                                                                                                                                                                                         | Yes | $\boxtimes$ | No |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|----|
| 1.1 | Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be equal to or greater than 200 tons/day?                                                                                                                                                                                                                  | Yes |             | No |
| 1.2 | Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be greater than 50,000 tons/year?                                                                                                                                                                                                                          | Yes |             | No |
| 1.3 | Will this coal mining project involve coal preparation/ processing activities in which thermal coal dryers or pneumatic coal cleaners will be used?                                                                                                                                                                                                                                                | Yes |             | No |
| 1.4 | For this coal mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters?                                                                                                                                                                                                                                                                | Yes |             | No |
| 1.5 | Will this coal mining project involve the construction of a permanent<br>impoundment meeting one or more of the following criteria: (1) a<br>contributory drainage area exceeding 100 acres; (2) a depth of<br>water measured by the upstream toe of the dam at maximum<br>storage elevation exceeding 15 feet; (3) an impounding capacity at<br>maximum storage elevation exceeding 50 acre-feet? | Yes |             | No |
| 1.6 | Will this coal mining project involve underground coal mining to be conducted within 500 feet of an oil or gas well?                                                                                                                                                                                                                                                                               | Yes |             | No |
| 2.0 | Is this a non-coal (industrial minerals) mining project? If "Yes", respond to 2.1-2.6. If "No", skip to Question 3.0.                                                                                                                                                                                                                                                                              | Yes | $\boxtimes$ | No |
| 2.1 | Will this non-coal (industrial minerals) mining project involve the crushing and screening of non-coal minerals other than sand and gravel?                                                                                                                                                                                                                                                        | Yes |             | No |
| 2.2 | Will this non-coal (industrial minerals) mining project involve the crushing and/or screening of sand and gravel with the exception of wet sand and gravel operations (screening only) and dry sand and gravel operations with a capacity of less than 150 tons/hour of unconsolidated materials?                                                                                                  | Yes |             | No |

| 2.3 | Will this non-coal (industrial minerals) mining project involve the construction, operation and/or modification of a portable non-<br>metallic (i.e., non-coal) minerals processing plant under the authority of the General Permit for Portable Non-metallic Mineral Processing Plants (i.e., BAQ-PGPA/GP-3)?<br>For this non-coal (industrial minerals) mining project, will sewage                         | Yes |             | No |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|----|
|     | treatment facilities be constructed and treated waste water discharged to surface waters?                                                                                                                                                                                                                                                                                                                     |     |             |    |
| 2.5 | Will this non-coal (industrial minerals) mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet? | Yes |             | Νο |
| 3.0 | Will your project, activity, or authorization have anything to do with<br>a well related to oil or gas production, have construction within 200<br>feet of, affect an oil or gas well, involve the waste from such a well,<br>or string power lines above an oil or gas well? If "Yes", respond to<br>3.1-3.3. If "No", skip to Question 4.0.                                                                 | Yes |             | No |
| 3.1 | Does the oil- or gas-related project involve any of the following:<br>placement of fill, excavation within or placement of a structure,<br>located in, along, across or projecting into a watercourse, floodway<br>or body of water (including wetlands)?                                                                                                                                                     | Yes | $\boxtimes$ | No |
| 3.2 | Will the oil- or gas-related project involve discharge of industrial wastewater or stormwater to a dry swale, surface water, ground water or an existing sanitary sewer system or storm water system? If "Yes", discuss in <i>Project Description</i> .                                                                                                                                                       | Yes |             | No |
| 3.3 | Will the oil- or gas-related project involve the construction and operation of industrial waste treatment facilities?                                                                                                                                                                                                                                                                                         | Yes | $\boxtimes$ | No |
| 4.0 | Will the project involve a construction activity that results in earthdisturbance?If "Yes", specify the total disturbed acreage.4.0.1Total Disturbed Acreage                                                                                                                                                                                                                                                  | Yes | $\boxtimes$ | No |
|     | 4.0.2 Will the project discharge or drain to a special protection water (EV or HQ) or an EV wetland?                                                                                                                                                                                                                                                                                                          | Yes |             | No |
|     | 4.0.3 Will the project involve a construction activity that results<br>in earth disturbance in the area of the earth disturbance<br>that are contaminated at levels exceeding residential or<br>non-residential medium-specific concentrations (MSCs)<br>in 25 Pa. Code Chapter 250 at residential or non-<br>residential construction sites, respectively?                                                   | Yes |             | No |
| 5.0 | Does the project involve any of the following: water obstruction<br>and/or encroachment, wetland impacts, or floodplain project by the<br>Commonwealth/political subdivision or public utility?<br>If "Yes", respond to 5.1-5.3. If "No", skip to Question 6.0.                                                                                                                                               | Yes |             | No |
| 5.1 | Water Obstruction and Encroachment Projects – Does the project<br>involve any of the following: placement of fill, excavation within or<br>placement of a structure, located in, along, across or projecting into<br>a watercourse, floodway or body of water?                                                                                                                                                | Yes |             | No |
| 5.2 | Wetland Impacts – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a wetland?                                                                                                                                                                                                                    | Yes |             | No |
| 5.3 | Floodplain Projects by the Commonwealth, a Political Subdivision<br>of the Commonwealth or a Public Utility – Does the project involve<br>any of the following: placement of fill, excavation within or<br>placement of a structure, located in, along, across or projecting into<br>a floodplain?                                                                                                            | Yes |             | No |
| 5.4 | Is your project an interstate transmission natural gas pipeline?                                                                                                                                                                                                                                                                                                                                              | Yes |             | No |

| 5.5  | Does your project consist of linear construction activities which<br>result in earth disturbance in two or more DEP regions AND three<br>or more counties?                                                                                                                                                                                                                                                                                  |             | Yes |             | No |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-------------|----|
| 5.6  | Does your project utilize Floodplain Restoration as a best management practice for Post Construction Stormwater Management?                                                                                                                                                                                                                                                                                                                 |             | Yes |             | No |
| 5.7  | Does your project utilize Class V Gravity / Injection Wells as a best management practice for Post Construction Stormwater Management?                                                                                                                                                                                                                                                                                                      |             | Yes |             | No |
| 6.0  | Will the project involve discharge of construction related stormwater to a dry swale, surface water, ground water or separate storm water system?                                                                                                                                                                                                                                                                                           |             | Yes | $\boxtimes$ | No |
| 6.1  | Will the project involve discharge of industrial waste stormwater or<br>wastewater from an industrial activity or sewage to a dry swale,<br>surface water, ground water or an existing sanitary sewer system or<br>separate storm water system?                                                                                                                                                                                             |             | Yes |             | No |
| 7.0  | Will the project involve the construction and operation of industrial waste treatment facilities?                                                                                                                                                                                                                                                                                                                                           |             | Yes | $\boxtimes$ | No |
| 8.0  | <ul> <li>Will the project involve construction of sewage treatment facilities, sanitary sewers, or sewage pumping stations? If "Yes", indicate estimated proposed flow (gal/day). Also, discuss the sanitary sewer pipe sizes and the number of pumping stations/treatment facilities/name of downstream sewage facilities in the <i>Project Description</i>, where applicable.</li> <li>8.0.1 Estimated Proposed Flow (gal/day)</li> </ul> |             | Yes |             | No |
| 9.0  | Will the project involve the subdivision of land, or the generation of<br>800 gpd or more of sewage on an existing parcel of land or the<br>generation of an additional 400 gpd of sewage on an already-<br>developed parcel, or the generation of 800 gpd or more of industrial<br>wastewater that would be discharged to an existing sanitary sewer<br>system?                                                                            |             | Yes |             | No |
|      | 9.0.1 Was Act 537 sewage facilities planning submitted and approved by DEP? If "Yes" attach the approval letter. Approval required prior to 105/NPDES approval.                                                                                                                                                                                                                                                                             |             | Yes |             | No |
| 10.0 | Is this project for the beneficial use of biosolids for land application<br>within Pennsylvania? If "Yes" indicate how much (i.e. gallons or dry<br>tons per year).<br>10.0.1 Gallons Per Year (residential septage)<br>10.0.2 Dry Tons Per Year (biosolids)                                                                                                                                                                                |             | Yes |             | No |
| 11.0 | Does the project involve construction, modification or removal of a dam? If "Yes", identify the dam.<br>11.0.1 Dam Name                                                                                                                                                                                                                                                                                                                     |             | Yes |             | No |
| 12.0 | Will the project interfere with the flow from, or otherwise impact, adam? If "Yes", identify the dam.12.0.1Dam Name                                                                                                                                                                                                                                                                                                                         |             | Yes |             | No |
| 13.0 | Will the project involve operations (excluding during the construction period) that produce air emissions (i.e., NOX, VOC, etc.)?                                                                                                                                                                                                                                                                                                           | $\boxtimes$ | Yes |             | No |
|      | <b>13.0.1</b> If "Yes", is the operation subject to the agricultural exemption in 35 P.S. § 4004.1?                                                                                                                                                                                                                                                                                                                                         |             | Yes |             | No |
|      | <ul> <li>13.0.2 If the answer to 13.0.1 is "No", identify each type of emission followed by the estimated amount of that emission.</li> <li>Enter all types &amp; amounts of See Emission Estimates Attached emissions; separate each set with semicolons.</li> </ul>                                                                                                                                                                       |             |     |             |    |

| 14.0 | Does the project include the construction or modification of a drinking water supply to serve 15 or more connections or 25 or more people, at least 60 days out of the year? If "Yes", check all proposed sub-facilities.<br>14.0.1 Number of Persons Served |   | Yes |             | No |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-------------|----|
|      | 14.0.2 Number of<br>Employee/Guests                                                                                                                                                                                                                          |   |     |             |    |
|      | 14.0.3 Number of Connections                                                                                                                                                                                                                                 |   |     |             |    |
|      | 14.0.4 Sub-Fac: Distribution System                                                                                                                                                                                                                          |   | Yes |             | No |
|      | 14.0.5 Sub-Fac: Water Treatment Plant                                                                                                                                                                                                                        |   | Yes |             | No |
|      | 14.0.6 Sub-Fac: Source                                                                                                                                                                                                                                       |   | Yes |             | No |
|      | 14.0.7 Sub-Fac: Pump Station                                                                                                                                                                                                                                 | Π | Yes | Π           | No |
|      | 14.0.8 Sub Fac: Transmission Main                                                                                                                                                                                                                            | Π | Yes | Π           | No |
|      | 14.0.9 Sub-Fac: Storage Facility                                                                                                                                                                                                                             | П | Yes | П           | No |
| 15.0 | Will your project include infiltration of storm water or waste water                                                                                                                                                                                         |   | Yes |             | No |
|      | to ground water within one-half mile of a public water supply well.                                                                                                                                                                                          |   |     |             |    |
|      | spring or infiltration gallery?                                                                                                                                                                                                                              |   |     |             |    |
| 16.0 | Is your project to be served by an existing public water supply? If                                                                                                                                                                                          |   | Yes | $\boxtimes$ | No |
| 1010 | "Yes" indicate name of supplier and attach letter from supplier stating                                                                                                                                                                                      |   |     |             |    |
|      | that it will serve the project                                                                                                                                                                                                                               |   |     |             |    |
|      | 16.0.1 Supplier's Name                                                                                                                                                                                                                                       |   |     |             |    |
|      | 16.0.2 Letter of Approval from Supplier is Attached                                                                                                                                                                                                          |   | Yes |             | Νο |
| 17 0 | Will this project be served by on-lot drinking water wells?                                                                                                                                                                                                  |   | Yes |             | No |
| 18.0 | Will this project be served by on let drinking water wens:                                                                                                                                                                                                   |   | Yes |             | No |
| 10.0 | withdrawal from a river stream spring lake well or other water                                                                                                                                                                                               |   | 100 |             |    |
|      | <b>bod(ies)?</b> If "Yes" reference Safe Drinking Water Program                                                                                                                                                                                              |   |     |             |    |
|      | 18.0.1 Source Name                                                                                                                                                                                                                                           |   |     |             |    |
| 10.0 | Will the construction or operation of this project involve treatment                                                                                                                                                                                         |   | Vec |             | No |
| 19.0 | storage reuse or disposal of waste? If "Ves" indicate what type (i.e.                                                                                                                                                                                        |   | 163 |             | NO |
|      | bazardous municipal (including infactious & chamatharapoutic)                                                                                                                                                                                                |   |     |             |    |
|      | residual) and the amount to be treated stored to used or disposed                                                                                                                                                                                            |   |     |             |    |
|      | 1901 Tuno & Amount                                                                                                                                                                                                                                           |   |     |             |    |
| 20.0 | Will your project involve the removal of coal minerals                                                                                                                                                                                                       |   | Ves |             | No |
| 20.0 | contaminated media or solid waste as part of any earth disturbance                                                                                                                                                                                           |   | 163 |             | NO |
|      | activities?                                                                                                                                                                                                                                                  |   |     |             |    |
| 21.0 | Does your project involve installation of a field constructed                                                                                                                                                                                                |   | Yes | $\square$   | No |
| 21.0 | underground storage tank? If "Ves" list each Substance & its                                                                                                                                                                                                 |   | 100 |             |    |
|      | Capacity Note: Applicant may need a Storage Tank Site Specific                                                                                                                                                                                               |   |     |             |    |
|      | Installation Permit                                                                                                                                                                                                                                          |   |     |             |    |
|      | 21.0.1 Enter all substances &                                                                                                                                                                                                                                |   |     |             |    |
|      | canacity of each: separate                                                                                                                                                                                                                                   |   |     |             |    |
|      | each set with semicolons                                                                                                                                                                                                                                     |   |     |             |    |
| 22.0 | Does your project involve installation of an aboveground storage                                                                                                                                                                                             |   | Yes | $\boxtimes$ | No |
|      | tank greater than 21,000 gallons capacity at an existing facility? If                                                                                                                                                                                        |   |     |             |    |
|      | "Yes", list each Substance & its Capacity, <b>Note:</b> Applicant may need a                                                                                                                                                                                 |   |     |             |    |
|      | Storage Tank Site Specific Installation Permit.                                                                                                                                                                                                              |   |     |             |    |
|      | 22.0.1 Enter all substances &                                                                                                                                                                                                                                |   |     |             |    |
|      | capacity of each: separate                                                                                                                                                                                                                                   |   |     |             |    |
|      | each set with semicolons.                                                                                                                                                                                                                                    |   |     |             |    |
| 23.0 | Does your project involve installation of a tank greater than                                                                                                                                                                                                |   | Yes | $\boxtimes$ | No |
|      | 1,100 gallons which will contain a highly hazardous substance as                                                                                                                                                                                             |   |     |             |    |
|      | defined in DEP's Regulated Substances List. 2570-BK-DEP2724? If                                                                                                                                                                                              |   |     |             |    |
|      | "Yes", list each Substance & its Capacity. Note: Applicant may need a                                                                                                                                                                                        |   |     |             |    |
|      | Storage Tank Site Specific Installation Permit.                                                                                                                                                                                                              |   |     |             |    |
|      | 23.0.1 Enter all substances &                                                                                                                                                                                                                                |   |     |             |    |
|      | capacity of each; separate                                                                                                                                                                                                                                   |   |     |             |    |
|      | each set with semicolons.                                                                                                                                                                                                                                    |   |     |             |    |

| 24.0 | Does your project involve installation of a storage tank at a new          |          | Yes           | $\boxtimes$ | No           |
|------|----------------------------------------------------------------------------|----------|---------------|-------------|--------------|
|      | facility with a total AST capacity greater than 21,000 gallons? If         |          |               |             |              |
|      | "Yes", list each Substance & its Capacity. Note: Applicant may need a      |          |               |             |              |
|      | Storage Tank Site Specific Installation Permit.                            |          |               |             |              |
|      | 24.0.1 Enter all substances &                                              |          |               |             |              |
|      | capacity of each; separate                                                 |          |               |             |              |
|      | each set with semicolons.                                                  |          |               |             |              |
|      | NOTE: If the project includes the installation of a regulated storage tank | system   | , including d | iesel e     | mergency     |
|      | generator systems, the project may require the use of a Department Cen     | tified T | ank Handler   | For a       | full list of |
|      | regulated storage tanks and substances, please go to www.dep.pa.gov s      | earch te | erm storage   | tanks       |              |
| 25.0 | Will the intended activity involve the use of a radiation source?          |          | Yes           | $\boxtimes$ | No           |
|      | CERTIFICATION                                                              |          |               |             |              |

I certify that I have the authority to submit this application on behalf of the applicant named herein and that the information provided in this application is true and correct to the best of my knowledge and information.

For applicants supplying an EIN number: I am applying for a permit or authorization from the Pennsylvania Department of Environmental Protection (DEP). As part of this application, I will provide DEP with an accurate EIN number for the applicant entity. By filing this application with DEP, I hereby authorize DEP to confirm the accuracy of the EIN number provided with the Pennsylvania Department of Revenue. As applicant, I further consent to the Department of Revenue discussing the same with DEP prior to issuance of the Commonwealth permit or authorization.

Sam Schupbach Type or Print Name VP Operations Processing 6/29/2022 Date Signature Title

Plan Approval Application Forms



### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

# PROCESSES

## Application for Plan Approval to Construct, Modify or Reactivate an Air Contamination Source and/or Install an Air Cleaning Device

This application must be submitted with the General Information Form (GIF).

Before completing this form, read the instructions provided for the form.

| Section A - Fac                                                                                                                                                                                                                                | ility Name, Checkli                                                              | ist And Certification                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| Organization Name or Registered Fictitious Na                                                                                                                                                                                                  | me/Facility Name: <u>Mark</u>                                                    | kWest Liberty Midstream & Resources, LLC             |
| Type of Review required and Fees:                                                                                                                                                                                                              |                                                                                  |                                                      |
| <ul> <li>Source which is not subject to NSPS,</li> <li>Source requiring approval under NSP</li> <li>Source requiring approval under NSR</li> <li>Source requiring the establishment of</li> <li>Source requiring approval under PSD</li> </ul> | NESHAPs, MACT, NSF<br>S or NESHAPS or both<br>regulations:<br>a MACT limitation: | R and PSD:\$<br>::\$7,500<br>\$\$<br>\$\$\$          |
|                                                                                                                                                                                                                                                | Applicant's Check                                                                | klist                                                |
| Check the following list to n                                                                                                                                                                                                                  | nake sure that all the r                                                         | required documents are included.                     |
| ⊠ General Information Form (GIF)                                                                                                                                                                                                               |                                                                                  |                                                      |
| Processes Plan Approval Applica                                                                                                                                                                                                                | tion                                                                             |                                                      |
| Compliance Review Form or pro<br>facilities submitting on a periodic ba                                                                                                                                                                        | ovide reference of mos<br>sis:                                                   | est recently submitted compliance review form for    |
| ☑ Copy and Proof of County and Ma                                                                                                                                                                                                              | unicipal Notifications                                                           |                                                      |
| 🛛 Permit Fees                                                                                                                                                                                                                                  |                                                                                  |                                                      |
| Addendum A: Source Applicable F                                                                                                                                                                                                                | Requirements (only app                                                           | licable to existing Title V facility)                |
| Certification of Truth, Accu                                                                                                                                                                                                                   | racy and Complete                                                                | eness by a Responsible Official                      |
| I, Sam Schupbach                                                                                                                                                                                                                               | , certify under penal                                                            | lty of law in 18 Pa. C. S. A. §4904, and             |
| 35 P.S. §4009(b) (2) that based on information                                                                                                                                                                                                 | and belief formed afte                                                           | r reasonable inquiry, the statements and information |
| in this application are true, accurate and compl                                                                                                                                                                                               | ete.                                                                             |                                                      |
| S. Salial                                                                                                                                                                                                                                      | <b>D</b> :                                                                       | 1/20/2022                                            |
| (Signature):                                                                                                                                                                                                                                   | Date                                                                             |                                                      |
| Name (Print): <u>Sam Schupbach</u>                                                                                                                                                                                                             |                                                                                  | e: VP G&P Operations East                            |
|                                                                                                                                                                                                                                                | OFFICIAL USE ONI                                                                 | LY                                                   |
| Application No.                                                                                                                                                                                                                                | Unit ID                                                                          | Site ID                                              |
| DEP Client ID #:                                                                                                                                                                                                                               | APS. ID                                                                          | AUTH. ID                                             |
| Date Received                                                                                                                                                                                                                                  | Date Assigned                                                                    | Reviewed By                                          |
| Date of 1 <sup>st</sup> Technical Deficiency<br>Comments:                                                                                                                                                                                      | Date                                                                             | e of 2 <sup>na</sup> Technical Deficiency            |
|                                                                                                                                                                                                                                                |                                                                                  |                                                      |

|                                                                                                              | Se                                                                                                                     | ection B - Pro                                                                                        | cesses Informat                                                                                                               | on                                                                                 |                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1. Source Inform                                                                                             | mation                                                                                                                 |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| Source Description<br>Harmon Creek Cryo<br>the facility will includ<br>added components<br>However, maintena | (give type, use, raw n<br>o II (260 MMSCFD) wi<br>de maintenance blowd<br>, and one (1) new 500<br>nce blowdowns and F | naterials, product<br>ill include one (1)<br>downs from three<br>0-gallon methanol<br>2SVs from Harmo | t, etc). Attach addition<br>new 19.62 MMBtu/h<br>(3) new electric-drive<br>I tank. The existing pl<br>on Creek Cryo II will b | al sheets as r<br>heater. Poter<br>on compresso<br>ant flare PTE<br>e controlled b | necessary.<br>ntial de minimis increases at<br>rs, fugitive emissions from<br>will remain unchanged.<br>y the process flare. |
| Manufacturer                                                                                                 |                                                                                                                        | Model N                                                                                               | lo.                                                                                                                           | Numb                                                                               | er of Sources                                                                                                                |
| Source Designation<br>Regen Heater                                                                           | 1                                                                                                                      | Maximu<br>19.62 M                                                                                     | m Capacity<br>IMBtu/r (HHV)                                                                                                   | Rated 16.21                                                                        | Capacity<br>MMBtu/hr                                                                                                         |
| Type of Material Pro<br>16.21 MMBtu/hr                                                                       | ocessed                                                                                                                |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| Maximum Operatii                                                                                             | ng Schedule                                                                                                            |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| Hours/Day<br>24                                                                                              | Days/Wee<br>7                                                                                                          | ek                                                                                                    | Days/Year<br>365<br>bottlenecks or volunt                                                                                     | ary restriction                                                                    | Hours/Year<br>8760<br>s to limit PTE)                                                                                        |
|                                                                                                              |                                                                                                                        | steu, il ally (e.g.,                                                                                  |                                                                                                                               |                                                                                    | s to minit F T L)                                                                                                            |
| Per Hour                                                                                                     | Per Day<br>260 MMS                                                                                                     | CF                                                                                                    | Per Week                                                                                                                      |                                                                                    | Per Year                                                                                                                     |
| Operating Schedu                                                                                             | le                                                                                                                     |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| Hours/Day<br>24                                                                                              | Days/Wee<br>7                                                                                                          | łK                                                                                                    | Days/Year<br>365                                                                                                              |                                                                                    | Hours/Year<br>8760                                                                                                           |
| Seasonal variations                                                                                          | (Months) From                                                                                                          |                                                                                                       | to                                                                                                                            | ·                                                                                  |                                                                                                                              |
|                                                                                                              | ,                                                                                                                      |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| 2. Fuel                                                                                                      | Quantity                                                                                                               |                                                                                                       |                                                                                                                               | % Ash                                                                              |                                                                                                                              |
| Туре                                                                                                         | Hourly                                                                                                                 | Annually                                                                                              | Sulfur                                                                                                                        | (Weight)                                                                           | BTU Content                                                                                                                  |
| Oil Number<br>                                                                                               | GPH @<br>60°F                                                                                                          | X 10³<br>Gal                                                                                          | % by wt                                                                                                                       |                                                                                    | Btu/Gal. &<br>Lbs./Gal. @ 60 °F                                                                                              |
| Oil Number                                                                                                   | GPH @<br>60°F                                                                                                          | X 10³<br>Gal                                                                                          | % by wt                                                                                                                       |                                                                                    | Btu/Gal. &<br>Lbs./Gal. @ 60 °F                                                                                              |
| Natural Gas                                                                                                  | SCFH                                                                                                                   | 0.017 X 10 <sup>6</sup><br>SCF                                                                        | grain/100<br>SCF                                                                                                              |                                                                                    | 1153 Btu/SCF                                                                                                                 |
| Gas (other)                                                                                                  | SCFH                                                                                                                   | X 10 <sup>6</sup><br>SCF                                                                              | grain/100<br>SCF                                                                                                              |                                                                                    | Btu/SCF                                                                                                                      |
| Coal                                                                                                         | TPH                                                                                                                    | Tons                                                                                                  | % by wt                                                                                                                       |                                                                                    | Btu/lb                                                                                                                       |
| Other *                                                                                                      |                                                                                                                        |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
|                                                                                                              |                                                                                                                        |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
|                                                                                                              |                                                                                                                        |                                                                                                       |                                                                                                                               |                                                                                    |                                                                                                                              |
| *Note: Describe an                                                                                           | d furnish information                                                                                                  | separately for oth                                                                                    | ner fuels in Addendun                                                                                                         | ו B.                                                                               | •                                                                                                                            |

| Section B - Processes Information (Continued)                                             |                                                  |                                                                                                 |                            |                                  |                   |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|-------------------|--|
| 3. Burner                                                                                 |                                                  |                                                                                                 |                            |                                  |                   |  |
| Manufacturer<br>Tulsa Heaters                                                             | Type and Mo<br>H-2711                            | del No.                                                                                         |                            | Nu<br>1                          | mber of Burners   |  |
| Cryo II Regeneration Heater                                                               |                                                  |                                                                                                 |                            |                                  |                   |  |
| Rated Capacity<br>16.21 MMBtu/hr                                                          | N<br>1                                           | laximum C<br>9.62 MMBt                                                                          | apacity<br>tu/hr           |                                  |                   |  |
| 4. Process Storage Vessels                                                                |                                                  |                                                                                                 |                            |                                  |                   |  |
| A. For Liquids: (New Source)                                                              |                                                  |                                                                                                 |                            |                                  |                   |  |
| Name of material stored<br>Methanol                                                       |                                                  |                                                                                                 |                            |                                  |                   |  |
| Tank I.D. No.                                                                             | Manufacturer                                     |                                                                                                 |                            | Date Installed                   |                   |  |
| TK-1102                                                                                   | Exterran                                         |                                                                                                 |                            | Upon Approva                     |                   |  |
| Design Pressure<br>16 oz/in2                                                              |                                                  | Capacity<br>500                                                                                 | (gallons/M                 | leter <sup>3</sup> )             |                   |  |
| Type of relief device (pressure set vent/<br>N/A                                          | conservation vent/en                             | nergency v                                                                                      | ent/open v                 | ent)                             |                   |  |
| Relief valve/vent set pressure (psig)<br>N/A                                              |                                                  | Vapor pro<br>N/A                                                                                | ess. of liqu               | id at storage ten                | np. (psia/kPa)    |  |
| Type of Roof: Describe:<br>None – Horizontal tank                                         |                                                  |                                                                                                 |                            |                                  |                   |  |
| Total Throughput Per Year<br>3,000 gal                                                    |                                                  | Number of fills per day (fill/day):<br>Filling Rate (gal./min.):<br>Duration of fill hr /fill): |                            |                                  |                   |  |
| B. For Solids – Not Applicable                                                            |                                                  |                                                                                                 |                            | ,                                |                   |  |
| Type: Silo Storage Bin Othe                                                               | r, Describe                                      | Name of                                                                                         | Material S                 | tored                            |                   |  |
| Silo/Storage Bin I.D. No.                                                                 | Manufacturer                                     |                                                                                                 |                            | Date Installed                   |                   |  |
| State whether the material will be stored                                                 | l in loose or bags in s                          | silos                                                                                           | Capacity                   | (Tons)                           |                   |  |
| Turn over per year in tons                                                                |                                                  |                                                                                                 | Turn ovei                  | <sup>-</sup> per day in tons     |                   |  |
| Describe fugitive dust control system for                                                 | loading and handlin                              | g operatior                                                                                     | าร                         |                                  |                   |  |
| Describe material handling system                                                         |                                                  |                                                                                                 |                            |                                  |                   |  |
| 5. Request for Confidentiality                                                            |                                                  |                                                                                                 |                            |                                  |                   |  |
| Do you request any information on this a<br>If yes, include justification for confidentia | application to be trea<br>ality. Place such info | ted as "Co<br>rmation on                                                                        | nfidential"?<br>separate p | Yes I Yes ages marked " <b>c</b> | No confidential". |  |

### Section B - Processes Information (Continued)

### 6. Miscellaneous Information

Attach flow diagram of process giving all (gaseous, liquid and solid) flow rates. Also, list all raw materials charged to process equipment, and the amounts charged (tons/hour, etc.) at rated capacity (give maximum, minimum and average charges describing fully expected variations in production rates). Indicate (on diagram) all points where contaminants are controlled (location of water sprays, collection hoods, or other pickup points, etc.). Describe collection hoods location, design, airflow and capture efficiency. Describe any restriction requested and how it will be monitored.

### See PFD appended.

Describe fully the facilities provided to monitor and to record process operating conditions, which may affect the emission of air contaminants. Show that they are reasonable and adequate.

A fuel usage meter will be installed to monitor fuel consumption by the heater (032).

Describe each proposed modification to an existing source.

Pigging frequency is expected to increase. However, the frequency is not anticipated to be greater than that included in the modification application submitted on 12/10/2020. Therefore, potential emission estimates will remain unchanged. Pigging emissions will be controlled by the plant flare.

The plant flare (C601), currently authorized under GP5-63-01011A, will control the proposed compressor maintenance blowdowns and emissions from pressure relief valves, where feasible. The potential-to-emit from the flare in the applications submitted on 6/12/2017 and 12/10/2020 included Cryo II and is not being increased under this application. However, the construction period for Cryo II has lapsed and requires authorization to construct. The basis for the potential emission estimates in the two previous applications will remain unchanged in this plan approval application.

Identify and describe all fugitive emission points, all relief and emergency valves and any by-pass stacks.

The potential emission estimates attached have accounted for fugitive emission points associated with the new equipment. Some pressure relief devices, where feasible, will be controlled by the plant flare.

Pumps are monitored via weekly inspections and monthly Method 21. MPLX conducts a quarterly LDAR program using a gas leak detector approved for Method 21 and/or an OGI camera. In addition, Harmon Creek operators conduct daily AVO inspections.

Describe how emissions will be minimized especially during start up, shut down, process upsets and/or disruptions.

Consistent with the 2018 Consent Decree (CD), pigging equipment at Harmon Creek is equipped with pig ramps and grounded steel receptacles that are covered when not in use, and vapors from depressurizing pigging barrels are routed to the plant flare. The CD requires high pressure pigging equipment to be connected to a low pressure gathering line where commercially reasonable and technically feasible. The connection of the high pressure launcher to a low pressure line would require MPLX to use more than 100 feet of piping and connect to a line located outside the fence line of the facility. Thus, per the CD, jumper lines at Harmon Creek are not commercially reasonable and technically feasible.

When feasible, emissions from compressor blowdowns and facility outages will be routed to the plant flare.

Anticipated Milestones:

- i. Expected commencement date of construction/reconstruction/installation: January 2
- ii. Expected completion date of construction/reconstruction/installation:iii. Anticipated date of start-up:
- January 2023 January 2024 January 2024

| Section C - Air Cleaning Device                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------|--|--|--|
| 1. Precontrol Emissions* - See Emission Calculations Attached       |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          | Maximum                                     | Emission Rate                                     | 1                                            | Calculation/                          |  |  |  |
| Pollutant                                                           | Specify Units                                                            | Pounds/Hour                                 | Hours/Year                                        | Tons/Year                                    | Estimation<br>Method                  |  |  |  |
| PM                                                                  |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| PM10                                                                |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| SOx                                                                 |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| CO                                                                  |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| NOx                                                                 |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| VOC                                                                 |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| Others: (e.g., HAPs)                                                |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| * These emissions mu<br>schedule for maximu<br>values were determin | st be calculated bas<br>m limits or restricted<br>red. Attach calculatio | ed on the request<br>I hours of operations. | ed operating schedule<br>on and/or restricted thr | e and/or process rate<br>oughput. Describe h | e, e.g., operating<br>ow the emission |  |  |  |
| 2. Gas Cooling – N                                                  | /A                                                                       |                                             |                                                   |                                              |                                       |  |  |  |
| Water quenching                                                     | Yes 🗌 No                                                                 | Water injection ra                          | te                                                | GPM                                          |                                       |  |  |  |
| Radiation and convectio                                             | on cooling                                                               |                                             | Air dilution                                      | Yes 🗌 No<br>FM                               |                                       |  |  |  |
| Forced Draft 🗌 Yes                                                  | No                                                                       |                                             | Water cooled duct wor                             | k 🗌 Yes 🗌                                    | No                                    |  |  |  |
| Other                                                               |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
| Inlet Volume                                                        | ACFM                                                                     |                                             | Outlet Volume                                     | ACFM                                         |                                       |  |  |  |
| @°F                                                                 | % Moisture                                                               |                                             | @°F                                               | % Moisture                                   |                                       |  |  |  |
| Describe the system in                                              | detail.                                                                  |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |
|                                                                     |                                                                          |                                             |                                                   |                                              |                                       |  |  |  |

| Section C - Air Cleaning Device (Continued)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| 12. Flares (Existing Source)                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Equipment Specification                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Manufacturer                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type 🗌 Elev                                                                          | vated flare                                                                                                     | nd flare                                                                                         | Model No.                                                     |  |  |
| John Zink                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oth                                                                                  | er <u>Air Assisted</u>                                                                                          | Describe                                                                                         | EEF Series                                                    |  |  |
| Design Volume (SCFM)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dimensions of s                                                                      | tack (ft.)                                                                                                      |                                                                                                  |                                                               |  |  |
| Design Volumes provided                                                                                                                                | by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diameter 6'11"                                                                       | Height <u>199</u>                                                                                               |                                                                                                  |                                                               |  |  |
| scenarios.                                                                                                                                             | a on dillerent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Facility Potential Volume:                                                                                                                             | 100 mmscf/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Residence time (sec.) and                                                                                                                              | outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn down ratio                                                                      |                                                                                                                 | Burner details                                                                                   |                                                               |  |  |
| temperature (°F)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 | Waste gas                                                                                        |                                                               |  |  |
| Describe the flare design (<br>flare with a sketch.                                                                                                    | air/steam-assi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sted or nonassiste                                                                   | d), essential auxiliaries ir                                                                                    | ncluding pilot flame m                                                                           | onitor of proposed                                            |  |  |
| Stable in winds up to a ve<br>tip windshield, ignition an<br>thermowells for thermoco-<br>flare. The motors driving the<br>wide range of rotational sp | Stable in winds up to a velocity of 160 mph in all positions around the flare tip, the WindPROOF Pilot consists of a tip and tip windshield, ignition and fuel piping, venturi mixer, strainer, and a mixer windshield. Also included are two integral thermowells for thermocouple pilot detection. Two blowers to supply low pressure air are provided with the air assisted flare. The motors driving these blowers are designed to operate with a Variable Frequency Drive (VFD). The VFD allows a wide range of rotational speeds (twoically from 10 to 100%) |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Describe the operation of t                                                                                                                            | he flare's igniti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on system.                                                                           |                                                                                                                 |                                                                                                  |                                                               |  |  |
| The Zeus Electric Spark Ig<br>ignites a small slip stream<br>generated at the probe tra<br>The Zeus ignitor control bo<br>approximately once every     | nitor delivers a<br>of gas/air mixtu<br>vels a short dis<br>ox located in a<br>8 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a spark at the end<br>ure taken from the<br>stance from the en<br>panel at grade use | of a probe mounted on th<br>main pilot supply above<br>d of the probe to the pilot<br>es a capacitive discharge | ne Zeus equipped pilo<br>the pilot mixer. The fl<br>ignition hood where<br>to generate a periodi | t. The spark<br>ame front<br>it lights the pilot.<br>ic spark |  |  |
| Describe the provisions to                                                                                                                             | introduce auxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | liary fuel to the flar                                                               | e.                                                                                                              |                                                                                                  |                                                               |  |  |
| None needed.                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| <b>Operation Parameters</b>                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Detailed composition of th                                                                                                                             | e waste gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat content                                                                         | Exit velocity                                                                                                   |                                                                                                  |                                                               |  |  |
| Conservatively assumes f<br>See detailed emission cal<br>attached.                                                                                     | acility inlet.<br>culations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1413.78                                                                              | Maximum velocity calculated base<br>manufacturer provided design scent<br>flowrate is 83.3 ft/s                 |                                                                                                  |                                                               |  |  |
| Maximum and average ga                                                                                                                                 | s flow burned (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACFM)                                                                                | Operating temperature (                                                                                         | °F)                                                                                              |                                                               |  |  |
| Maximum flow rate based design scenarios is 558,50                                                                                                     | on manufactur<br>)0 lb/hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er provided                                                                          | Varies                                                                                                          |                                                                                                  |                                                               |  |  |
| Facility Potential Volume:                                                                                                                             | 100 mmscf/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Describe the warning/alarr                                                                                                                             | n system that p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | protects against op                                                                  | peration when unit is not                                                                                       | meeting design requir                                                                            | ements.                                                       |  |  |
| Alarms are set to trigger w trigger alarms are determined                                                                                              | hen specific co<br>ned based on (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onditions are met s<br>Cause and Effect o                                            | such as the absence of a control documents.                                                                     | pilot flame. The cond                                                                            | itions which                                                  |  |  |
| Emissions Data                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                                 |                                                                                                  |                                                               |  |  |
| Pollutant                                                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inlet                                                                                | Outlet                                                                                                          | Removal Ef                                                                                       | ficiency (%)                                                  |  |  |
| VOC                                                                                                                                                    | 673.04 tpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      | 13.46 tpy                                                                                                       | 98%                                                                                              |                                                               |  |  |
| HAP                                                                                                                                                    | 48.82 tpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | 0.98 tpy                                                                                                        | 98%                                                                                              |                                                               |  |  |

| Section C - Air Cleaning Device (Continued)                                                                     |                                                                                                               |                   |                            |                                         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----------------------------------------|--|--|--|--|
| 13. Other Control Equi                                                                                          | pment – <mark>N/A</mark>                                                                                      |                   |                            |                                         |  |  |  |  |
| Equipment Specification                                                                                         | IS                                                                                                            | 1                 |                            |                                         |  |  |  |  |
| Manufacturer                                                                                                    |                                                                                                               | Туре              |                            | Model No.                               |  |  |  |  |
|                                                                                                                 |                                                                                                               |                   |                            |                                         |  |  |  |  |
| Design Volume (SCFM)                                                                                            |                                                                                                               |                   | Capacity                   |                                         |  |  |  |  |
| Describe pH monitoring a                                                                                        | nd pH adjustme                                                                                                | nt, if any.       |                            |                                         |  |  |  |  |
| Indicate the liquid flow rate                                                                                   | Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. |                   |                            |                                         |  |  |  |  |
| Attach efficiency curve and                                                                                     | d/or other efficie                                                                                            | ency information. |                            |                                         |  |  |  |  |
| Attach any additional date                                                                                      | including auxili                                                                                              | ary equipment an  | d operation details to tho | roughly evaluate the control equipment. |  |  |  |  |
| Operation Parameters                                                                                            |                                                                                                               |                   |                            |                                         |  |  |  |  |
| Volume of gas handled                                                                                           |                                                                                                               |                   |                            |                                         |  |  |  |  |
| AC                                                                                                              | CFM @                                                                                                         | °F                | % N                        | loisture                                |  |  |  |  |
| Describe fully giving important parameters and method of operation.                                             |                                                                                                               |                   |                            |                                         |  |  |  |  |
| Describe the warning/alarm system that protects against operation when unit is not meeting design requirements. |                                                                                                               |                   |                            |                                         |  |  |  |  |
| Emissions Data                                                                                                  |                                                                                                               |                   | 1                          | I                                       |  |  |  |  |
| Pollutant                                                                                                       | I                                                                                                             | nlet              | Outlet                     | Removal Efficiency (%)                  |  |  |  |  |
|                                                                                                                 |                                                                                                               |                   |                            |                                         |  |  |  |  |
|                                                                                                                 |                                                                                                               |                   |                            |                                         |  |  |  |  |
|                                                                                                                 |                                                                                                               |                   |                            |                                         |  |  |  |  |

|       | Section C - Air Cleaning Device (Continued) |                       |                        |                       |                       |  |  |  |  |  |
|-------|---------------------------------------------|-----------------------|------------------------|-----------------------|-----------------------|--|--|--|--|--|
| 14.   | Costs                                       |                       |                        |                       |                       |  |  |  |  |  |
| Indic | ate cost associated wit                     | h air cleaning device | and its operating cost | (attach documentation | ı if necessary)       |  |  |  |  |  |
| The   | plant flare is an existing                  | g source.             |                        |                       |                       |  |  |  |  |  |
|       | Device                                      | Direct Cost           | Indirect Cost          | Total Cost            | Annual Operating Cost |  |  |  |  |  |
|       |                                             |                       |                        |                       |                       |  |  |  |  |  |

#### 15. Miscellaneous

Describe in detail the removal, handling and disposal of dust, effluent, etc. from the air cleaning device including proposed methods of controlling fugitive emissions.

N/A

Attach manufacturer's performance guarantees and/or warranties for each of the major components of the control system (or complete system).

The existing plant flare has guaranteed destruction efficiency of 98%

Attach the maintenance schedule for the control equipment and any part of the process equipment that if in disrepair would increase air contaminant emissions.

|           | Section D - Additional Information                                                                                                                                        |       |      |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--|--|--|--|--|
| Wi<br>the | Will the construction, modification, etc. of the sources covered by this application increase emissions from other sources at the facility? If so, describe and quantify. |       |      |  |  |  |  |  |
| No        | No. All sources with the potential to increase in emissions have been included in this application.                                                                       |       |      |  |  |  |  |  |
| lf t      | If this project is subject to any one of the following, attach a demonstration to show compliance with applicable standards                                               |       |      |  |  |  |  |  |
|           |                                                                                                                                                                           |       |      |  |  |  |  |  |
| a.        | Prevention of Significant Deterioration permit (PSD), 40 CFR 52?                                                                                                          | ☐ YES | ⊠ NO |  |  |  |  |  |
| b.        | New Source Review (NSR), 25 Pa. Code Chapter 127, Subchapter E?                                                                                                           | Tes 🗌 | ⊠ NO |  |  |  |  |  |
| C.        | New Source Performance Standards (NSPS), 40 CFR Part 60?<br>(If Yes, which subpart) <u>OOOOa, Dc</u>                                                                      | 🛛 YES | □ NO |  |  |  |  |  |
| d.        | National Emissions Standards for Hazardous Air Pollutants (NESHAP),<br>40 CFR Part 61? (If Yes, which subpart)                                                            | ☐ YES | ⊠ NO |  |  |  |  |  |
| e.        | Maximum Achievable Control Technology (MACT) 40 CFR Part 63?<br>(If Yes, which part)                                                                                      | ☐ YES | ⊠ NO |  |  |  |  |  |
|           |                                                                                                                                                                           |       |      |  |  |  |  |  |

Attach a demonstration showing that the emissions from any new sources will be the minimum attainable through the use of best available technology (BAT).

As requested by the Department, MPLX is including a BAT analysis for the addition of an enclosed combustor to control Harmon Creek Cryo II.

The existing flare at Harmon Creek has a destruction efficiency of at least 98%, which is equivalent to the destruction efficiency of the enclosed combustor. Thus, no emission reductions will result from operating an enclosed combustor to control Harmon Creek II maintenance blowdowns and PSVs, demonstrating that the existing flare meets BAT.

Additional pilot and purge gas would be required to operate an enclosed combustor, increasing emissions at the facility. The PTE increase is summarized in the BAT Cost Table below. The basis for the enclosed combustor emission estimates is provided on page 23 of the application.

The direct cost for the enclosed combustor is provided in the table on page 24 of the application. Indirect costs have been estimated based on costs for similar projects.

As demonstrated in this section, the installation and operation of an enclosed combustor would increase emissions at Harmon Creek and thus, is not economically reasonable.

| Best Available Technology Costs |              |               |              |                          |                                                                                  |  |  |  |  |
|---------------------------------|--------------|---------------|--------------|--------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Device                          | Direct Cost  | Indirect Cost | Total Cost   | Annual Operating<br>Cost | PTE Change<br>(TPY)                                                              |  |  |  |  |
| Enclosed Combustor              | \$10,000,000 | \$10,000,000  | \$20,000,000 |                          | VOC: +0.01<br>CO: +2.04<br>NOx: +0.45<br>PM: +0.05<br>CO2: +771.55<br>CH4: +4.90 |  |  |  |  |
|                                 |              |               |              |                          |                                                                                  |  |  |  |  |
|                                 |              |               |              |                          |                                                                                  |  |  |  |  |
|                                 |              |               |              |                          |                                                                                  |  |  |  |  |

Provide emission increases and decreases in allowable (or potential) and actual emissions within the last five (5) years for applicable PSD pollutant(s) if the facility is an existing major facility (PSD purposes).

Not Applicable

### MarkWest Liberty Midstream & Resources, L.L.C. Harmon Creek Gas Plant

## Enclosed Combustor Pilot and Purge Emission Estimates

| Source Designation:                          |          |
|----------------------------------------------|----------|
| Manufacturer:                                | Zeeco    |
| Operating Hours: (hr/yr)                     | 8,760    |
| Pilot + Purge Gas Heat Input (MMBtu/hr)      | 1.503    |
| Pilot + Purge Gas Annual Fuel Use (mmscf/yr) | 12.439   |
| Pilot Fuel Consumption (mmscf/hr):           | 1.10E-03 |
| Purge Fuel Consumption (mmscf/hr):           | 3.20E-04 |
| Fuel HHV (Btu/scf)                           | 1,059    |

### **Total Emissions**

| Pollutant                      | Emission Factor<br>(lb/MMBtu) | lb/hr  | tpy    |
|--------------------------------|-------------------------------|--------|--------|
| VOC                            |                               | 0.00   | 0.01   |
| HAP                            |                               | 0.00   | 0.00   |
| NO <sub>X</sub>                | 0.068                         | 0.10   | 0.45   |
| CO                             | 0.31                          | 0.47   | 2.04   |
| SO <sub>2</sub>                | 0.0006                        | 0.00   | 0.00   |
| PM Total                       | 0.0075                        | 0.01   | 0.05   |
| PM Condensable                 | 0.0056                        | 0.01   | 0.04   |
| PM <sub>10</sub> (Filterable)  | 0.0019                        | 0.00   | 0.01   |
| PM <sub>2.5</sub> (Filterable) | 0.0019                        | 0.00   | 0.01   |
| CO <sub>2</sub>                | 117.05                        | 176.15 | 771.55 |
| $CH_4$                         | 0.002                         | 1.12   | 4.90   |
| N <sub>2</sub> O               | 0.0002                        | 0.00   | 0.00   |

<sup>a</sup> The NOx and CO emission factors are from AP-42 Section 13.5 "Industrial Flares" Table 13.5-1.

<sup>b</sup> Emission factors for GHG pollutants from 40 CFR Part 98, Subpart C. Tables C-1 and C-2.

<sup>c</sup> The remaining factors are from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1 and 1.4-2.

<sup>d</sup> VOC and HAP emissions are based on mass balance.

| PROCESS CONDITIONS                |                |                 |                 |             |                 |                 |                 |                  |                 |                  |                 |
|-----------------------------------|----------------|-----------------|-----------------|-------------|-----------------|-----------------|-----------------|------------------|-----------------|------------------|-----------------|
|                                   |                | Deethan         | izer Plant      |             |                 |                 | Cryo Plant      |                  |                 | Global           | Plant Inlet     |
|                                   | PSV-251        | PSV-155/156/157 | PSV-456         | PSV-458     | PSV-422B        | PSV-321         | PSV-140/1/2     | PSV-521 New      | PSV-151/2/3/4D  | Multiple         |                 |
| Description                       | DeC2 Reboiler  | Refrig Comp     | C3+ Tank        | Ethane Tank | DeC1 Surge Tank | A-321           | Refrig Comp     | Demethanizer LCV | Residue Comp    | Dowor Failura    | Slug Catcher    |
| Case                              | Reflux Failure | Blocked Outlet  | Fire            | Fire        | Fire            | Control Failure | Blocked Outlet  | Bypass Failure   | Blocked Outlet  | Power Failure    | Fire            |
| PSV Set Pressure                  | 550            | 350             | 550             | 550         | 550             | 540             | 350             | 550              | 1310            |                  | 1440            |
| Flow Rate (lb/hr)                 | 528,094        | 754,400         | 843,008         | 415,642     | 296,598         | 711,364         | 754,400         | 663,115          | 1,117,000       | 1,244,327        | 732,000         |
| Molecular Weight                  | 48.1           | 44.1            | 50.3            | 29.9        | 50.87           | 21.76           | 44.1            | 20.88            | 18.8            | 21.97            | 39.46           |
| Lower Heating Value (Btu/SCF)     | 2515           | 2317            | 2624            | 1610        | 2651            | 1187            | 2317            | 1149             | 1039            | 1205             | 2068            |
| Temperature @ Inlet (°F)          | 265            | 142             | 60              | -127        | 275             | 108             | 142             | -38.6            | 186             | 58.4             | 400             |
| Smokeless Requirements (%)        | 100            | 100             | 0               | 0           | 100             | 100             | 100             | 0                | 0               | 0                | 0               |
| Allowable pressure @ Inlet (psig) | Vendor         | Vendor          | Vendor          | Vendor      | Vendor          | Vendor          | Vendor          | Vendor           | Vendor          | Vendor           | Vendor          |
| Composition (mol%)                |                |                 |                 |             |                 |                 |                 |                  |                 |                  |                 |
| C1                                | 0.00           | 0.00            | 0.00            | 1.97        | 0.00            | 74.31           | 0.00            | 76.43            | 81.49           | 73.06            | 38.35           |
| C2                                | 2.18           | 1.00            | 1.38            | 97.63       | 1.32            | 15.54           | 1.00            | 15.32            | 16.95           | 16.45            | 18.10           |
| C3                                | 73.41          | 98.00           | 65.54           | 0.40        | 62.98           | 5.87            | 98.00           | 5.27             | 0.89            | 6.23             | 13.79           |
| i-C4                              | 5.56           | 1.00            | 6.39            | 0.00        | 6.75            | 0.64            | 1.00            | 0.50             | 0.03            | 0.69             | 2.68            |
| n-C4                              | 13.51          | 0.00            | 16.96           | 0.00        | 18.23           | 1.79            | 0.00            | 1.31             | 0.05            | 1.91             | 9.03            |
| C5+                               | 5.34           | 0.00            | 9.73            | 0.00        | 10.22           | 1.31            | 0.00            | 0.61             | 0.00            | 1.14             | 17.79           |
| H2S                               | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| CO                                | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| H2                                | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| N2                                | 0.00           | 0.00            | 0.00            | 0.00        | 0.50            | 0.39            | 0.00            | 0.40             | 0.43            | 0.38             | 0.14            |
| 02                                | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| C6H6                              | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| NH3                               | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.00            | 0.00            | 0.00             | 0.00            | 0.00             | 0.00            |
| Others-CO2                        | 0.00           | 0.00            | 0.00            | 0.00        | 0.00            | 0.15            | 0.00            | 0.15             | 0.16            | 0.15             | 0.12            |
| ZEECO NOTES BELOW                 |                |                 |                 |             |                 |                 |                 |                  |                 |                  |                 |
| No Units                          | 1              | 1               | 1               | 1           | 1               | 1               | 1               | 1                | 2               | 2                | 1               |
| Chamber Diameter (FT)             |                | 74              | 78              |             |                 | 74              | 74              |                  | 68              | 72               | 74              |
| Chamber Height (FT)               |                | 124             | 124             |             |                 | 122             | 124             |                  | 115             | 113              | 120             |
| ZEEDD Overall Height (FT)         |                | 152             | 154             |             |                 | 150             | 152             |                  | 140             | 140              | 148             |
| WF Diameter (FT)                  |                | 105             | 110             |             |                 | 105             | 105             |                  | 96              | 102              | 105             |
| Budgetary Price                   |                | \$ 5,700,000.00 | \$ 6,500,000.00 |             |                 | \$ 5,700,000.00 | \$ 5,700,000.00 |                  | \$ 9,000,000.00 | \$ 10,000,000.00 | \$ 5,700,000.00 |
| Delivery (Weeks)                  |                | 58              | 62              |             |                 | 58              | 58              |                  | 66              | 66               | 58              |

## Section D - Additional Information (Continued) - Not Applicable

Indicate emission increases and decreases in tons per year (tpy), for volatile organic compounds (VOCs) and nitrogen oxides (NOx) for NSR applicability since January 1, 1991 or other applicable dates (see other applicable dates in instructions). The emissions increases include all emissions including stack, fugitive, material transfer, other emission generating activities, quantifiable emissions from exempted source(s), etc.

|                 |        | Indicate Yes    |                      | VO        | Cs         | N         | Ox         |
|-----------------|--------|-----------------|----------------------|-----------|------------|-----------|------------|
|                 |        | or <b>No</b> if |                      | Emission  |            |           |            |
|                 |        | emission        |                      | increases | Creditable | Emission  | Creditable |
|                 |        | increases and   |                      | in        | emission   | increases | emission   |
|                 |        | decreases       |                      | potential | decreases  | in        | decreases  |
| Permit          | 5 /    | were used       |                      | to emit   | in actual  | potential | in actual  |
| number          | Date   | previously for  |                      |           | emissions  | to emit   | emissions  |
| (if applicable) | issued | netting         | Source I. D. or Name | (tpy)     | (tpy)      | (tpy)     | (tpy)      |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |
|                 |        |                 |                      |           |            |           |            |

If the source is subject to 25 Pa. Code Chapter 127, Subchapter E, New Source Review requirements,

a. Identify Emission Reduction Credits (ERCs) for emission offsets or demonstrate ability to obtain suitable ERCs for emission offsets.

b. Provide a demonstration that the lowest achievable emission rate (LAER) control techniques will be employed (if applicable).

c. Provide an analysis of alternate sites, sizes, production processes and environmental control techniques demonstrating that the benefits of the proposed source outweigh the environmental and social costs (if applicable).

Attach calculations and any additional information necessary to thoroughly evaluate compliance with all the applicable requirements of Article III and applicable requirements of the Clean Air Act adopted thereunder The Department may request additional information to evaluate the application such as a standby plan, a plan for air pollution emergencies, air quality modeling, etc.

|             | S                                             | ection E - Compliance Dem               | onstration                                 |  |  |  |
|-------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|--|--|--|
| Note:       | Complete this section if sour                 | ce is not a Title V facility. Title V f | acilities must complete Addendum A.        |  |  |  |
| Metho       | d of Compliance Type: Check                   | all that apply and complete all appl    | ropriate sections below                    |  |  |  |
| $\square$   | Monitoring                                    | ting 🛛 🖂 Repo                           | orting                                     |  |  |  |
| $\boxtimes$ | Recordkeeping Work Practice Standard          |                                         |                                            |  |  |  |
| Monito      | oring: Regen Heater                           |                                         |                                            |  |  |  |
| a.          | Monitoring device type (Param                 | eter, CEM, etc): Fuel gas mete          | er                                         |  |  |  |
| b.          | Monitoring device location:                   | Regen heater (032) fuel gas heade       | er                                         |  |  |  |
| C.          | Describe all parameters being                 | monitored along with the frequency      | and duration of monitoring each parameter: |  |  |  |
|             | Daily fuel das usade                          |                                         |                                            |  |  |  |
|             |                                               |                                         |                                            |  |  |  |
| Monito      | oring: Fugitive Components                    |                                         |                                            |  |  |  |
| a.          | Monitoring device type (Param                 | eter, CEM, etc): Method 21 or           | OGI                                        |  |  |  |
| b.          | Monitoring device location:                   | Portable                                |                                            |  |  |  |
| C.          | Describe all parameters being                 | monitored along with the frequency      | and duration of monitoring each parameter: |  |  |  |
|             | Component Type                                | Monitoring Frequency                    | Detection Level (PPMV)                     |  |  |  |
|             | Compressor                                    | Quarterly/Annually                      | 10.000 (OGI) / 500                         |  |  |  |
|             | Connector                                     | Quarterly/Annually                      | 10,000 (OGI) / 500                         |  |  |  |
|             | Pressure Relief                               | Quarterly                               | 500                                        |  |  |  |
|             | Valve                                         | Quarterly                               | 500                                        |  |  |  |
|             | Pump                                          | Monthly                                 | 2,000                                      |  |  |  |
|             |                                               |                                         |                                            |  |  |  |
| Deeer       | dire e nimer                                  |                                         |                                            |  |  |  |
| Record      | akeeping:<br>aariba what paramatara will ba r | approved and the reporting frequence    |                                            |  |  |  |
| De          | scribe what parameters will be r              | ecolded and the recording frequenc      | cy.                                        |  |  |  |
| Re          | gen Healer - Dally luer usage                 |                                         |                                            |  |  |  |
| Reporting:  |                                               |                                         |                                            |  |  |  |
| a.          | Describe what is to be reported               | and frequency of reporting:             |                                            |  |  |  |
|             | Regen Heater – Date of const                  | ruction (within 30 days) and startu     | p (within 15 days) notifications           |  |  |  |
|             | Fugitives - Semiannual reports                | s per 40 CFR § 60.5422a                 |                                            |  |  |  |
|             |                                               |                                         |                                            |  |  |  |
| b.          | Reporting start date: Fugitives               | - 6 months after the initial startup da | ate                                        |  |  |  |

| Section F - Flue and Air Contaminant Emission                                                                                                |                                                                                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|----------------|---------------|-------------|-----------------------------------|
| 1. Estimated Atmos                                                                                                                           | pheric Emiss                                                                                                                                                                                                                                                                          | ions*               |               |                |               |             |                                   |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                       | Max                 | timum emiss   | sion rate      |               |             |                                   |
| Pollutant                                                                                                                                    | specify u<br>(lb/mms<br>(lb/mmbt                                                                                                                                                                                                                                                      | nits<br>cf)<br>:u)* | lbs/hr        |                | tons/yr.      | E           | Calculation/<br>Estimation Method |
| PM                                                                                                                                           | 8.59                                                                                                                                                                                                                                                                                  | 0.1                 | 46            | 0.64           | 0             | AP-4        | 42                                |
| PM10                                                                                                                                         | 2.15                                                                                                                                                                                                                                                                                  | 0.0                 | 37            | 0.16           | 0             | AP-4        | 42                                |
| SO <sub>x</sub>                                                                                                                              | 0.68                                                                                                                                                                                                                                                                                  | 0.012 0.05          |               | 1              | AP-4          | 42          |                                   |
| СО                                                                                                                                           | 0.04*                                                                                                                                                                                                                                                                                 | 0.7                 | 85            | 3.43           | 8             | Man         | ufacturer Guarantee               |
| NOx                                                                                                                                          | 0.04*                                                                                                                                                                                                                                                                                 | 0.7                 | 85            | 3.43           | 8             | Man         | ufacturer Guarantee               |
| VOC                                                                                                                                          | 0.019*                                                                                                                                                                                                                                                                                | 0.3                 | 73            | 1.63           | 3             | Man         | ufacturer Guarantee               |
| HAPs                                                                                                                                         | 2.135                                                                                                                                                                                                                                                                                 | 0.0                 | 36            | 0.15           | 9             | AP-4        | 42                                |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
| * These emissions must<br>schedule for maximum<br>values were determine                                                                      | * These emissions must be calculated based on the requested operating schedule and/or process rate e.g., operating schedule for maximum limits or restricted hours of operation and /or restricted throughput. Describe how the emission values were determined. Attach calculations. |                     |               |                |               |             |                                   |
| 2. Stack and Exhaus                                                                                                                          | ster                                                                                                                                                                                                                                                                                  |                     |               |                |               |             |                                   |
| Stack Designation/Numl                                                                                                                       | ber S032                                                                                                                                                                                                                                                                              |                     |               |                |               |             |                                   |
| List Source(s) or source<br>032                                                                                                              | ID exhausted                                                                                                                                                                                                                                                                          | to this stac        | k:            | % of flow exh  | austed to sta | ick: 100    |                                   |
| Stack height above grad<br>Grade elevation (ft.) App                                                                                         | le (ft.) 20<br>prox 1170                                                                                                                                                                                                                                                              | Sta<br>2.5          | ack diameter  | (ft) or Outlet | duct area (so | q. ft.)     | f. Weather Cap                    |
| Distance of discharge to                                                                                                                     | nearest prop                                                                                                                                                                                                                                                                          | erty line (ft.)     | . Locate on t | opographic n   | nap.          |             |                                   |
| >500                                                                                                                                         |                                                                                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
| Does stack height meet<br>Yes                                                                                                                | Good Enginee                                                                                                                                                                                                                                                                          | ring Practice       | e (GEP)?      |                |               |             |                                   |
| If modeling (estimating)<br>and other obstructions. I                                                                                        | of ambient ai<br>N/A                                                                                                                                                                                                                                                                  | r quality imp       | pacts is need | led, attach a  | site plan wit | h buildings | and their dimensions              |
| Location of stac<br>Latitude/Longitu                                                                                                         | ck**<br>ude                                                                                                                                                                                                                                                                           |                     | Latitude      |                |               | Long        | gitude                            |
| Point of Origi                                                                                                                               | n                                                                                                                                                                                                                                                                                     | Degrees             | Minutes       | Seconds        | Degrees       | Minutes     | Seconds                           |
| Approximate Location of                                                                                                                      | Cryo II                                                                                                                                                                                                                                                                               | 40                  | 24            | 15             | 80            | 21          | 31                                |
| Stack exhaust<br>Volume <u>15,796</u> lb/h                                                                                                   | Stack exhaustVolume 15,796Ib/hrTemperature 461 °FMoisture N/A %                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
| Indicate on an attached sheet the location of sampling ports with respect to exhaust fan, breeching, etc. Give all necessary dimensions. N/A |                                                                                                                                                                                                                                                                                       |                     |               |                |               |             |                                   |
| Exhauster (attach fan cu                                                                                                                     | rves)                                                                                                                                                                                                                                                                                 |                     | in. of        | water          |               | HP @        | RPM.                              |
| ** If the data and colle<br>Application, provide th                                                                                          | ** If the data and collection method codes differ from those provided on the General Information Form-Authorization<br>Application, provide the additional detail required by that form on a separate form.                                                                           |                     |               |                |               |             |                                   |

## **Section G - Attachments**

Number and list all attachments submitted with this application below:

- 1 General Information Form
- 2 Plan Approval Application Forms
- 3 Compliance Review Form
- 4 Proof of Municipal Notification
- 5 Process Flow Diagram
- 6 Detailed Emission Estimates, including Manufacturer Information and Gas Analyses
- 7 Supporting Documentation
- 8 Permitting Fees

Compliance Review Form



### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

# AIR POLLUTION CONTROL ACT COMPLIANCE REVIEW FORM

### SECTION B. GENERAL INFORMATION REGARDING "APPLICANT"

If applicant is a corporation or a division or other unit of a corporation, provide the names, principal places of business, state of incorporation, and taxpayer ID numbers of all domestic and foreign parent corporations (including the ultimate parent corporation), and all domestic and foreign subsidiary corporations of the ultimate parent corporation with operations in Pennsylvania. Please include all corporate divisions or units, (whether incorporated or unincorporated) and privately held corporations. (A diagram of corporate relationships may be provided to illustrate corporate relationships.) Attach additional sheets as necessary.

| Unit Name  | Principal Places<br>of Business | State of Incorporation | Taxpayer ID | Relationship<br>to Applicant |
|------------|---------------------------------|------------------------|-------------|------------------------------|
| No changes |                                 |                        |             |                              |
|            |                                 |                        |             |                              |
|            |                                 |                        |             |                              |
|            |                                 |                        |             |                              |

### SECTION C. SPECIFIC INFORMATION REGARDING APPLICANT AND ITS "RELATED PARTIES"

Pennsylvania Facilities. List the name and location (mailing address, municipality, county), telephone number, and relationship to applicant (parent, subsidiary or general partner) of applicant and all Related Parties' places of business, and facilities in Pennsylvania. Attach additional sheets as necessary.

| Unit Name  | Street Address | County and<br>Municipality | Telephone<br>No. | Relationship<br>to Applicant |
|------------|----------------|----------------------------|------------------|------------------------------|
| No changes |                |                            |                  |                              |
|            |                |                            |                  |                              |
|            |                |                            |                  |                              |

Provide the names and business addresses of all general partners of the applicant and parent and subsidiary corporations, if any.

| Name                               | Business Address                                         |
|------------------------------------|----------------------------------------------------------|
| MPLX, LP                           | 200 E. Hardin Street, Findlay, OH 45840                  |
| MarkWest Energy Partners, L.P.     | 1515 Arapahoe St, Tower 1, Suite 1600, Denver, CO. 80016 |
| MarkWest Liberty M&R, L.L.C.       | 1515 Arapahoe St, Tower 1, Suite 1600, Denver, CO. 80016 |
| MarkWest Liberty Bluestone, L.L.C. | 1515 Arapahoe St, Tower 1, Suite 1600, Denver, CO. 80202 |

List the names and business address of persons with overall management responsibility for the process being permitted (i.e. plant manager).

| Name                                           | Business Address                                         |
|------------------------------------------------|----------------------------------------------------------|
| Brandon Belford, Region Manager -<br>Gathering | 4600 J. Barry Ct., Canonsburg, PA. 15317                 |
| Jonathan C. Jackson, VP Eastern<br>Region G&P  | 4600 J. Barry Ct., Canonsburg, PA. 15317                 |
| Gregory S. Floerke, EVP & COO MPLX             | 1515 Arapahoe St, Tower 1, Suite 1600, Denver, CO. 80016 |
| Sam Schupbach, VP Operations<br>Processing     | 4600 J. Barry Ct., Canonsburg, PA. 15317                 |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |

Plan Approvals or Operating Permits. List all plan approvals or operating permits issued by the Department or an approved local air pollution control agency under the APCA to the applicant or related parties that are currently in effect or have been in effect at any time 5 years prior to the date on which this form is notarized. This list shall include the plan approval and operating permit numbers, locations, issuance and expiration dates. Attach additional sheets as necessary.

| Air Contamination<br>Source | Plan Approval/<br>Operating Permit#                     | Location                                   | Issuance<br>Date                            | Expiration<br>Date                                               |
|-----------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------------------------------|
| Houston Gas Plant           | PA-63-00936F                                            | 800 Western Ave                            | 10/4/2012                                   | 4/2019<br>(Renewal<br>Submitted<br>10/25/2018)<br>(Plan Approval |
|                             |                                                         |                                            |                                             | Submitted<br>4/27/2021)                                          |
| Baker CS                    | GP5-63-<br>00960E/AG5-63-<br>00013A & GP9-63-<br>00960B | 151 Baker Station Road                     | 6/28/2021                                   | 6/28/2026                                                        |
| Brigich CS                  | GP5-63-00954C                                           | 340 Brigich Road                           | 10/7/2010                                   | 10/7/2015<br>(SOOP Submitted<br>8/31/2020)                       |
| Carpenter CS                | GP5-63-00987A                                           | 265 Old National Pike                      | 11/10/2014                                  | 10/31/2019<br>(Renewal<br>Submitted<br>10/1/2019)                |
| Down Homes CS               | GP5-63-1009A                                            | 2037 Sunnyhill Road                        | 5/16/2017                                   | 5/16/2022                                                        |
| Dryer CS                    | SOOP-63-00942                                           | 819 Scenic Drive                           | 10/13/2020                                  | 10/13/2025                                                       |
| Fulton CS                   | SOOP-63-00937                                           | 103 Washington Ave                         | 10/13/2020                                  | 10/13/2025                                                       |
| Godwin CS                   | SOOP-63-00934                                           | 2158 Henderson Ave                         | 7/29/2021                                   | 7/29/2026                                                        |
| Harmon Creek Gas<br>Plant   | GP1-63-01011A<br>GP5-63-01011A                          | Smith Township                             | 1/17/2018                                   | 1/17/2023<br>(GP-5 Modification<br>Submitted<br>12/10/2020)      |
| Hoskins CS                  | GP5-63-00938B                                           | 4026 Buffalo Creek<br>Road                 | 8/22/2017                                   | 8/22/2022<br>(SOOP Submitted<br>9/2020)                          |
| Imperial-Cibus<br>Ranch CS  | GP5-63-00992A                                           | 2213 Quiksilver Rd.<br>2199 Quiksilver Rd. | 3/22/2022                                   | 3/22/2027                                                        |
| Johnston CS                 | SOOP-63-00933                                           | 210 Johnston Hill Road                     | 3/22/2022                                   | 3/22/2027                                                        |
| Lowry CS                    | GP5-63-00947B                                           | 100 Oakleaf Rd                             | 6/22/2017                                   | 6/22/2022<br>(SOOP Submitted<br>9/2020)                          |
| McMichael CS                | GP5-04-00747                                            | 1982 Hookstown Grade Rd.                   | 11/19/2018                                  | 10/31/2023                                                       |
| Redd CS                     | GP5-63-00962                                            | 576 Redd Run Rd.                           | 7/2/2021                                    | 7/2/2026                                                         |
| Shaw CS                     | GP5-63-00940C                                           | 492 Arden Mine Rd                          | 8/18/2011                                   | 8/18/2016<br>(SOOP Submitted<br>9/2/2020)                        |
| Smith CS                    | SOOP-63-00962                                           | 320 Point Pleasant Rd                      | Issued: 12/2/2019<br>Modified:<br>3/22/2022 | 12/2/2024                                                        |

### 2700-PM-AQ0004 Rev. 6/2006

| Stewart CS             | SOOP-63-00939                                 | 185 Avella Road                                                 | 7/6/2021                           | 7/6/2026                                                                                                                                    |
|------------------------|-----------------------------------------------|-----------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Three Brothers CS      | GP5-63-00969 &<br>Plan Approval 63-<br>00969A | 858 Atlasburg Road                                              | 12/30/2011 (GP5)<br>8/27/2012 (PA) | 12/30/2016 (GP5)<br>11/2/2015 (PA)<br>(Extension<br>submitted<br>10/15/2015)<br>(SOOP Submitted<br>9/12/2018)                               |
| Tupta Day CS           | GP5-63-00948E                                 | 200 Johnson Rd                                                  | 1/10/2022                          | 1/10/2027                                                                                                                                   |
| Welling CS             | GP5-00958A                                    | 165 Carlisle Rd                                                 | 1/30/2015                          | 1/30/2020<br>(Renewal<br>Submitted<br>1/3/2020)<br>(SOOP Submitted                                                                          |
|                        |                                               |                                                                 |                                    | 7/12/2021)                                                                                                                                  |
| Sarsen Gas Plant       | SOOP 10-00359                                 | 774 Prospect Rd.                                                | 12/03/2013                         | 1/31/2024                                                                                                                                   |
| Voll CS                | SOOP-10-00367                                 | 318 Woodlands Rd.<br>Evans City, PA                             | 9/9/2020                           | 8/31/2025                                                                                                                                   |
| Trillith CS            | GP5-10-370F                                   | Southeast of intersection<br>of Highway 79 an E<br>Lancaster Rd | 12/26/2018                         | 11/30/2023                                                                                                                                  |
| Royal Oak CS           | SOOP 10-00390                                 | 961 Brownsdale Rd                                               | 12/16/2019                         | 11/30/2024                                                                                                                                  |
| Bluestone Gas<br>Plant | TV-10-00368<br>PA-10-368G                     | 440 Hartmann Rd.                                                | 2/20/2020<br>11/3/2020             | 1/31/2025<br>5/31/2022<br>(Administrative<br>Modification<br>Submitted to<br>incorporate Plan<br>App conditions<br>into Title V<br>permit). |

Compliance Background. (Note: Copies of specific documents, if applicable, must be made available to the Department upon its request.) List all documented conduct of violations or enforcement actions identified by the Department pursuant to the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. Attach additional sheets as necessary. See the definition of "documented conduct" for further clarification. Unless specifically directed by the Department, deviations which have been previously reported to the Department in writing, relating to monitoring and reporting, need not be reported.

| Date      | Location | Plan<br>Approval/<br>Operating<br>Permit# | Nature of<br>Documented<br>Conduct | Type of<br>Department<br>Action | Status:<br>Litigation<br>Existing/Continuing<br>or<br>Corrected/Date | Dollar<br>Amount<br>Penalty |
|-----------|----------|-------------------------------------------|------------------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------------|
| No change |          |                                           |                                    |                                 |                                                                      | \$                          |
|           |          |                                           |                                    |                                 |                                                                      | \$                          |
|           |          |                                           |                                    |                                 |                                                                      | \$                          |
|           |          |                                           |                                    |                                 |                                                                      | \$                          |
|           |          |                                           |                                    |                                 |                                                                      | \$                          |
|           |          |                                           |                                    |                                 |                                                                      | \$                          |

List all incidents of deviations of the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. This list must include items both currently known and unknown to the Department. Attach additional sheets as necessary. See the definition of "deviations" for further clarification.

| Date            | Location                              | Plan Approval/<br>Operating Permit# | Nature of<br>Deviation              | Incident Status:<br>Litigation<br>Existing/Continuing<br>Or<br>Corrected/Date  |
|-----------------|---------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| July 6, 2015    | Various                               |                                     | Pig Launcher/Receiver<br>Permitting | Signed Consent Decree<br>with USEPA and PADEP.<br>7/19/2018                    |
| 2016            | Houston Plant and Other<br>Gas Plants | PA-63-00936F                        | LDAR                                | Signed Consent Decree<br>with USEPA and PADEP.<br>1/9/2019                     |
| March 23, 2017  | Sarsen Gas Processing<br>Plant        | SOOP 10-00359                       | NSPS Subpart KKK                    | Signed Consent Decree<br>with USEPA. 3/26/2017                                 |
| August 28, 2020 | Sarsen Gas Processing<br>Plant        | SOOP 10-00359                       | NSPS Subpart OOOO<br>LDAR           | Signed Consent<br>Agreement and Final<br>Order with USEPA. Filed<br>8/28/2020. |
|                 |                                       |                                     |                                     |                                                                                |

<u>CONTINUING OBLIGATION</u>. Applicant is under a continuing obligation to update this form using the Compliance Review Supplemental Form if any additional deviations occur between the date of submission and Department action on the application.

### **VERIFICATION STATEMENT**

Subject to the penalties of Title 18 Pa.C.S. Section 4904 and 35 P.S. Section 4009(b)(2), I verify under penalty of law that I am authorized to make this verification on behalf of the Applicant/Permittee. I further verify that the information contained in this Compliance Review Form is true and complete to the best of my belief formed after reasonable inquiry. I further verify that reasonable procedures are in place to ensure that "documented conduct" and "deviations" as defined in 25 Pa Code Section 121.1 are identified and included in the information set forth in this, Compliance Review Form.

ally

Signature

6/29/2022 Date

Sam Schupbach

Name (Print or Type) VP Operations Processing

Title

Proof of Municipal Notifications


MarkWest Liberty Midstream and Resources, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 925-9200 (303) 825-0902 Fax

June 28, 2022

Tracking Number: 1Z2E23250291333723

Township Supervisors Smith Township PO Box 94 Slovan, PA. 15078

Re: MarkWest Liberty Midstream and Resources, L.L.C. Harmon Creek Gas Plant Plan Approval Application

### Dear Supervisors:

This letter is being sent to notify the Township Supervisors that MarkWest Liberty Midstream and Resources, L.L.C (MPLX) has applied to the Pennsylvania Department of Environmental Protection (PADEP) for an Air Quality Plan Approval for the Harmon Creek Gas Plant, located at 123 Point Pleasant Rd in Smith Township, Washington County, Pennsylvania.

MarkWest seeks to authorize the installation and operation of the following equipment at the facility:

- One (1) 260 mmscfd natural gas processing plant;
- One (1) regenerative heater rated at a maximum heat input of 19.62 MMBtu/hr;
- One (1) 500-gallon methanol storage tank;
- Three (3) electric-driven compressors and associated rod-packing venting; and
- Associated fugitive components.

De minimis emission increases associated with the existing pigging and truck loadout operations, in addition to emissions from maintenance blowdowns and some PSVs will be controlled by the existing process flare.

This notice is being provided in accordance with the requirements of 25 Pa. Code § 127.413 for municipal notification.

There is a 30-day comment period which begins upon receipt of this notice by the county. Anyone wishing to view this application may do so by making arrangements with:

Air Quality Program PADEP - Southwest Regional Office 400 Waterfront Drive Pittsburgh, PA. 15222 (412) 442-4000 If you have any questions about this application, please contact me at (412) 815-8886 or via email at <u>ajuarez@marathonpetroleum.com</u>.

Sincerely,

**Alexandra M. Juary** G&P Engineer I

cc: MarkWest file

# **Proof of Delivery**

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number

1Z2E23250291333723

Service

UPS 2nd Day Air®

Shipped / Billed On

06/13/2022

Delivered On

06/29/2022 10:07 A.M.

Delivered To

SLOVAN, PA, US

## **Received By**

KRENZLAK

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

UPS

Tracking results provided by UPS: 06/29/2022 10:16 A.M. EST



MarkWest Liberty Midstream and Resources, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 925-9200 (303) 825-0902 Fax

June 28, 2022

Tracking Number: 1Z2E23250395329229

Washington County Commissioners Courthouse Square 100 West Beau Street Suite 702 Washington, PA 15301

Re: MarkWest Liberty Midstream and Resources, L.L.C. Harmon Creek Gas Plant Plan Approval Application

Dear Commissioners:

This letter is being sent to notify the County Commissioners that MarkWest Liberty Midstream and Resources, L.L.C (MPLX) has applied to the Pennsylvania Department of Environmental Protection (PADEP) for an Air Quality Plan Approval for the Harmon Creek Gas Plant, located at 123 Point Pleasant Rd in Smith Township, Washington County, Pennsylvania.

MarkWest seeks to authorize the installation and operation of the following equipment at the facility:

- One (1) 260 mmscfd natural gas processing plant;
- One (1) regenerative heater rated at a maximum heat input of 19.62 MMBtu/hr;
- One (1) 500-gallon methanol storage tank;
- Three (3) electric-driven compressors and associated rod-packing venting; and
- Associated fugitive components.

De minimis emission increases associated with the existing pigging and truck loadout operations, in addition to emissions from maintenance blowdowns and some PSVs will be controlled by the existing process flare.

This notice is being provided in accordance with the requirements of 25 Pa. Code § 127.413 for municipal notification.

There is a 30-day comment period which begins upon receipt of this notice by the county. Anyone wishing to view this application may do so by making arrangements with:

Air Quality Program PADEP - Southwest Regional Office 400 Waterfront Drive Pittsburgh, PA. 15222 (412) 442-4000 If you have any questions about this application, please contact me at (412) 815-8886 or via email at <u>ajuarez@marathonpetroleum.com</u>.

Sincerely,

**Alexandra M. Juary** G&P Engineer I

cc: MarkWest file

# **Proof of Delivery**

## Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

## **Tracking Number**

1Z2E23250395329229

## Weight

1.00 LBS

## Service

**UPS** Ground

Shipped / Billed On 06/28/2022

## **Delivered On**

06/29/2022 10:52 A.M.

Delivered To WASHINGTON, PA, US

## **Received By**

JANSETTE

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

UPS

Tracking results provided by UPS: 06/29/2022 10:55 A.M. EST

Process Flow Diagram



Detailed Emission Estimates

### Summary of Potential Emissions

#### **Criteria Pollutant Potential Emissions**

| D /E 114                           | C ID      | Potential Emissions (lb/hr) |       |      |                 |                 |      |  |  |  |
|------------------------------------|-----------|-----------------------------|-------|------|-----------------|-----------------|------|--|--|--|
| Process/Facility                   | Source ID | NOx                         | СО    | VOC  | SO <sub>2</sub> | PM <sup>1</sup> | HAPs |  |  |  |
| Cryo Plant 1 Regen Heater (H-1711) | 031       | 0.47                        | 0.47  | 0.22 | 0.01            | 0.09            | 0.02 |  |  |  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 0.78                        | 0.78  | 0.37 | 0.01            | 0.15            | 0.04 |  |  |  |
| De-Ethanizer HMO Heater 1 (H-1767) | 033       | 1.93                        | 1.93  | 0.91 | 0.03            | 0.36            | 0.09 |  |  |  |
| De-Ethanizer HMO Heater 2 (H-1768) | 034       | 1.93                        | 1.93  | 0.91 | 0.03            | 0.36            | 0.09 |  |  |  |
| Stabilization HMO Heater (H-1769)  | 036       | 0.48                        | 0.48  | 0.23 | 0.01            | 0.09            | 0.02 |  |  |  |
| De-Ethanizer Regen Heater (H-1775) | 035       | 0.26                        | 0.26  | 0.13 | 0.00            | 0.05            | 0.01 |  |  |  |
| Process Flare                      | C601      | 1.23                        | 5.61  | 3.07 | 0.01            | 0.11            | 0.22 |  |  |  |
| Generac SD015                      | 102       | 0.26                        | 0.14  | 0.08 | 0.10            | 0.02            | 0.00 |  |  |  |
| Generac SD150                      | 102       | 1.31                        | 0.55  | 0.41 | 0.10            | 0.04            | 0.01 |  |  |  |
| Fugitives Emissions                | 701       |                             |       |      |                 |                 |      |  |  |  |
| Pigging*                           | 801       |                             |       |      |                 |                 |      |  |  |  |
| Rod Packing                        | 601       |                             |       | 0.17 |                 |                 | 0.00 |  |  |  |
| Drain Tank Loadout*                |           |                             |       |      |                 |                 |      |  |  |  |
| Methanol Tanks                     |           |                             |       | 0.08 |                 |                 | 0.08 |  |  |  |
| Measurement Devices                |           |                             |       | 0.24 |                 |                 | 0.02 |  |  |  |
| Future Site-Wide Emissions (lb/hr) |           | 8.66                        | 12.16 | 6.84 | 0.30            | 1.26            | 0.60 |  |  |  |

 $^{1}$  PM = PM<sub>10</sub> = PM<sub>2.5</sub>

|                                    | a         |       |       | Potential Emi | ssions (tpy)    |      |      |
|------------------------------------|-----------|-------|-------|---------------|-----------------|------|------|
| Process/Facility                   | Source ID | NOx   | СО    | VOC           | SO <sub>2</sub> | PM   | HAPs |
| Cryo Plant 1 Regen Heater (H-1711) | 031       | 2.07  | 2.07  | 0.98          | 0.03            | 0.39 | 0.10 |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 3.44  | 3.44  | 1.63          | 0.05            | 0.64 | 0.16 |
| De-Ethanizer HMO Heater 1 (H-1767) | 033       | 8.44  | 8.44  | 4.01          | 0.12            | 1.57 | 0.39 |
| De-Ethanizer HMO Heater 2 (H-1768) | 034       | 8.44  | 8.44  | 4.01          | 0.12            | 1.57 | 0.39 |
| Stabilization HMO Heater (H-1769)  | 036       | 2.10  | 2.10  | 1.00          | 0.03            | 0.39 | 0.10 |
| De-Ethanizer Regen Heater (H-1775) | 035       | 1.16  | 1.16  | 0.55          | 0.02            | 0.22 | 0.05 |
| Process Flare                      | C601      | 5.39  | 24.56 | 13.46         | 0.04            | 0.50 | 0.98 |
| Generac SD015                      | 102       | 0.07  | 0.04  | 0.02          | 0.03            | 0.01 | 0.00 |
| Generac SD150                      | 102       | 0.33  | 0.14  | 0.10          | 0.03            | 0.01 | 0.00 |
| Fugitives Emissions                | 701       |       |       | 10.72         |                 |      | 0.50 |
| Pigging*                           | 801       |       |       |               |                 |      |      |
| Rod Packing                        | 601       |       |       | 0.75          |                 |      | 0.01 |
| Drain Tank Loadout*                |           |       |       |               |                 |      |      |
| Methanol Tanks                     |           |       |       | 0.35          |                 |      | 0.35 |
| Measurement Devices                |           |       |       | 1.03          |                 |      | 0.08 |
| Future Site-Wide Emissions (tpy)   |           | 31.42 | 50.38 | 38.62         | 0.47            | 5.29 | 3.10 |

 $^{1}$  PM = PM<sub>10</sub> = PM<sub>2.5</sub>

 $\ast$  Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

| Hazardous Air Pollutant Potential Emissions |           |              |          |          |              |                    |          |          |          |          |
|---------------------------------------------|-----------|--------------|----------|----------|--------------|--------------------|----------|----------|----------|----------|
| Drogogy/Equility                            | Saumaa ID |              |          |          | HAPs - Po    | otential Emissions | (lb/hr)  |          |          |          |
| Process/Facility                            | Source ID | Acetaldehyde | Acrolein | Benzene  | Ethylbenzene | Formaldehyde       | Methanol | n-Hexane | Toluene  | Xylenes  |
| Cryo Plant 1 Regen Heater (H-1711)          | 031       |              |          | 2.44E-05 |              | 8.70E-04           |          | 0.02     | 3.95E-05 |          |
| Cryo Plant 2 Regen Heater (H-2711)          | 032       |              |          | 4.04E-05 |              | 1.44E-03           |          | 0.03     | 6.54E-05 |          |
| De-Ethanizer HMO Heater 1 (H-1767)          | 033       |              |          | 9.91E-05 |              | 3.54E-03           |          | 0.08     | 1.60E-04 |          |
| De-Ethanizer HMO Heater 2 (H-1768)          | 034       |              |          | 9.91E-05 |              | 3.54E-03           |          | 0.08     | 1.60E-04 |          |
| Stabilization HMO Heater (H-1769)           | 036       |              |          | 2.47E-05 |              | 8.82E-04           |          | 0.02     | 4.00E-05 |          |
| De-Ethanizer Regen Heater (H-1775)          | 035       |              |          | 1.36E-05 |              | 4.85E-04           |          | 0.01     | 2.20E-05 |          |
| Process Flare                               | C601      |              |          |          |              |                    |          |          |          |          |
| Generac SD015                               | 102       | 2.89E-04     | 3.48E-05 | 3.51E-04 |              | 4.44E-04           |          |          | 1.54E-04 | 1.07E-04 |
| Generac SD150                               | 102       | 1.42E-03     | 1.72E-04 | 1.73E-03 |              | 2.19E-03           |          |          | 7.59E-04 | 5.29E-04 |
| Fugitives Emissions                         | 701       |              |          |          |              |                    |          |          |          |          |
| Pigging*                                    | 801       |              |          |          |              |                    |          |          |          |          |
| Rod Packing                                 | 601       |              |          |          |              |                    |          | 0.00     |          |          |
| Drain Tank Loadout*                         |           |              |          |          |              |                    |          |          |          |          |
| Methanol Tanks                              |           |              |          |          |              |                    | 8.04E-02 |          |          |          |
| Measurement Devices                         |           |              |          |          |              |                    |          | 0.02     |          |          |
| Future Site-Wide Emissions (lb/hr)          |           | 0.00         | 0.00     | 0.00     | 0.00         | 0.01               | 0.08     | 0.28     | 0.00     | 0.00     |

| Drogoss/Epcility                   | Source ID |              | HAPs - Potential Emissions (tpy) |          |              |              |          |          |          |          |  |
|------------------------------------|-----------|--------------|----------------------------------|----------|--------------|--------------|----------|----------|----------|----------|--|
| Frocess/Facility                   | Source ID | Acetaldehyde | Acrolein                         | Benzene  | Ethylbenzene | Formaldehyde | Methanol | n-Hexane | Toluene  | Xylenes  |  |
| Cryo Plant 1 Regen Heater (H-1711) | 031       |              |                                  | 1.07E-04 |              | 3.81E-03     |          | 0.09     | 1.73E-04 |          |  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       |              |                                  | 1.77E-04 |              | 6.32E-03     |          | 0.15     | 2.87E-04 |          |  |
| De-Ethanizer HMO Heater 1 (H-1767) | 033       |              |                                  | 4.34E-04 |              | 1.55E-02     |          | 0.37     | 7.03E-04 |          |  |
| De-Ethanizer HMO Heater 2 (H-1768) | 034       |              |                                  | 4.34E-04 |              | 1.55E-02     |          | 0.37     | 7.03E-04 |          |  |
| Stabilization HMO Heater (H-1769)  | 036       |              |                                  | 1.08E-04 |              | 3.86E-03     |          | 0.09     | 1.75E-04 |          |  |
| De-Ethanizer Regen Heater (H-1775) | 035       |              |                                  | 5.95E-05 |              | 2.13E-03     |          | 0.05     | 9.64E-05 |          |  |
| Process Flare                      | C601      |              |                                  |          |              |              |          |          |          |          |  |
| Generac SD015                      | 102       | 7.22E-05     | 8.70E-06                         | 8.78E-05 |              | 1.11E-04     |          |          | 3.85E-05 | 2.68E-05 |  |
| Generac SD150                      | 102       | 3.56E-04     | 4.29E-05                         | 4.33E-04 |              | 5.47E-04     |          |          | 1.90E-04 | 1.32E-04 |  |
| Fugitives Emissions                | 701       |              |                                  |          |              |              |          |          |          |          |  |
| Pigging*                           | 801       |              |                                  |          |              |              |          |          |          |          |  |
| Rod Packing                        | 601       |              |                                  |          |              |              |          | 0.01     |          |          |  |
| Drain Tank Loadout*                |           |              |                                  |          |              |              |          |          |          |          |  |
| Methanol Tanks                     |           |              |                                  |          |              |              | 3.52E-01 |          |          |          |  |
| Measurement Devices                |           |              |                                  |          |              |              |          | 0.08     |          |          |  |
| Future Site-Wide Emissions (tpy)   |           | 0.00         | 0.00                             | 0.00     | 0.00         | 0.05         | 0.35     | 1.22     | 0.00     | 0.00     |  |

\* Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

### Greenhouse Gas Potential Emissions

| D /F 114                           | c D       | GHG                       |
|------------------------------------|-----------|---------------------------|
| Process/Facility                   | Source ID | CO <sub>2(</sub> e) (tpy) |
| Cryo Plant 1 Regen Heater (H-1711) | 031       | 6857                      |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 11369                     |
| De-Ethanizer HMO Heater 1 (H-1767) | 033       | 27893                     |
| De-Ethanizer HMO Heater 2 (H-1768) | 034       | 27893                     |
| Stabilization HMO Heater (H-1769)  | 036       | 6946                      |
| De-Ethanizer Regen Heater (H-1775) | 035       | 3824                      |
| Process Flare                      | C601      | 10622                     |
| Generac SD015                      | 102       | 15                        |
| Generac SD150                      | 102       | 76                        |
| Fugitives Emissions                | 701       | 306                       |
| Pigging*                           | 801       |                           |
| Rod Packing                        | 601       | 45                        |
| Methanol Tanks                     |           |                           |
| Measurement Devices                |           | 82                        |
| Future Site-Wide Emissions (tpy)   |           | 95,927.12                 |

\* Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

#### Potential Emissions Increases from Project

Criteria Pollutant Potential Emissions Increase

| Process/Facility                   | Source ID |      | Potential Emissions (lb/hr) |      |      |      |      |  |  |  |  |
|------------------------------------|-----------|------|-----------------------------|------|------|------|------|--|--|--|--|
| Flocess/Facility                   | Source ID | NOx  | со                          | VOC  | SO2  | PM1  | HAPs |  |  |  |  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 0.78 | 0.78                        | 0.37 | 0.01 | 0.15 | 0.04 |  |  |  |  |
| Process Flare                      | C601      | 0.00 | 0.00                        | 0.00 | 0.00 | 0.00 | 0.00 |  |  |  |  |
| Fugitives Emissions                | 701       |      |                             |      |      |      |      |  |  |  |  |
| Pigging (De Minimis)*              | 801       |      |                             |      |      |      |      |  |  |  |  |
| Rod Packing (De Minimis)           | 601       |      |                             | 0.00 |      |      | 0.00 |  |  |  |  |
| Drain Tank Loadout (De Minimis)*   |           |      |                             |      |      |      |      |  |  |  |  |
| Methanol Tanks (De Minimis)        |           |      |                             | 0.04 |      |      | 0.04 |  |  |  |  |
| Measurement Devices (Exempt)       |           |      |                             | 0.06 |      |      | 0.00 |  |  |  |  |
| Future Site-Wide Emissions (lb/hr) |           | 0.78 | 0.78                        | 0.47 | 0.01 | 0.15 | 0.08 |  |  |  |  |
| 1 PM = PM10 = PM2.5                |           |      |                             |      |      |      |      |  |  |  |  |

| Brooss/Fasility                    | Source ID |      | Potential Emissions (tpy) |       |      |      |      |  |  |  |  |
|------------------------------------|-----------|------|---------------------------|-------|------|------|------|--|--|--|--|
| r rocess/r aciiity                 | Source ID | NOx  | СО                        | VOC   | SO2  | PM1  | HAPs |  |  |  |  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 3.44 | 3.44                      | 1.63  | 0.05 | 0.64 | 0.16 |  |  |  |  |
| Process Flare                      | C601      | 0.00 | 0.00                      | 0.00  | 0.00 | 0.00 | 0.00 |  |  |  |  |
| Fugitives Emissions                | 701       |      |                           | 3.95  |      |      | 0.19 |  |  |  |  |
| Pigging (De Minimis)*              | 801       |      |                           |       |      |      |      |  |  |  |  |
| Rod Packing (De Minimis)           | 601       |      |                           | 0.001 |      |      | 0.00 |  |  |  |  |
| Drain Tank Loadout (De Minimis)*   |           |      |                           |       |      |      |      |  |  |  |  |
| Methanol Tanks (De Minimis)        |           |      |                           | 0.18  |      |      | 0.18 |  |  |  |  |
| Measurement Devices (Exempt)       |           |      |                           | 0.25  |      |      | 0.02 |  |  |  |  |
| Future Site-Wide Emissions (tpy)   |           | 3.44 | 3.44                      | 6.02  | 0.05 | 0.64 | 0.54 |  |  |  |  |
| 1 PM = PM10 = PM2.5                |           |      |                           |       |      |      |      |  |  |  |  |

-

\* Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

#### Hazardous Air Pollutant Potential Emissions

| Process/Facility                   | Source ID | HAPs - Potential Emissions (lb/hr) |          |          |              |              |          |          |          |          |
|------------------------------------|-----------|------------------------------------|----------|----------|--------------|--------------|----------|----------|----------|----------|
| 1 Toccss/Facinity                  | Source ID | Acetaldehyde                       | Acrolein | Benzene  | Ethylbenzene | Formaldehyde | Methanol | n-Hexane | Toluene  | Xylenes  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       |                                    |          | 4.04E-05 |              | 1.44E-03     |          | 3.46E-02 | 6.54E-05 |          |
| Process Flare                      | C601      |                                    |          |          |              |              |          |          |          |          |
| Fugitives Emissions                | 701       |                                    |          |          |              |              |          |          |          |          |
| Pigging (De Minimis)*              | 801       |                                    |          |          |              |              |          |          |          |          |
| Rod Packing (De Minimis)           | 601       |                                    |          |          |              |              |          | 1.59E-07 |          |          |
| Drain Tank Loadout (De Minimis)*   |           |                                    |          |          |              |              |          |          |          |          |
| Methanol Tanks (De Minimis)        |           |                                    |          |          |              |              | 4.02E-02 |          |          |          |
| Measurement Devices (Exempt)       |           |                                    |          |          |              |              |          | 4.21E-03 |          |          |
| Future Site-Wide Emissions (lb/hr) |           | 0.00E+00                           | 0.00E+00 | 4.04E-05 | 0.00E+00     | 1.44E-03     | 4.02E-02 | 3.88E-02 | 6.54E-05 | 0.00E+00 |

| Process/Facility                   | Source ID | HAPs - Potential Emissions (tpy) |          |          |              |              |          |          |          |          |
|------------------------------------|-----------|----------------------------------|----------|----------|--------------|--------------|----------|----------|----------|----------|
| r tocess/F actinty                 | Source ID | Acetaldehyde                     | Acrolein | Benzene  | Ethylbenzene | Formaldehyde | Methanol | n-Hexane | Toluene  | Xylenes  |
| Cryo Plant 2 Regen Heater (H-2711) | 032       |                                  |          | 1.77E-04 |              | 6.32E-03     |          | 1.52E-01 | 2.87E-04 |          |
| Process Flare                      | C601      |                                  |          |          |              |              |          |          |          |          |
| Fugitives Emissions                | 701       |                                  |          |          |              |              |          |          |          |          |
| Pigging (De Minimis)*              | 801       |                                  |          |          |              |              |          |          |          |          |
| Rod Packing (De Minimis)           | 601       |                                  |          |          |              |              |          | 6.95E-07 |          |          |
| Drain Tank Loadout (De Minimis)*   |           |                                  |          |          |              |              |          |          |          |          |
| Methanol Tanks (De Minimis)        |           |                                  |          |          |              |              | 1.76E-01 |          |          |          |
| Measurement Devices (Exempt)       |           |                                  |          |          |              |              |          | 1.84E-02 |          |          |
| Future Site-Wide Emissions (tpy)   |           | 0.00E+00                         | 0.00E+00 | 1.77E-04 | 0.00E+00     | 6.32E-03     | 1.76E-01 | 1.70E-01 | 2.87E-04 | 0.00E+00 |

\* Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

#### Greenhouse Gas Potential Emissions

| Process/Facility                   | Source ID | GHG          |
|------------------------------------|-----------|--------------|
| r rocess/r activity                | Source ID | CO2(e) (tpy) |
| Cryo Plant 2 Regen Heater (H-2711) | 032       | 1.14E+04     |
| Process Flare                      | C601      | 0.00E+00     |
| Fugitives Emissions                | 701       | 1.01E+02     |
| Pigging (De Minimis)*              | 801       |              |
| Rod Packing (De Minimis)           | 601       | 1.50E+01     |
| Drain Tank Loadout (De Minimis)*   |           |              |
| Methanol Tanks (De Minimis)        |           | 2.02E+01     |
| Future Site-Wide Emissions (tpy)   |           | 11,504.66    |

\* Emissions are controlled by the flare and thus, are accounted for in the process flare emissions.

## Cryo Plant II Regen Heaters H-2711

| Source Designation:                          |               |
|----------------------------------------------|---------------|
| Manufacturer:                                | Tulsa Heaters |
| Year Installed                               | Planned 2023  |
| Fuel Used:                                   | Natural Gas   |
| Higher Heating Value (HHV) (Btu/scf):        | 1,153         |
| Max Design Heat Release (mmbtu/hr)           | 17.84         |
| Heat Release (HHV) (mmbtu/hr)                | 19.62         |
| Fuel Consumption (mmscf/hr):                 | 0.0170        |
| Potential Annual Hours of Operation (hr/yr): | 8,760         |

## Criteria and Manufacturer Specific Pollutant Emission Rates

|                                | Emission Factor                      | Potential Emissions  |                        |  |  |
|--------------------------------|--------------------------------------|----------------------|------------------------|--|--|
| Pollutant                      | (lb/mmbtu) (lb/MMscf) <sup>a,b</sup> | (lb/hr) <sup>c</sup> | (tons/yr) <sup>d</sup> |  |  |
| NOx                            | 0.04                                 | 0.785                | 3.438                  |  |  |
| СО                             | 0.04                                 | 0.785                | 3.438                  |  |  |
| VOC                            | 0.019                                | 0.373                | 1.633                  |  |  |
| SO <sub>2</sub>                | 0.68                                 | 0.0115               | 0.0506                 |  |  |
| PM Total                       | 8.59                                 | 0.1462               | 0.6404                 |  |  |
| PM Condensable                 | 6.44                                 | 0.110                | 0.480                  |  |  |
| PM <sub>10</sub> (Filterable)  | 2.15                                 | 0.037                | 0.160                  |  |  |
| PM <sub>2.5</sub> (Filterable) | 2.15                                 | 0.037                | 0.160                  |  |  |
| CO <sub>2</sub>                | 59.9 kg/mmbtu                        | 2,593                | 11,357                 |  |  |
| $CH_4$                         | 0.001 kg/mmbtu                       | 0.04890              | 0.214                  |  |  |
| N <sub>2</sub> O               | 0.0001 kg/mmbtu                      | 0.00489              | 0.021                  |  |  |

### Hazardous Air Pollutant (HAP) Potential Emissions

|                                | Emission Factor         | Potential Emissions  |                        |  |
|--------------------------------|-------------------------|----------------------|------------------------|--|
| Pollutant                      | (lb/MMscf) <sup>a</sup> | (lb/hr) <sup>c</sup> | (tons/yr) <sup>d</sup> |  |
| HAPs                           |                         |                      |                        |  |
| 3-Methylchloranthrene          | 2.03E-06                | 3 46E-08             | 1 52E-07               |  |
| 7.12-Dimethylbenz(a)anthracene | 1.81E-05                | 3.08E-07             | 1.35E-06               |  |
| Acenaphthene                   | 2.03E-06                | 3.46E-08             | 1.52E-07               |  |
| Acenaphthylene                 | 2.03E-06                | 3.46E-08             | 1.52E-07               |  |
| Anthracene                     | 2.71E-06                | 4.62E-08             | 2.02E-07               |  |
| Benz(a)anthracene              | 2.03E-06                | 3.46E-08             | 1.52E-07               |  |
| Benzene                        | 2 37E-03                | 4.04E-05             | 1 77E-04               |  |
| Benzo(a)pyrene                 | 1.36E-06                | 2.31E-08             | 1.01E-07               |  |
| Benzo(b)fluoranthene           | 2.03E-06                | 3.46E-08             | 1 52E-07               |  |
| Benzo(g,h,i)pervlene           | 1 36E-06                | 2 31E-08             | 1.01E-07               |  |
| Benzo(k)fluoranthene           | 2.03E-06                | 3.46E-08             | 1 52E-07               |  |
| Chrysene                       | 2.03E-06                | 3.46E-08             | 1.52E-07               |  |
| Dibenzo(a, h) anthracene       | 1 36E-06                | 2 31E-08             | 1.01E-07               |  |
| Dichlorobenzene                | 1.36E-03                | 2.31E-05             | 1.01E-04               |  |
| Fluoranthene                   | 3.39E-06                | 5.77E-08             | 2.53E-07               |  |
| Fluorene                       | 3 17E-06                | 5 39E-08             | 2 36E-07               |  |
| Formaldehyde                   | 8.48E-02                | 1.44E-03             | 6.32E-03               |  |
| Hexane                         | 2.03E+00                | 3.46E-02             | 1.52E-01               |  |
| Indo(1.2.3-cd)pyrene           | 2.03E-06                | 3.46E-08             | 1.52E-07               |  |
| Phenanthrene                   | 1.92E-05                | 3.27E-07             | 1.43E-06               |  |
| Pvrene                         | 5.65E-06                | 9.62E-08             | 4.21E-07               |  |
| Toluene                        | 3.84E-03                | 6.54E-05             | 2.87E-04               |  |
| Arsenic                        | 2.26E-04                | 3.85E-06             | 1.69E-05               |  |
| Bervllium                      | 1.36E-05                | 2.31E-07             | 1.01E-06               |  |
| Cadmium                        | 1.24E-03                | 2.12E-05             | 9.27E-05               |  |
| Chromium                       | 1.58E-03                | 2.69E-05             | 1.18E-04               |  |
| Cobalt                         | 9.50E-05                | 1.62E-06             | 7.08E-06               |  |
| Lead                           | 5.65E-04                | 9.62E-06             | 4.21E-05               |  |
| Manganese                      | 4.30E-04                | 7.31E-06             | 3.20E-05               |  |
| Mercury                        | 2.94E-04                | 5.00E-06             | 2.19E-05               |  |
| Nickel                         | 2.37E-03                | 4.04E-05             | 1.77E-04               |  |
| Selenium                       | 2.71E-05                | 4.62E-07             | 2.02E-06               |  |
|                                | •                       |                      |                        |  |
| Polycyclic Organic Matter:     |                         |                      |                        |  |
| Methylnaphthalene (2-)         | 2.71E-05                | 4.62E-07             | 2.02E-06               |  |
| Naphthalene                    | 6.90E-04                | 1.17E-05             | 5.14E-05               |  |
| Total HAP                      | 2.135                   | 0.036                | 0.159                  |  |

<sup>a</sup> Emission factors from manufacturers guarantees on VOC, NOx, and CO in lb/mmbtu. The remainder from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3 (07/98) for all criteria and HAP pollutants, corrected to site-specific gas heat content.

<sup>b</sup> Emission factors for GHG pollutants from 40 CFR Part 98, Subpart C and corrected to site-specific gas heat content.

<sup>c</sup> Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

<sup>d</sup> Annual Emissions  $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$ 

|          | Owner Ref.: H-711 THM Ref.: MJ17-300 |                       |              |              |                     |                    |                      |                         |         |
|----------|--------------------------------------|-----------------------|--------------|--------------|---------------------|--------------------|----------------------|-------------------------|---------|
|          |                                      |                       | ONDI         |              |                     |                    |                      |                         | Ftnt    |
| 1        |                                      | C                     | OWBUS        | STION DESIGN | CONDITIO            | NS                 |                      |                         | &<br>P~ |
| 2        | Overall Performance:                 |                       |              |              |                     |                    |                      |                         | Rev     |
| 4        | Operating Case                       |                       |              | Design       | Norm(F              | Rei)               | Norm(Rec)            | Turndown                |         |
| 5        | Service                              |                       |              | Regen Gas He | ater Regen          | Gas Heater         | Regen Gas Heate      | Regen Gas Heate         | r       |
| 6        | Excess Air                           |                       | mol%         | 15.0%        | 15                  | 5.0%               | 15.0%                | 15.0%                   |         |
| 7        | Calculated Heat Release              | e (LHV) MM            | BTU/ hr      | 16.21        | 1                   | 4.58               | 13.93                | 9.26                    |         |
| 8        | Guaranteed Efficiency                |                       | HR%          | 84.7%        | 84                  | 4.7%               | 84.7%                | 84.7%                   |         |
| 9        | Calculated Efficiency                |                       | HR%          | 87.7%        |                     | 3.7%               | 89.1%                | 92.1%                   |         |
| 10       | Radiation Loss                       |                       | HR%          | 2.00%        |                     | 00%                | 2.00%                | 2.00%                   |         |
| 11       | Flow Rate, Compustion C              | Gen./ Imp.            | LD/ Nr<br>∘⊏ | 1 4 27 / 46  | 1 1 270             | / 125              | 1 350 / 409          | 9,020                   |         |
| 12       | Flue Gas Mass Velocity               | I (NO)                | / sec ft2    | 0.378        | <u>1 1,379</u><br>0 | 340                | 0.325                | 0.216                   |         |
| 14       |                                      |                       | 000112       | 0.010        |                     |                    | 0.020                | 0.210                   |         |
| 15       | Fuel(s) Data: G                      | as 1 Gas 2            |              | Burne        | er Design:          |                    |                      |                         |         |
| 16       | M                                    | ol.Wt. Mol.Wt.        |              | OEI          | N                   | - Zeeco USA        | A, LLC               |                         |         |
| 17       | LHV BTU/ scf                         | 910 1,037             |              | Тур          | e                   | - Enhanced         | IFGR                 |                         |         |
| 18       | LHV BTU/ Lb                          | 21,397 20,449         |              | Qua          | ntities             | - 1                |                      | ULTRA Low NOx           |         |
| 19       | P@Burner psig_                       | <u>150 150 </u>       |              | Mod          | lel No              | - GLSF-12          |                      | Cylindrical             |         |
| 20       | I @ Burner °F                        | 100 100               |              | Win          | abox                | - yes<br>EndWall C | enter                | Horizontally Fired      |         |
| 21       | www                                  | 10.14 19.24           |              | LOC          | auuri<br>Desian     |                    | 01101                | HUNZUINAILY FILEU       |         |
| 22       | m @ 222 °F cp =                      |                       |              | FIUL         | e / Model           | Self-Inspi         | rating /             | by O F M                |         |
| 24       | Atomizing Media                      |                       |              | lani         | tion                | - Electric         | req                  | uires elec.ign.system   |         |
| 25       | Atom. Media P & T                    |                       |              | Hea          | t Release -         | - > 90000          | BTU/ hr or           | n Gas 1                 |         |
| 26       | _                                    |                       |              |              |                     |                    |                      |                         |         |
| 27       | Components:                          |                       |              | Burne        | er Performa         | nce:               |                      |                         |         |
| 28       | N wt%                                |                       |              | Min          | mum Heat I          | Release            | MMBTU/ hr            | 3.57                    |         |
| 29       | S wt% _                              | <u> </u>              |              | Des          | ign Heat Re         | elease             | MMBTU/ hr            | 16.21                   | 1       |
| 30       | Ash wt% _                            |                       |              | Max          | imum Heat           | Release            | MMBTU/ hr            | 17.84                   |         |
| 31       | NI ppm _                             |                       |              | Bur          |                     | /n<br>Zalagag      | Max:Min              | 5.00                    |         |
| 3∠<br>33 | Va ppm                               |                       |              | Voit         |                     | telease            | bTU/ III II<br>inH2O | 0,307                   |         |
| 34       | Fe ppm                               |                       |              | Pre          | ssure @ Ait         | rner               | inH2O                | 4 35                    |         |
| 35       | 10 ppm _                             |                       |              | Cor          | nbustion Air        | T @ Burner         | · °F                 | 60                      |         |
| 36       | H2 mol%                              | 0.0% 0.0%             |              | Flue         | Gas T @ E           | Burner             | °F                   | 1,230                   |         |
| 37       | O2 mol%                              | 0.0% 0.0%             |              |              | U                   |                    |                      |                         |         |
| 38       | N2 + Ar mol%                         | 0.2% 1.5%             |              | Guar         | anteed Emi          | ssions:            |                      |                         |         |
| 39       | CO mol%                              | 0.0% 0.0%             |              | Bas          | is of Guarar        | ntee               |                      | 3.0% O2, dry (LHV)      | 1       |
| 40       | CO2 mol%                             | 0.0% 0.5%             |              | NO:          | K Emissions         |                    | Lb/MMBTU             | 0.040 30 ppm            |         |
| 41       | CH4 mol% _                           | 99.3% 80.2%           |              | SO           |                     |                    |                      |                         |         |
| 42       | C2H6 mol% _                          |                       |              |              | Emissions           |                    |                      | 0.040 49 ppm            |         |
| 43       | C2H4 1101% _                         | $\frac{0.0\%}{0.0\%}$ |              |              |                     | ><br>:             |                      | 0.019 15 ppm            | J       |
| 45       | C3H6 mol%                            | 0.0% $2.4%$           |              | SPI          | A10 Emissions       | ,<br>ons           | Lb/MMBTU             | 0.013 15 ppm            |         |
| 46       | C4H10 mol%                           | 0.0% 0.2%             |              | Nois         | se Emission         | S                  | dBA @ 3ft            | 85                      |         |
| 47       | C4H8 mol%                            | 0.0% 0.0%             |              |              |                     |                    | 0                    |                         |         |
| 48       | C5H12 mol%                           | 0.0% 0.0%             |              | Net F        | lame Clear          | ances:             |                      |                         |         |
| 49       | C5H10 mol%                           | 0.0% 0.0%             |              | Est.         | Flame Size          | approx. 1          | 4 ft L x 3 ft Diame  | ter                     |         |
| 50       | C6+ mol%                             | 0.0% 0.0%             |              | Hor          | Clearance           | 1.5 ft NE          | Tube Clearance       |                         |         |
| 51       | H2S ppmv                             | 0.0% 0.0%             |              | Vert         | Clearance           | 1.5 ft NE          | I Tube Clearance     |                         |         |
| 52       |                                      |                       |              | Axia         | Clearance           | 10.08 ft NE        | LI Retractory Cleara | ance (to Arch hot face) | )       |
| 53       | H2O mol%                             |                       |              | Nom          | inal Flame (        | learances          |                      |                         |         |
| 55       | spare mol%                           | 0.0% 0.0%             |              | from         | burner Cl           | \                  | /ertical             | Horizontal              |         |
| 56       |                                      | 0.070                 |              | to T         | ube CL. AP          | <br>I ft           | 8.94                 | 5.96                    |         |
| 57       |                                      |                       |              | to T         | ube CL. cal         | c. ft              | 4.50                 | 4.50                    |         |
| 58       | Blower/Fan Peformance:               |                       |              | to F         | efrac., calc.       | ft                 | n/a                  | 24.08                   |         |
| 59       | Volumetric Flow                      | acfm <u>3,</u> 80     | 0            |              |                     | •                  |                      |                         |         |
| 60       | Rated Power                          | HP 7.5                |              |              |                     |                    |                      |                         | 1       |
| 61       | Fan Speed                            | RPM 1,80              | 0            |              |                     |                    |                      |                         | 1       |
| 62       | Sound Pressure                       |                       | )<br>        | Groups CPD   |                     |                    |                      |                         |         |
| 03<br>64 | Area Classification                  |                       | אוט, וו. וו  | , Groups C&D |                     |                    |                      |                         |         |
| 04       |                                      |                       |              |              |                     |                    |                      |                         |         |
| ll 🛛     | AMERICAN EI                          | NGINEERING SYS        | TEM of l     | UNITS        |                     | FIRE               | ED HEATER DAT        | A SHEET                 |         |
|          | TULSA H                              | EATERS MIDSTRI        | EAM LLO      | С            | MJ17-3              | 300-HTRds-         | Rev. 1               | Page 2                  | 2 of 6  |
|          |                                      |                       |              |              |                     |                    |                      |                         |         |

### Flare

| Source Designation:                          |           |
|----------------------------------------------|-----------|
| Manufacturer:                                | John Zink |
| Operating Hours: (hr/yr)                     | 8,760     |
| Pilot + Purge Gas Heat Input (MMBtu/hr)      | 3.205     |
| Pilot + Purge Gas Annual Fuel Use (mmscf/yr) | 26.518    |
| Pilot Fuel Consumption (mmscf/hr):           | 2.00E-04  |
| Purge Fuel Consumption (mmscf/hr):           | 2.83E-03  |
| Fuel HHV (Btu/scf)                           | 1,059     |

#### Combustion of Hydrocarbons

| Source Designation:                      |          |
|------------------------------------------|----------|
| Annual Gas Flow (mmscf/yr)               | 100.00   |
| Heating value (btu/scf)                  | 1,303.99 |
| Maximum Heat Release of Flare (mmbtu/yr) | 130,399  |

#### **Total Emissions**

| Pollutant                      | Emission Factor<br>(lb/MMBtu) | lb/hr   | tpy     |
|--------------------------------|-------------------------------|---------|---------|
| VOC                            |                               | 3.07    | 13.46   |
| HAP                            |                               | 0.22    | 0.98    |
| NO <sub>X</sub>                | 0.068                         | 1.23    | 5.39    |
| СО                             | 0.31                          | 5.61    | 24.56   |
| $SO_2$                         | 0.0005                        | 0.01    | 0.04    |
| PM Total                       | 0.0063                        | 0.11    | 0.50    |
| PM Condensable                 | 0.0047                        | 0.09    | 0.37    |
| PM <sub>10</sub> (Filterable)  | 0.0016                        | 0.03    | 0.12    |
| PM <sub>2.5</sub> (Filterable) | 0.0016                        | 0.03    | 0.12    |
| CO <sub>2</sub>                | 117.05                        | 2119.50 | 9283.43 |
| CH <sub>4</sub>                | 0.002                         | 12.18   | 53.33   |
| N <sub>2</sub> O               | 0.0002                        | 0.00    | 0.02    |

<sup>a</sup> The NOx and CO emission factors are from AP-42 Section 13.5 "Industrial Flares" Table 13.5-1.

 $^{\rm b}$  Emission factors for GHG pollutants from 40 CFR Part 98, Subpart C. Tables C-1 and C-2.

<sup>c</sup> The remaining factors are from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1 and 1.4-2.

<sup>d</sup> VOC and HAP emissions are based on mass balance.

<sup>e</sup> The flare calculations assume the composition to the flare is inlet gas. Additionally, the flare volume is conservative as the actual flow to the flare during the 2019 reporting period was approximately 26.5

## **Condensate Truck Loadout Emissions**

| Source                            | Volume<br>Loaded<br>(gal/yr) | Saturation<br>Factor <sup>1</sup> | Vapor<br>Pressure <sup>2</sup><br>(psia) | Vapor Molecular<br>Weight <sup>2</sup><br>(lb/lb-mol) | Liquid<br>Temp <sup>3</sup><br>(ºF) | Liquid Temp<br>(°R) | Loading Loss <sup>4</sup><br>(lb VOC/1000 gal) | Loadir<br>(lb/yr) | ng Loss<br>(tpy) |
|-----------------------------------|------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------------|---------------------|------------------------------------------------|-------------------|------------------|
| Harmon Creek<br>Closed Drain Tank | 220,000                      | 0.6                               | 8.1621                                   | 60                                                    | 58.5                                | 518.2               | 7.1                                            | 1,554.44          | 0.78             |

<sup>1</sup> From AP-42 Table 5.2-1, for tank trucks in submerged loading: dedicated normal service

<sup>2</sup> From AP42 Table 7.1-2, Gasoline (RVP 15), 60 deg

<sup>3</sup> Daily average liquid surface temperature (TANKS 4.09d)

<sup>4</sup> Loading Loss (lb VOC/1000 gal) = (12.46\*S\*P\*M)/T [AP42 Section 5.2 (1/95)]

<sup>5</sup> Loading losses are controlled by the flare. Thus, emissions associated with the Condensate Truck Loadout Emissions are captured under the Flare Emission estimates.

#### Potential VOC Potential HAP Potential CH4 Potential CO2 Stream Type AP-42 Leak Weight Percent<sup>e</sup> Total (Gas Vapor. Number of Reduction Final Leak Factor Emissions Emissions Emissions Emissions From Component Type Gas Type Emission Factors Light Liquid, LeakDAS Components lb/hr/component Emissions Factors kg/hr/component<sup>t</sup> VOC HAP CH4 **CO2** (lb/hr) (lb/hr) lb/hr) (lb/hr) (tpy) (tpy) (tpy) (tpy) Heavy Liquid) (tpy) GV INLET 8.80E-03 80% 3.88E-03 23.6% 75.1% 0.2% 0.190 0.04 0.14 0.00 0.00 Compressor 11 1.7% 0.01 0.00 0.00 0.03 GV RESIDUE 12 19 8.80E-03 0% 1.94E-02 0.1% 0.0% 87.5% 0.3% 1.633 0.00 0.00 0.00 0.00 0.33 1.43 0.00 0.01 Compressor GV ETHAN 8.80E-03 0% 1.94E-02 0.5% 0.1% 0.0% 0.0% 0.408 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Compressor CO2 8.80E-03 0% 0.00 0.27 GV 1.94E-02 0.5% 0.1% 0.0% 100.0% 0.272 0.00 0.00 0.00 0.00 0.00 0.06 Compressor GV PROPANE 11 18 8.80E-03 80% 0.0% 0.07 0.30 0.00 0.00 0.00 0.00 0.00 0.00 Compressor 3.88E-03 100.0% 0.0% 0.0% 0.299 INLET 7.50E-03 80% 3.31E-03 23.6% 1.7% 75.1% 0.2% 0.093 0.01 0.02 0.00 0.00 0.02 0.07 0.00 0.00 Compressor INLET GAS 2.00E-04 75% 0.00 0.00 0.00 0.01 0.00 Connector GV 19 30 1.10E-04 23.6% 1.7% 75.1% 0.2% 0.015 0.00 0.00 0.00 GV C3+ 424 678 2.00E-04 75% 0.07 0.33 0.00 0.00 0.00 0.00 Connector 1.10E-04 100.0% 0.0% 0.0% 0.0% 0.328 0.00 0.00 GV **REFRIG C3** 42 67 2.00E-04 75% 100.0% 0.0% 0.0% 0.032 0.01 0.03 0.00 0.00 0.00 0.00 1.10E-04 0.0% 0.00 0.00 Connector GV **REGEN De-Eth** 10 16 2.00E-04 Connector 75% 1.10E-04 0.5% 0.1% 0.0% 0.0% 0.008 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GV FLARE GAS 1254 2006 2.00E-04 75% 23.6% 0.2% 0.969 0.05 0.23 0.00 0.02 0.17 0.73 0.00 Connector 1.10E-04 1.7% 75.1% 0.00 GV C3+ 2.00E-04 75% 1.10E-04 100.0% 0.0% 0.0% 0.0% 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector GV INLET 69 110 2.00E-04 75% 1.10E-04 23.6% 1.7% 0.2% 0.053 0.00 0.01 0.00 0.00 0.01 0.04 0.00 0.00 Connector 75.1% GV REGEN GAS De-Eth 13 21 2.00E-04 75% 1.10E-04 0.5% 0.1% 0.0% 0.0% 0.010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector 2.00E-04 0.00 Connector GV C2+ 112 179 75% 1.10E-04 51.4% 5.3% 0.1% 0.1% 0.087 0.01 0.04 0.00 0.00 0.00 0.00 0.00 GV INLET 252 403 2.00E-04 75% 0.00 Connector 1.10E-04 23.6% 1.7% 75.1% 0.2% 0.195 0.01 0.05 0.00 0.00 0.03 0.15 0.00 GV **REGEN De-Eth** 2.00E-04 75% 1.10E-04 0.5% 0.1% 0.0% 0.0% 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector GV C3+ 2.00E-04 75% 1.10E-04 100.0% 0.0% 0.0% 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector 0.0% FLARE GAS 2.10E-04 75% 0.00 0.00 0.00 11 1.16E-04 23.6% 1.7% 0.2% 0.001 0.00 0.00 0.00 0.00 0.00 Connector 75.1% METHANOL LL 102 163 2.10E-04 75% 1.16E-04 100.0% 100.0% 0.0% 0.0% 0.083 0.02 0.08 0.02 0.08 0.00 0.00 0.00 0.00 Connector REGEN GAS De-Eth 108 173 2.10E-04 75% 0.088 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector ш 1.16E-04 0.5% 0.1% 0.0% 0.0% 0.00 11 ETHAN 47 75 2.10E-04 75% 1.16E-04 0.5% 0.1% 0.0% 0.0% 0.038 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector ETHAN 32 Connector ш 20 2.10E-04 75% 1.16E-04 0.5% 0.1% 0.0% 0.0% 0.016 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C3+ 1371 857 2.10E-04 75% 0.00 0.00 Connector LL 1.16E-04 100.0% 0.0% 0.0% 0.0% 0.696 0.16 0.70 0.00 0.00 0.00 0.00 METHANOL 2.10E-04 75% 0.00 0.02 0.02 0.00 0.00 Connector ш 25 40 1.16E-04 100.0% 100.0% 0.0% 0.0% 0.020 0.00 0.00 0.00 INLET GAS 238 2.10E-04 75% 381 Connector LL 1.16E-04 23.6% 1.7% 75.1% 0.2% 0.193 0.01 0.05 0.00 0.00 0.03 0.15 0.00 0.00 Connector LL C3+ 310 496 2.10E-04 75% 1.16E-04 100.0% 0.0% 0.0% 0.0% 0.252 0.06 0.25 0.00 0.00 0.00 0.00 0.00 0.00 INLET GAS 23.6% 100 160 2.10E-04 75% 1.16E-04 1.7% 75.1% 0.2% 0.081 0.00 0.02 0.00 0.00 0.01 0.06 0.00 0.00 Connector ш Pressure Relief GV **REGEN De-Eth** 28 45 8.80E-03 97% 5.82E-04 0.5% 0.1% 0.0% 0.0% 0.114 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pressure Relief 747 GV FLARE 467 8.80E-03 97% 5.82E-04 23.6% 1.7% 75.1% 0.2% 1.906 0.10 0.45 0.01 0.03 0.33 1.43 0.00 0.00 FLARE GAS 344 550 8.80E-03 97% 5.82E-04 0.2% 1.404 0.08 0.33 0.02 1.05 0.00 Pressure Relief GV 23.6% 1.7% 75.1% 0.01 0.24 0.00 C3 148 7.50E-03 97% 4.96E-04 0.515 0.12 0.00 0.00 0.00 0.00 Pressure Relief ш 237 100.0% 0.0% 0.0% 0.0% 0.51 0.00 0.00 C2+ 782 1251 7.50E-03 97% 4.96E-04 51.4% 0.00 0.00 Pressure Relief 5.3% 0.1% 0.1% 2.720 0.32 1.40 0.03 0.14 0.00 0.00 Pressure Relief **REGEN GAS De-Eth** 337 539 7.50E-03 97% 4.96E-04 0.5% 0.1% 0.0% 0.0% 1.172 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 11 FLARE 126 7.50E-03 97% 4.96E-04 23.6% 1.7% 0.2% 0.275 0.01 0.06 0.00 0.00 0.05 0.21 0.00 0.00 Pressure Relief 79 75.1% C3+ 7.50E-03 97% 4.96E-04 100.0% 0.0% 0.0% 0.0% 0.014 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Pressure Relief ш 0.00 Pressure Relief 11 REGEN GAS 26 42 7.50E-03 97% 4.96E-04 23.6% 1.7% 75.1% 0.2% 0.090 0.00 0.02 0.00 0.00 0.02 0.07 0.00 0.00 23.6% REGEN GAS 80 128 7.50E-03 97% 0.278 0.02 0.07 0.05 0.21 0.00 Pressure Relief ш 4.96E-04 1.7% 75.1% 0.2% 0.00 0.00 0.00 Pressure Relief C3 403 645 7.50E-03 97% 4.96E-04 100.0% 0.0% 0.0% 0.0% 1.402 0.32 1.40 0.00 0.00 0.00 0.00 0.00 0.00 LL FLARE 2.40E-03 Pump GV 0% 5.29E-03 23.6% 1.7% 75.1% 0.2% 0.186 0.01 0.04 0.00 0.00 0.03 0.14 0.00 0.00 GV FLARE 129 206 2.40E-03 0% 5.29E-03 4.786 0.02 0.82 3.59 0.01 Pump 23.6% 1.7% 75.1% 0.2% 0.26 1.13 0.08 0.00 LL C2+ 10 1.30E-02 85% 51.4% 5.3% 0.181 0.02 0.09 0.00 0.00 0.00 0.00 0.00 Pump 4.30E-03 0.1% 0.1% 0.01

**Fugitive Emissions** 

#### **Fugitive Emissions** Potential VOC Potential HAP Potential CH4 Potential CO2 Stream Type AP-42 Leak Weight Percent<sup>e</sup> Total (Gas Vapor, Number of Reduction Final Leak Factor Emissions Emissions Emissions Emissions From Component Type Gas Type Emission Factors Light Liquid, LeakDAS Components lb/hr/component Emissions Factors kg/hr/component<sup>t</sup> VOC HAP CH4 CO2 (lb/hr) (lb/hr) lb/hr) (lb/hr) (tpy) (tpy) (tpy) (tpy) Heavy Liquid) (tpy) Valve GV REGEN GAS De-Eth 4.50E-03 97% 0.00 63 101 2.98E-04 0.5% 0.1% 0.0% 0.0% 0.131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.50E-03 Valve GV C2+ 44 70 97% 2.98E-04 51.4% 5.3% 0.1% 0.1% 0.092 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 Valve GV C3 4.50E-03 97% 2.98E-04 0.0% 0.006 0.00 0.00 0.00 0.00 100.0% 0.0% 0.0% 0.00 0.01 0.00 0.00 Valve GV INLET GAS 44 70 4.50E-03 97% 2.98E-04 23.6% 1.7% 75.1% 0.2% 0.092 0.00 0.02 0.00 0.00 0.02 0.07 0.00 0.00 Valve GV C3+ 113 181 4.50E-03 97% 0.00 0.00 2.98E-04 100.0% 0.0% 0.0% 0.236 0.05 0.24 0.00 0.00 0.00 0.00 0.0% GV C3 489 4.50E-03 97% Valve 782 2.98E-04 100.0% 0.0% 0.0% 0.0% 1.021 0.23 1.02 0.00 0.00 0.00 0.00 0.00 0.00 **REFRIG C3** Valve GV 154 246 4.50E-03 97% 2.98E-04 100.0% 0.0% 0.321 0.07 0.32 0.00 0.00 0.00 0.00 0.00 0.0% 0.0% 0.00 Valve GV INLET 12 19 4.50E-03 97% 2.98E-04 23.6% 1.7% 75.1% 0.2% 0.025 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 Valve GV REFRIG C3 з 4.50E-03 97% 2.98E-04 100.0% 0.0% 0.0% 0.0% 0.004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Valve GV C3 140 224 4.50E-03 97% 2.98E-04 100.0% 0.0% 0.0% 0.0% 0.292 0.07 0.29 0.00 0.00 0.00 0.00 0.00 0.00 51.4% 0.00 Valve Π. C2+ 290 464 2.50E-03 97% 1.65E-04 5.3% 0.1% 0.1% 0.336 0.04 0.17 0.00 0.02 0.00 0.00 0.00 Valve LL INLET 935 1496 2.50E-03 97% 1.65E-04 23.6% 1.7% 75.1% 0.2% 1.084 0.06 0.26 0.00 0.02 0.19 0.81 0.00 0.00 2.50E-03 Valve REGEN GAS 97% 0.00 0.00 0.00 0.00 LL 1.65E-04 23.6% 1.7% 75.1% 0.2% 0.002 0.00 0.00 0.00 0.00 Valve LL METHANOL 2.50E-03 97% 1.65E-04 100.0% 100.0% 0.0% 0.0% 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Valve INLET 390 624 2.50E-03 97% 1.65E-04 23.6% 0.452 11 1.7% 75.1% 0.2% 0.02 0.11 0.00 0.01 0.08 0.34 0.00 0.00 Valve LL C3+ 2.50E-03 97% 1.65E-04 100.0% 0.0% 0.0% 0.0% 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50E-03 Valve METHANOL 97% 1.65E-04 100.0% 100.0% 0.0% 0.0% 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LL Valve LL **REFRIG C3** 181 290 2.50E-03 97% 1.65E-04 100.0% 0.0% 0.0% 0.0% 0.210 0.05 0.21 0.00 0.00 0.00 0.00 0.00 0.00 Valve LL REFRIG C3 92 147 2.50E-03 97% 1.65E-04 100.0% 0.0% 0.0% 0.0% 0.107 0.02 0.11 0.00 0.00 0.00 0.00 0.00 0.00 2.50E-03 23.6% Valve LL FLARE 19 30 97% 1.65E-04 1.7% 75.1% 0.2% 0.022 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 2.50E-03 Valve LL FLARE 97% 1.65E-04 23.6% 1.7% 75.1% 0.2% 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Connector HL нмо 1708 7.50E-06 0% 1.65E-05 100.0% 0.0% 0.0% 0.0% 0.124 0.03 0.12 0.00 0.00 0.00 0.00 0.00 0.00 нмо Valve 569 8.40E-06 0% 0.046 0.01 0.05 0.00 0.00 HL 1.85E-05 100.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 Pressure Relief HL нмо 16 3.20E-05 0% 7.06E-05 100.0% 0.0% 0.0% 0.0% 0.005 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO2 569 7.50E-06 0% 1.65E-05 0.00 0.01 0.04 Connector HL 0.5% 0.1% 0.0% 100.0% 0.041 0.00 0.00 0.00 0.00 0.00 Valve HL CO2 190 8.40E-06 0% 1.85E-05 0.5% 0.1% 0.0% 100.0% 0.015 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 Pressure Relief HL CO2 3.20E-05 0% 7.06E-05 0.5% 0.1% 0.0% 100.0% 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Residue Connector GV 1900 2.00E-04 75% 1.10E-04 0.1% 0.0% 87.5% 0.3% 0.918 0.00 0.00 0.00 0.00 0.18 0.80 0.00 0.00 Valve GV Residue 600 4.50E-03 97% 2.98E-04 0.1% 0.0% 87.5% 0.3% 0.783 0.00 0.00 0.00 0.00 0.16 0.69 0.00 0.00 21.343 Total 2.45 10.72 0.11 0.50 2.79 12.23 0.09 0.38

#### Notes:

<sup>a</sup> Component counts are based on a combination of counts from LeakDas and PIDs and estimates based on studies at similar facilities.

<sup>b</sup> Table 2-4. Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors based on average measured TOC from component types indicated in gas or light oil service at O&G Production Operations.

<sup>c</sup> Table V: Control Efficiencies for LDAR for 28VHP programs, Air Permit Technical Guidance for Chemical Sources Fugitive Guidance, TCEQ (APDG 6422v2, Revised 06/2018). Compressors are monitored quarterly via OGI.

<sup>d</sup> Table 5-1. Summary of Equipment Modifications, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.

 $^{\rm e}\,$  CO2 and C2 service are estimated at 0.5 VOC wt% to be conservative.

MarkWest Liberty Midstream & Resources, L.L.C. Harmon Creek Gas Plant Rod Packing Emissions

## **Rod Packing**

**Total Rod Packing Emissions** 

| Dollutant      | Emissions |      |  |  |
|----------------|-----------|------|--|--|
| Pollulani      | lb/hr     | tpy  |  |  |
| VOC            | 0.17      | 0.75 |  |  |
| Total HAPs     | 0.00      | 0.01 |  |  |
| Methane        | 0.41      | 1.81 |  |  |
| Carbon Dioxide | 0.00      | 0.01 |  |  |
| n-Hexane       | 0.00      | 0.01 |  |  |
| Total HAPs     | 0.00      | 0.01 |  |  |

Residue Compressors Emission Factor<sup>a</sup> (scf CH<sub>4</sub>/min) 0.018 Mole fraction Methane 0.930 0.019 **Total Emission Factor** (scf/min) MW (lb/lbmole) 17.041 Number of Compressors 7 0.366 **Total Emissions** (lb/hr) <sup>a</sup>Based on 40 CFR Part 98 Subpart W Section 233 Emissions Factors

| Dollutant      | Mass 9/  | Emissions |      |  |
|----------------|----------|-----------|------|--|
| Pollulani      | IVIdSS % | lb/hr     | tpy  |  |
| VOC            | 0.15%    | 0.00      | 0.00 |  |
| Total HAPs     | 0.00%    | 0.00      | 0.00 |  |
| Methane        | 87.54%   | 0.32      | 1.40 |  |
| Carbon Dioxide | 0.31%    | 0.00      | 0.01 |  |
| n-Hexane       | 0.00%    | 0.00      | 0.00 |  |
| Total HAPs     | 0.00%    | 0.00      | 0.00 |  |

| Stabilization Compressors                   |             |                            |
|---------------------------------------------|-------------|----------------------------|
| Emission Factor <sup>a</sup>                | 0.018       | (scf CH <sub>4</sub> /min) |
| Mole fraction Methane                       | 0.440       |                            |
| Total Emission Factor                       | 0.041       | (scf/min)                  |
| MW                                          | 29.162      | (lb/lbmole)                |
| Number of Compressors                       | 2           |                            |
| Total Emissions                             | 0.378       | (lb/hr)                    |
| <sup>a</sup> Based on 40 CFR Part 98 Subpar | t W Section | 233 Emissions Factors      |

| Pollutant      | Macc 9/   | Emissions |      |  |
|----------------|-----------|-----------|------|--|
|                | IVIdSS 70 | lb/hr     | tpy  |  |
| VOC            | 44.89%    | 0.17      | 0.74 |  |
| Total HAPs     | 0.60%     | 0.00      | 0.01 |  |
| Methane        | 24.26%    | 0.09      | 0.40 |  |
| Carbon Dioxide | 0.24%     | 0.00      | 0.00 |  |
| n-Hexane       | 0.60%     | 0.00      | 0.01 |  |
| Total HAPs     | 0.60%     | 0.00      | 0.01 |  |

| 0.018        | (scf CH <sub>4</sub> /min)                                      |
|--------------|-----------------------------------------------------------------|
| 0.025        |                                                                 |
| 0.719        | (scf/min)                                                       |
| 43.568       | (lb/lbmole)                                                     |
| 1            |                                                                 |
| 4.960        | (lb/hr)                                                         |
| rt W Section | 233 Emissions Factors                                           |
|              | 0.018<br>0.025<br>0.719<br>43.568<br>1<br>4.960<br>rt W Section |

 Pollutant
 Mass %
 Emissions

 VOC
 0.02%
 0.00
 0.00

 Total HAPs
 0.00%
 0.00
 0.00

| Total HAPs     | 0.00%  | 0.00 | 0.00 |
|----------------|--------|------|------|
| Methane        | 0.01%  | 0.00 | 0.00 |
| Carbon Dioxide | 97.82% | 0.00 | 0.00 |
| n-Hexane       | 0.00%  | 0.00 | 0.00 |
| Total HAPs     | 0.00%  | 0.00 | 0.00 |

### Pigging Emissions (Controlled by Flare)

| Description                                |                    | Pressure | High to Low | Control | L/P      | Sizo      | Max      | Pressure<br>(PSIG) <sup>a</sup> | Temp  | Vessel   | Z Factor <sup>a</sup> | D Fastar <sup>b</sup> | MW of              | Maximur              | n Volume         | Control          | led VOC          | Control          | led HAP |
|--------------------------------------------|--------------------|----------|-------------|---------|----------|-----------|----------|---------------------------------|-------|----------|-----------------------|-----------------------|--------------------|----------------------|------------------|------------------|------------------|------------------|---------|
| Description                                | Gas Source Basis   | Туре     | Jumper      | Device  | L/K      | Events/Yr | Pre-Jump | (deg F)                         | (acf) | Pre-Jump | K Factor              | Gas <sup>a</sup>      | Per Event<br>(scf) | Annually<br>(scf/yr) | Wt% <sup>a</sup> | tpy <sup>c</sup> | Wt% <sup>a</sup> | tpy <sup>c</sup> |         |
| Houston Plant HP NGL Launcher              | Harmon Creek Plant | HP       | N           | Flare   | Launcher | 12        | 1        | 1100                            | 85    | 19.04    | 0.956                 | 1,545                 | 21.6               | 1,509.8              | 1,510            | 23.6%            | 0.000            | 1.72%            | 0.0000  |
| Mariner West HP Ethane Launcher            | Harmon Creek Plant | HP       | N           | Flare   | Launcher | 10        | 1        | 1100                            | 85    | 15.95    | 0.956                 | 1,545                 | 21.6               | 1,264.8              | 1,265            | 23.6%            | 0.000            | 1.72%            | 0.0000  |
| National Fuel Line N HP Residue Launcher   | Harmon Creek Plant | HP       | N           | Flare   | Launcher | 20        | 1        | 1300                            | 85    | 55.07    | 0.956                 | 1,545                 | 21.6               | 5,150.3              | 5,150            | 23.6%            | 0.001            | 1.72%            | 0.0001  |
| Rover HP Interconnect Launcher             | Harmon Creek Plant | HP       | N           | Flare   | Launcher | 24        | 1        | 1300                            | 85    | 108.94   | 0.758                 | 1,545                 | 21.6               | 12,852.0             | 12,852           | 23.6%            | 0.002            | 1.72%            | 0.0002  |
| Smith CS to Harmon Creek Plant HP Receiver | Harmon Creek Plant | HP       | N           | Flare   | Receiver | 20        | 365      | 1060                            | 54.2  | 26.50    | 0.956                 | 1,545                 | 21.0               | 2,025.9              | 739,460          | 20.2%            | 0.099            | 1.67%            | 0.0082  |
|                                            |                    |          |             | Total   |          |           |          |                                 |       |          |                       |                       |                    |                      | 760,236          |                  | 0.102            |                  | 0.008   |

\* Pigging emissions are controlled by the flare and emission associated with pigging events are accounted for in the flare emissions section.

<sup>a</sup> Actual factors for PSIG, Z-factor, MW of gas, VOC wt% of gas and LHV of gas have been calculated but the numbers in the spreadsheet are provided to be very conservative in the event that the composition of the gas field changes over time.

<sup>b</sup> R Factor = (psfa\*ft3\* lbmol/(lb\*R))

<sup>c</sup> Per the Consent Decree filed in April 2018, the mass of VOC emissions from pigging operations are multiplied by a factor of:

1.2

 CO2 wt%
 0.24%

 CH4 wt%
 75.1%

 CO2 emissions
 0.001
 tpy

 CH4 emissions
 0.32
 tpy

### **Methanol Emission Estimates**

| Source Information:            |                     |
|--------------------------------|---------------------|
| Contents:                      | Methanol            |
| Quantity:                      | 2                   |
| Tank Orientation/Geometry:     | Horizontal Cylinder |
| Approx. Height (ft):           | 5.0                 |
| Approx. Diameter (ft):         | 4.2                 |
| Volume (gal):                  | 500                 |
| Turnovers per year:            | 0.10                |
| Maximum Fill Level:            | 90%                 |
| Insulation:                    | None                |
| Tank Color:                    | Red                 |
| Control Percentage:            | 0                   |
| Site-Wide Throughput (gal/yr)  | 100                 |
| Site-Wide Throughput (bbl/day) | 0.007               |

#### Total Methanol Emissions (Sum of Tank Emissions + Process Emissions below):

|           | Conservative Losses |       |  |  |  |
|-----------|---------------------|-------|--|--|--|
| Pollutant | lb/hr               | tpy   |  |  |  |
| Total VOC | 0.080               | 0.352 |  |  |  |
| Total HAP | 0.080               | 0.352 |  |  |  |

#### Tank Emissions:

|           | Tank Losses |       |  |  |
|-----------|-------------|-------|--|--|
| Pollutant | lb/hr       | tpy   |  |  |
| Total VOC | 0.003       | 0.013 |  |  |
| Total HAP | 0.003       | 0.013 |  |  |

Methanol tank losses are conservatively based on 50 gallons of use annually and modeled using ProMax 5.0. Please note, MarkWest uses no more than five (5) gallons of methanol per year.

#### Process Emissions:

|           | Conservativ | ve Losses |
|-----------|-------------|-----------|
| Pollutant | lb/hr       | tpy       |
| Total VOC | 0.077       | 0.339     |
| Total HAP | 0.077       | 0.339     |

Methanol losses from the process conservatively assumes all methanol injected into the system is emitted to the atmosphere, however, only a portion of the injected methanol will be emitted. Additionally, MarkWest uses no more than five (5) gallons of methanol per year, however, emission estimates are based on 10 times that quantity. Sample Calculation:

Methanol emissions (tpy) = Methanol usage (gal/yr) \* Density (lb/gal) / 2000 (ton/lbs)

## **Measurement Devices**

Exempt under Section 127.14(a) #7

| Source Information:                         |        |
|---------------------------------------------|--------|
| Analyzer Vent Rate (scf/hr)                 | 2.12   |
| Spectra Analyzers                           | 8.00   |
| GC Vent Rate (scf/hr)                       | 0.04   |
| GC Streams                                  | 17.00  |
| Total Number of Measurement Vents to Atm    | 25.0   |
| Potential Annual Hours of Operation (hr/yr) | 8,760  |
| Potential Volume Emitted (scf/yr)           | 18,561 |

| Dollutant      | Per An   | nalyzer | Per GC   | Stream | Total |       |  |
|----------------|----------|---------|----------|--------|-------|-------|--|
| Follutalit     | lb/hr    | tpy     | lb/hr    | tpy    | lb/hr | tpy   |  |
| Carbon Dioxide | 0.000    | 0.001   | 0.000    | 0.000  | 0.00  | 0.011 |  |
| Methane        | 0.09     | 0.397   | 0.00     | 0.007  | 0.75  | 3.285 |  |
| VOC            | 0.03     | 0.125   | 0.00     | 0.002  | 0.24  | 1.033 |  |
| n-Hexane       | 2.07E-03 | 0.009   | 3.45E-05 | 0.000  | 0.02  | 0.075 |  |
| Total HAPs     | 2.07E-03 | 0.009   | 3.45E-05 | 0.000  | 0.02  | 0.075 |  |

#### Harmon Creek Gas Analysis

|           |         |        |           | Residue  |         |            |         |        |
|-----------|---------|--------|-----------|----------|---------|------------|---------|--------|
|           |         |        |           | Gas -    | Residue | Stabilizer |         |        |
| Component | MW      | Unit   | Inlet Gas | Recovery | Gas     | Overhead   | CO2     | C2+    |
| Nitrogen  | 28.0135 | mole % | 0.44      | 0.51     | 0.48    | 0.10       | 0.00    | 0.00   |
| CO2       | 44.01   | mole % | 0.12      | 0.20     | 0.12    | 0.16       | 96.84   | 0.06   |
| H2S       | 34.1    | mole % | 0.00      | 0.00     | 0.00    | 0.00       | 0.00    | 0.00   |
| Methane   | 16.042  | mole % | 75.08     | 97.41    | 92.99   | 44.04      | 0.03    | 0.10   |
| Ethane    | 30.069  | mole % | 15.76     | 1.84     | 6.35    | 29.62      | 3.12    | 59.23  |
| Propane   | 44.096  | mole % | 5.12      | 0.04     | 0.06    | 17.14      | 0.02    | 23.38  |
| i-Butane  | 58.122  | mole % | 0.53      | 0.00     | 0.00    | 1.86       | 0.00    | 2.95   |
| n-Butane  | 58.122  | mole % | 1.40      | 0.00     | 0.00    | 4.96       | 0.00    | 7.05   |
| i-Pentane | 72.149  | mole % | 0.32      | 0.00     | 0.00    | 0.79       | 0.00    | 1.69   |
| n-Pentane | 72.149  | mole % | 0.45      | 0.00     | 0.00    | 1.06       | 0.00    | 2.18   |
| n-Hexane  | 86.175  | mole % | 0.43      | 0.00     | 0.00    | 0.20       | 0.00    | 3.46   |
| n-Heptane | 100.202 | mole % | 0.32      | 0.00     | 0.00    | 0.05       | 0.00    | 0.00   |
| n-Octane  | 114.229 | mole % | 0.01      | 0.00     | 0.00    | 0.00       | 0.00    | 0.00   |
| n-Nonane  | 128.255 | mole % | 0.00      | 0.00     | 0.00    | 0.00       | 0.00    | 0.00   |
| n-Decane  | 142.282 | mole % | 0.00      | 0.00     | 0.00    | 0.00       | 0.00    | 0.00   |
|           |         |        |           |          |         |            |         |        |
|           |         |        |           | Residue  |         |            |         |        |
|           |         |        |           | Gas -    | Residue | Stabilizer |         |        |
| Component | MW      | Unit   | Inlet Gas | Recovery | Gas     | Overhead   | CO2     | C2+    |
| Nitrogen  | 28.0135 | wt%    | 0.5707    | 0.8738   | 0.7852  | 0.0965     | 0.0000  | 0.0000 |
| CO2       | 44.01   | wt%    | 0.2445    | 0.5278   | 0.3121  | 0.2440     | 97.8220 | 0.1187 |

|    | Component  | MW      | Unit        | Inlet Gas | Recovery | Gas     | Overhead | CO2     | C2+     |
|----|------------|---------|-------------|-----------|----------|---------|----------|---------|---------|
| 23 | Nitrogen   | 28.0135 | wt%         | 0.5707    | 0.8738   | 0.7852  | 0.0965   | 0.0000  | 0.0000  |
| 24 | CO2        | 44.01   | wt%         | 0.2445    | 0.5278   | 0.3121  | 0.2440   | 97.8220 | 0.1187  |
| 25 | H2S        | 34.1    | wt%         | 0.0000    | 0.0000   | 0.0000  | 0.0000   | 0.0000  | 0.0000  |
| 26 | Methane    | 16.042  | wt%         | 75.0800   | 95.1232  | 87.5426 | 24.2604  | 0.0092  | 0.0736  |
| 27 | Ethane     | 30.069  | wt%         | 21.9424   | 3.3662   | 11.2128 | 30.5465  | 2.1522  | 48.5233 |
| 28 | Propane    | 44.096  | wt%         | 10.4539   | 0.1031   | 0.1442  | 25.9200  | 0.0166  | 27.2355 |
| 29 | i-Butane   | 58.122  | wt%         | 1.4263    | 0.0025   | 0.0011  | 3.7135   | 0.0000  | 3.8104  |
| 30 | n-Butane   | 58.122  | wt%         | 3.7677    | 0.0035   | 0.0013  | 9.8881   | 0.0000  | 9.4580  |
| 31 | i-Pentane  | 72.149  | wt%         | 1.0690    | 0.0000   | 0.0002  | 1.9617   | 0.0000  | 2.4280  |
| 32 | n-Pentane  | 72.149  | wt%         | 1.5033    | 0.0000   | 0.0005  | 2.6260   | 0.0000  | 3.1565  |
| 33 | n-Hexane   | 86.175  | wt%         | 1.7158    | 0.0000   | 0.0001  | 0.5960   | 0.0000  | 5.3212  |
| 34 | n-Heptane  | 100.202 | wt%         | 1.4847    | 0.0000   | 0.0000  | 0.1622   | 0.0000  | 0.0000  |
| 35 | n-Octane   | 114.229 | wt%         | 0.0529    | 0.0000   | 0.0000  | 0.0192   | 0.0000  | 0.0000  |
| 36 | n-Nonane   | 128.255 | wt%         | 0.0000    | 0.0000   | 0.0000  | 0.0000   | 0.0000  | 0.0000  |
| 37 | n-Decane   | 142.282 | wt%         | 0.0000    | 0.0000   | 0.0000  | 0.0000   | 0.0000  | 0.0000  |
|    | *Dry Basis |         | VOC wt %    | 23.62     | 0.11     | 0.15    | 44.89    | 0.02    | 51.41   |
|    |            |         | LHV =       | 1178.81   | 916.57   | 949.85  | 1562.36  | 51.09   |         |
|    |            |         | HHV =       | 1303.99   | 1022.94  | 1058.62 | 1715.11  | 61.37   |         |
|    |            |         | Density (Ib | 0.0569    | 0.0433   | 0.0449  | 0.0768   | 0.1148  |         |
|    |            |         | Gas MW=     | 21.60     | 16.43    | 17.04   | 29.16    | 43.57   |         |
|    |            |         | HAP wt%=    | 1.7158    | 0.0000   | 0.0001  | 0.5960   | 0.0000  | 5.3212  |

Notes:

<sup>a</sup> The inlet gas composition is based on a sample collected on 6/3/2021 from the Harmon Creek plant feed inlet and a 10% factor is applied for conservatism. An inlet sample analyzed in 2022, see appended, was lower in VOC than the 2021 sample. The residue gas and C2+ gas compositions are the annual average from GC readings.

<sup>b</sup> Stabilizer Overhead and CO2 compositions are modeled.



## **Certificate of Analysis**

| Vessel / Object:  | TBD                                                           | Job No:       | 178-21-00177          |
|-------------------|---------------------------------------------------------------|---------------|-----------------------|
| Location:         | Bulger, PA / MarkWest - Harmon Creek Facility (United States) | Date Sampled: | 06/03/21              |
| Job Type:         | Sample & Analysis                                             | Date Tested:  | 06/15/21              |
| Product Grade:    | Other Pressurized Product                                     | Version:      | 1 / 15 Jun 2021 18:45 |
| Client Reference: | MarkWest Liberty Resources / Phillip Jereza                   |               |                       |

#### Sample

178-21-00177-001

Sample ID, Type & Description

Harmon Creek Inlet Gas Line

| Method     | Test                                                           | Result        | <u>Units</u> |
|------------|----------------------------------------------------------------|---------------|--------------|
| ASTM D1945 | Natural Gas Analysis                                           |               |              |
|            | Hydrogen                                                       | 0.02          | Mol %        |
|            | Oxygen                                                         | < 0.01        | Mol %        |
|            | Nitrogen                                                       | 0.44          | Mol %        |
|            | Carbon Dioxide                                                 | 0.12          | Mol %        |
|            | Methane                                                        | 75.08         | Mol %        |
|            | Ethane                                                         | 15.76         | Mol %        |
|            | Propane                                                        | 5.12          | Mol %        |
|            | Isobutane                                                      | 0.53          | Mol %        |
|            | n-Butane                                                       | 1.40          | Mol %        |
|            | Isobutylene                                                    | 0.01          | Mol %        |
|            | cis-2-Butene                                                   | < 0.01        | Mol %        |
|            | Isopentane                                                     | 0.32          | Mol %        |
|            | n-Pentane                                                      | 0.45          | Mol %        |
|            | n-Hexane                                                       | 0.43          | Mol %        |
|            | n-Heptane                                                      | 0.28          | Mole         |
|            | Benzene                                                        | 0.04          | Mol %        |
|            | C8+                                                            | 0.01          | Mol %        |
|            | Underson O. If de                                              | .04           |              |
| ASTM D5504 | Hydrogen Suinde                                                | < 0.1         | ppmw         |
| ASTM D7423 | Oxygenates by FID GC on 400° Cut Back Calculated to Whole Crud | e             |              |
|            | Acetaldehyde                                                   | 1.0           | ppmw         |
|            | Acetone                                                        | 1.5           | ppmw         |
|            | Methanol                                                       | None Detected | ppmw         |
|            | Ethanol                                                        | 0.9           | ppmw         |
|            | Total Oxygenates                                               | 3.4           | ppmw         |
| GPA2286    | Full Scan                                                      | See Attached  |              |

|                                 |                | Cite                | Harmon    |   |
|---------------------------------|----------------|---------------------|-----------|---|
|                                 |                | Sile<br>Somple Nome | Inlet Gas |   |
| Saybolt                         |                |                     | 13337001  |   |
| A CORE LABORATORIES COMPANY     |                | Lap#                | 6/01/00   |   |
| C                               |                | Date Sampled        | 0/21/22   |   |
| Customer                        |                | Time Sampled        |           |   |
| Markwest                        |                | Gas Temp, F         |           |   |
| Harmon Creek                    |                | Gas Press, psi      |           |   |
|                                 |                | Cylinder#           |           |   |
| Pressure base 14.696psi         | 11             | N a she s al        | 100000001 | 1 |
| Analysis                        |                |                     | 1333/991  |   |
| Holium                          | Nol %          | GPA 2200            | 0.02      |   |
| Overgon                         | Mol %          |                     | 0.02      |   |
| Nitrogon                        | Mol %          |                     | 0.00      |   |
| Carbon Dioxido                  | Mol %          |                     | 0.05      |   |
| Mothano                         | Mol %          |                     | 76.26     |   |
| Ethano                          | Mol %          |                     | 15.44     |   |
| Propage                         | Mol %          |                     | 5 10      |   |
| Isobutane                       | Mol %          |                     | 0.50      |   |
| n-Butane                        | Mol %          |                     | 1 31      |   |
| Isopentane                      | Mol %          |                     | 0.25      |   |
| n-Pentane                       | Mol %          |                     | 0.25      |   |
| Hexanes Plus                    | Mol %          |                     | 0.51      |   |
| Total                           | Mol %          |                     | 100.00    |   |
| Molecular Weight                | #/#-mol        |                     | 21 19     |   |
| Molar Mass Batio                |                |                     | 0 7318    |   |
| Relative Density                |                |                     | 0.7343    |   |
| Compressibility Factor          |                |                     | 0.9962    |   |
| Gross Heating Value (Dry/Ideal) | BTU/CE         |                     | 1283.3    |   |
| Gross Heating Value (Dry/Real)  | BTU/CF         |                     | 1288.2    |   |
| Net Heating Value (Dry/Ideal)   | BTU/CF         |                     | 1164.7    |   |
| Net Heating Value (Dry/Real)    | BTU/CF         |                     | 1169.1    |   |
| @ Pressure base 14.73psi        | 2.0,0.         |                     | 110011    |   |
| Gross Heating Value (Drv/Ideal) | BTU/CF         |                     | 1286.3    |   |
| Gross Heating Value (Dry/Real)  | BTU/CF         |                     | 1291.2    |   |
| Net Heating Value (Drv/Ideal)   | BTU/CF         |                     | 1167.4    |   |
| Net Heating Value (Dry/Real)    | BTU/CF         |                     | 1171.8    |   |
| 2,2-Dimethylbutane              | Mol %          |                     | 0.005     |   |
| 2-Methyl Pentane                | Mol %          |                     | 0.066     |   |
| 3-Methyl Pentane                | Mol %          |                     | 0.052     |   |
| n-Hexane                        | Mol %          |                     | 0.109     |   |
| Methylcyclopentane              | Mol %          |                     | 0.015     |   |
| Benzene                         | Mol %          |                     | 0.004     |   |
| Cyclohexane                     | Mol %          |                     | 0.015     |   |
| 2-Methyl Hexane                 | Mol %          |                     | 0.027     |   |
| 3-Methyl Hexane                 | Mol %          |                     | 0.023     |   |
| Dimethylcyclopentanes           | Mol %          |                     | 0.008     |   |
| n-Heptane                       | Mol %          |                     | 0.045     |   |
| Methylcyclohexane               | Mol %          |                     | 0.030     |   |
| Trimethylcyclopentanes          | Mol %          |                     | 0.008     |   |
| Toluene                         | Mol %          |                     | 0.008     |   |
| 2-Methylheptane                 | Mol %          |                     | 0.026     |   |
| 3-Methylheptane                 | Mol %          |                     | 0.012     |   |
| Dimethylcyclohexanes            | Mol %          |                     | 0.007     |   |
| n-Octane                        | Mol %          |                     | 0.024     |   |
| Ethyl Benzene                   | Mol %          |                     | 0.000     |   |
| Xylenes (Total)                 | Mol %          |                     | 0.004     |   |
| C9 Naphthenes                   | Mol %          |                     | 0.002     |   |
| C9 Paraffins                    | Mol %          |                     | 0.010     |   |
| n-Nonane                        | Mol %          |                     | 0.003     |   |
| Decanes Plus                    | Mol %          |                     | 0.006     |   |
| Hexanes Plus Mol Wt             | #/#-mol        |                     | 95.79     |   |
| Hexanes Plus Relative Density   | 60/60          |                     | 0.6992    |   |
| Hexanes Plus Heating Value      | BTU/CF (Ideal) |                     | 5215.5    |   |
| Hexanes Plus Vapor Equivalent   | CF/gal         |                     | 23.09     |   |

Supporting Documentation

## Fugitive Components Support Documentation

| 28 | VHP Boilerplate Special Condition Language                                          | MPLX Practices                                                         |
|----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| А  | The requirements of paragraphs F and G shall not apply (1) where the Volatile       |                                                                        |
|    | Organic Compound (VOC) has an aggregate partial pressure or vapor pressure of       |                                                                        |
|    | less than 0.044 pounds per square inch, absolute (psia) at 68°F or (2) operating    |                                                                        |
|    | pressure is at least 5 kilopascals (0.725 psi) below ambient pressure. Equipment    |                                                                        |
|    | excluded from this condition shall be identified in a list or by one of the methods |                                                                        |
|    | described below to be made readily available upon request. The exempted             |                                                                        |
|    | components may be identified by one or more of the following methods:               |                                                                        |
|    | <ul> <li>piping and instrumentation diagram (PID);</li> </ul>                       |                                                                        |
|    | <ul> <li>a written or electronic database or electronic file;</li> </ul>            |                                                                        |
|    | <ul> <li>color coding;</li> </ul>                                                   |                                                                        |
|    | <ul> <li>a form of weatherproof identification; or</li> </ul>                       |                                                                        |
|    | <ul> <li>designation of exempted process unit boundaries.</li> </ul>                |                                                                        |
| В  | Construction of new and reworked piping, valves, pump systems, and compressor       | Construction of new and reworked piping, valves, pump systems, and     |
|    | systems shall conform to applicable American National Standards Institute (ANSI),   | compressor systems will conform with all applicable codes. The         |
|    | American Petroleum Institute (API), American Society of Mechanical Engineers        | construction bid language that will be required for Harmon Creek II is |
|    | (ASME), or equivalent codes.                                                        | appended.                                                              |
|    |                                                                                     |                                                                        |
| С  | New and reworked underground process pipelines shall contain no buried valves       | No new or reworked underground process pipelines are associated        |
|    | such that fugitive emission monitoring is rendered impractical. New and             | with Harmon Creek. Any new underground drain piping will be            |
|    | Te worked buried connectors shall be welded.                                        | Welded.                                                                |
| U  | To the extent that good engineering practice will permit, new and reworked          | To the extent possible, MPLX ensures that all valves and piping        |
|    | valves and piping connections shall be so located to be reasonably accessible for   |                                                                        |
|    | leak checking during plant operation.                                               |                                                                        |
|    | Difficult-to-monitor and unsafe-to-monitor valves, as defined by Title 30 Texas     | There are no difficult-to-monitor or unsafe-to-monitor components at   |
|    | Administrative Code Chapter 115 (30 TAC Chapter 115) shall be identified in a list  | Harmon Creek Should such components exist at a facility they would     |
|    | to be made readily available upon request. The difficult-to-monitor and unsafe-     | be identified in a list that is available upon request.                |
|    | to-monitor valves may be identified by one or more of the methods described in      |                                                                        |
|    | subparagraph A above. If an unsafe to monitor component is not considered safe      |                                                                        |
|    | to monitor within a calendar year, then it shall be monitored as soon as possible   |                                                                        |
|    | during safe to monitor times. A difficult to monitor component for which            |                                                                        |
|    | quarterly monitoring is specified may instead be monitored annually.                |                                                                        |
| Ε  | New and reworked piping connections shall be welded or flanged. Screwed             | MPLX construction practices are consistent with these conditions.      |
|    | connections are permissible only on piping smaller than two-inch diameter.          |                                                                        |
|    |                                                                                     |                                                                        |

|   | Gas or hydraulic testing of the new and reworked piping connections at no less<br>than operating pressure shall be performed prior to returning the components to<br>service or they shall be monitored for leaks using an approved gas analyzer within<br>15 days of the components being returned to service. Adjustments shall be made<br>as necessary to obtain leak-free performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hydraulic testing of new or reworked piping connections is conducted<br>prior to installation. Any modified piping would undergo field<br>nondestructive examination (NDE). Leak checks are performed prior<br>to putting systems into service.                                                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Connectors shall be inspected by visual, audible, and/or olfactory means at least weekly by operating personnel walk-through.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Operations conducts daily AVO inspections.<br>LDAR conducts weekly AVO inspections on pumps.                                                                                                                                                                                                                               |
|   | Each open-ended valve or line shall be equipped with an appropriately sized cap, blind flange, plug, or a second valve to seal the line. Except during sampling, both valves shall be closed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MPLX's LDAR Program at the facility requires OEVs and OELs to be<br>equipped with an appropriately sized cap, blind flange, plug, or a<br>second valve to seal the line.                                                                                                                                                   |
|   | <ul> <li>If the isolation of equipment for hot work or the removal of a component for repair or replacement results in an open ended line or valve, it is exempt from the requirement to install a cap, blind flange, plug, or second valve for 72 hours. If the repair or replacement is not completed within 72 hours, the permit holder must complete either of the following actions within that time period;</li> <li>(1) a cap, blind flange, plug, or second valve must be installed on the line or valve; or</li> <li>(2) the open-ended valve or line shall be monitored once for leaks above background for a plant or unit turnaround lasting up to 45 days with an approved gas analyzer and the results recorded.</li> <li>For all other situations, the open-ended valve or line shall be monitored once within the 72 hour period following the creation of the open ended line and monthly thereafter with an approved gas analyzer and the results recorded.</li> <li>For turnarounds and all other situations, leaks are indicated by readings of 500 ppmv and must be installed on the line or valve</li> </ul> | MPLX's standard is to only allow OELs and/or OEVs to exist on<br>equipment that is not in service and follows the lockout and tagout<br>procedures.                                                                                                                                                                        |
| - | Accessible valves shall be monitored by leak checking for fugitive emissions at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Valves are monitored quarterly using Method 21.                                                                                                                                                                                                                                                                            |
|   | Ieast quarterly using an approved gas analyzer.<br>Sealless/leakless valves (including, but not limited to, welded bonnet bellows and<br>diaphragm valves) and relief valves equipped with a rupture disc upstream or<br>venting to a control device are not required to be monitored. If a relief valve is<br>equipped with rupture disc, a pressure-sensing device shall be installed between<br>the relief valve and rupture disc to monitor disc integrity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sealless/leakless valves are not part of the Harmon Creek processes.<br>There will be no relief valves with rupture discs in VOC service. Any<br>relief valves with a rupture disc are equipped with a pressure-sensing<br>device. All valves and relief valves in VOC service are monitored<br>quarterly at Harmon Creek. |

|   | A check of the reading of the pressure-sensing device to verify disc integrity shall<br>be performed at least quarterly and recorded in the unit log or equivalent.<br>Pressure sensing devices that are continuously monitored with alarms are exempt<br>from recordkeeping requirements specified in this paragraph. All leaking discs<br>shall be replaced at the earliest opportunity but no later than the next process<br>shutdown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | There are no relief valves equipped with rupture discs in VOC service<br>at Harmon Creek. However, it is standard that any rupture discs at<br>the facility are equipped with a transmitter or switch which would<br>alarm if the disc failed. Transmitters/switches are considered critical<br>and thus, would be inspected during critical instrumentation rounds. |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | The gas analyzer shall conform to requirements listed in Method 21 of 40 CFR part 60, appendix A. The gas analyzer shall be calibrated with methane. In addition, the response factor of the instrument for a specific VOC of interest shall be determined and meet the requirements of Section 8 of Method 21. If a mixture of VOCs is being monitored, the response factor shall be calculated for the average composition of the process fluid. A calculated average is not required when all of the compounds in the mixture have a response factor less than 10 using methane. If a response factor less than 10 cannot be achieved using methane, then the instrument may be calibrated with one of the VOC to be measured or any other VOC so long as the instrument has a response factor of less than 10 for each of the VOC to be measured.                                                                                                                             | The gas analyzer used for monitoring equipment under this program meets Method 21 requirements.                                                                                                                                                                                                                                                                      |
|   | Replacements for leaking components shall be re-monitored within 15 days of being placed back into VOC service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The resurvey requirements described in this section are consistent with MPLX's LDAR Program at the facility.                                                                                                                                                                                                                                                         |
| G | Except as may be provided for in the special conditions of this permit, all pump,<br>compressor, and agitator seals shall be monitored with an approved gas analyzer<br>at least quarterly or be equipped with a shaft sealing system that prevents or<br>detects emissions of VOC from the seal.<br>Seal systems designed and operated to prevent emissions or seals<br>equipped with an automatic seal failure detection and alarm system need<br>not be monitored. These seal systems may include (but are not limited to)<br>dual pump seals with barrier fluid at higher pressure than process<br>pressure, seals degassing to vent control systems kept in good working<br>order, or seals equipped with an automatic seal failure detection and<br>alarm system. Submerged pumps or sealless pumps (including, but not<br>limited to, diaphragm, canned, or magnetic-driven pumps) may be used<br>to satisfy the requirements of this condition and need not be monitored. | All pumps in VOC service are monitored via Method 21 monthly.<br>Compressors in VOC service are monitored at least quarterly via OGI.                                                                                                                                                                                                                                |
| Η | Damaged or leaking values or connectors found to be emitting VOC in excess of 500 parts per million by volume (ppmv) or found by visual inspection to be leaking (e.g., dripping process fluids) shall be tagged and replaced or repaired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | values or connectors found to be emitting VOC in excess of 500 ppmv are tagged and replaced or repaired.                                                                                                                                                                                                                                                             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Upon detection of a leak from pump seals or compressor seals, the component is tagged and replaced or repaired.                                                                                                                                                                                                                                                      |

|   | Damaged or leaking pump, compressor, and agitator seals found to be emitting                                                                                      |                                                                       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|   | VOC in excess of 2,000 ppmv or found by visual inspection to be leaking (e.g.,                                                                                    |                                                                       |
|   | dripping process fluids) shall be tagged and replaced or repaired.                                                                                                | The first attempt repair requirements described in this section are   |
|   | A first attained to remain the lock much be medel within E days and a record of the                                                                               | consistent with MPLX's LDAR Program at the facility.                  |
|   | A first attempt to repair the leak must be made within 5 days and a record of the                                                                                 |                                                                       |
| 1 | $\Delta$ leaking component shall be repaired as soon as practicable, but no later than 15                                                                         | The repair requirements described in this section are consistent with |
| • | days after the leak is found.                                                                                                                                     | MPLX's LDAR Program at the facility.                                  |
|   |                                                                                                                                                                   | ···· _········································                        |
|   | If the repair of a component would require a unit shutdown that would create                                                                                      | Emissions from a unit shutdown are evaluated to determine if a DOR    |
|   | more emissions than the repair would eliminate, the repair may be delayed until                                                                                   | is appropriate.                                                       |
|   | the next scheduled shutdown.                                                                                                                                      |                                                                       |
|   | All looking components which cannot be repaired until a scheduled shutdown                                                                                        | DOPs are identified with a weatherproof tag and tracked via the       |
|   | shall be identified for such renair by tagging within 15 days of the detection of the                                                                             | LeakDas database                                                      |
|   | leak. A listing of all components that gualify for delay of repair shall be                                                                                       |                                                                       |
|   | maintained on a delay of repair list.                                                                                                                             |                                                                       |
|   |                                                                                                                                                                   |                                                                       |
|   | The cumulative daily emissions from all components on the delay of repair list                                                                                    | 30 TAC 115.782 (c)(1)(B)(i)(II) requires mass emission rates to be    |
|   | shall be estimated by multiplying by 24 the mass emission rate for each                                                                                           | calculated using the EPA correlation approach. MPLX uses the          |
|   | component calculated in accordance with the instructions in 30 FAC 115.782                                                                                        | LeakDas database to track leaks, which calculates emissions using the |
|   |                                                                                                                                                                   |                                                                       |
|   | The calculations of the cumulative daily emissions from all components on the                                                                                     | MPLX has reviewed DOR data and at no point has cumulative daily       |
|   | delay of repair list shall be updated within ten days of when the latest leaking                                                                                  | emissions from all components on the DOR list exceeded the            |
|   | component is added to the delay of repair list. When the cumulative daily                                                                                         | emissions that would result from the next scheduled shutdown. MPLX    |
|   | emission rate of all components on the delay of repair list times the number of                                                                                   | will perform the calculation as required and make the appropriate     |
|   | days until the next scheduled unit shutdown is equal to or exceeds the total                                                                                      | notifications to PADEP.                                               |
|   | emissions from a unit shuldown as calculated in accordance with 30 TAC 115.782 (c)(1)(B)(i)(I) the TCEO Begional Manager and any local programs shall be potified |                                                                       |
|   | and may require early unit shutdown or other appropriate action based on the                                                                                      |                                                                       |
|   | number and severity of tagged leaks awaiting shutdown. This notification shall be                                                                                 |                                                                       |
|   | made within 15 days of making this determination.                                                                                                                 |                                                                       |
| J | Records of repairs shall include date of repairs, repair results, justification for                                                                               | The recordkeeping requirements described in this section are          |
|   | delay of repairs, and corrective actions taken for all components.                                                                                                | consistent with MPLX's LDAR Program at the facility.                  |
|   | Records of instrument monitoring shall indicate dates and times, test methods.                                                                                    | Operations conducts daily AVO inspections via walkthroughs and        |
|   | and instrument readings. The instrument monitoring record shall include the time                                                                                  | makes note of such inspections.                                       |
|   | that monitoring took place for no less than 95% of the instrument readings                                                                                        |                                                                       |

|   | recorded. Records of physical inspections shall be noted in the operator's log or |  |
|---|-----------------------------------------------------------------------------------|--|
|   | equivalent.                                                                       |  |
| Κ | Alternative monitoring frequency schedules of 30 TAC "115.352 - 115.359 or        |  |
|   | National Emission Standards for Organic Hazardous Air Pollutants, 40 CFR Part 63, |  |
|   | Subpart H, may be used in lieu of Items F through G of this condition.            |  |
| L | Compliance with the requirements of this condition does not assure compliance     |  |
|   | with requirements of 30 TAC Chapter 115, an applicable New Source Performance     |  |
|   | Standard (NSPS), or an applicable National Emission Standard for Hazardous Air    |  |
|   | Pollutants (NESHAPS) and does not constitute approval of alternative standards    |  |
|   | for these regulations.                                                            |  |

## **Construction Bid Language**

## MARKWEST Energy Partners, L.P.

## Harmon Creek #1 Project CONSTRUCTION SCOPE of WORK – MECHANICAL, STRUCTURAL & ELECTRICAL

## 3.0 SPECIFICATIONS

The PROJECT shall be constructed in accordance with all applicable OWNER codes, standards, and specifications as identified in *APPENDIX A*, as well as all applicable Federal, State and local laws, rules, regulations and permit conditions. In addition, the project shall be constructed in accordance with the current edition of the following industry codes, standards, and specifications:

| Pressure vessels                     | ASME VIII Div.1                                                          |
|--------------------------------------|--------------------------------------------------------------------------|
| Air-cooled heat exchangers           | API-661 & ASME VIII Div.1                                                |
| Shell & tube heat exchangers         | TEMA class C & ASME VIII Div.1                                           |
| Plate & frame heat exchangers        | ASME VIII Div.1                                                          |
| Fired Heaters                        | NFPA & API-560                                                           |
| Centrifugal pumps – hydrocarbon      | API-610 or ANSI B73                                                      |
| Reciprocating compressors            | API-618                                                                  |
| Packaged Rotating Eqmt. Lube systems | API-614                                                                  |
| Atmospheric Above Ground Tanks       | UL-142                                                                   |
| Atmospheric FRP Tanks                | API-12P                                                                  |
| Pipelines – liquid & gas             | ASME B31.4 & ASME B31.8 (CFR 49 Parts 195 & 192)                         |
| Piping – process & utility           | ASME B31.3                                                               |
| Pressure Safety Valves               | ASME VIII Div.1                                                          |
| Area classification                  | API RP-500                                                               |
| Cast-in-place concrete               | ACI-318                                                                  |
| Masonry Structures                   | ACI-530                                                                  |
| Structural steel                     | AISC Manual of Steel Construction                                        |
| Structural steel buildings           | AISC 360                                                                 |
| Structural steel welding             | AWS D1.1                                                                 |
| High strength bolting                | AISC – Specification for Structural Joints using ASTM A325 or A490 Bolts |
| International Building Code          | IBC                                                                      |
| Inspection of Pressure Vessels       | NB-23<br>API-510                                                         |

Permitting Fees


## AIR QUALITY FEES FOR NEW PLAN APPROVAL

| Company Information                                        |                                         |                                                                                                                                                                                                                   |                                                             |                    |               |
|------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|---------------|
| Federal Tax ID: 30-0528059                                 |                                         |                                                                                                                                                                                                                   | Firm Name: MarkWest Liberty Midstream and Resources, L.L.C. |                    |               |
| Permit # (If any): 63-01011A                               |                                         |                                                                                                                                                                                                                   | Facility Name: Harmon Creek Gas Plant                       |                    |               |
| Municipality: Smith Township                               |                                         |                                                                                                                                                                                                                   | County: Washington                                          |                    |               |
| Contact Person Name: Allie Juarez                          |                                         |                                                                                                                                                                                                                   | Telephone Number: 412-815-8886                              |                    |               |
| E-mail: ajuarez@marathonpetroleum.com                      |                                         |                                                                                                                                                                                                                   |                                                             |                    |               |
| New Plan Approval (The following fees are cumulative.)     |                                         |                                                                                                                                                                                                                   |                                                             |                    |               |
| Line #                                                     | Check the<br>appropriate<br>boxes below | Type of review requested                                                                                                                                                                                          |                                                             | Fee<br>2021 - 2025 | Total<br>Fees |
| 1                                                          | Base Fee                                | Subchapter B                                                                                                                                                                                                      |                                                             | \$2,500            | \$2,500       |
| 2                                                          |                                         | New Source Review, Subchapter E                                                                                                                                                                                   |                                                             | \$7,500            |               |
| 3                                                          |                                         | NSPS/NESHAP /N<br>A. # of NSPS:<br>B. # of NESHAP/MACT:<br>C. Add lines A and B:<br>D. Maximum applicable standa<br>E. Enter smaller of line C or lin<br>Multiply line E by \$2,500 and e<br>"Total Fees" column. | MACT standard2 ards:3 ne D:2 inter the amount in the        | \$5,000            | \$5,000       |
| 4                                                          |                                         | Case-by-Ca                                                                                                                                                                                                        | Case-by-Case MACT                                           |                    |               |
| 5                                                          |                                         | Prevention of Significant Deterioration (PSD) requirements. Subchapter D                                                                                                                                          |                                                             | \$32,500           |               |
| 6                                                          |                                         | Plantwide Applicability Limit (PAL) for NSR regulated pollutants or PAL for PSD regulated pollutants or both                                                                                                      |                                                             | \$7,500            |               |
| 7                                                          |                                         | Risk Assessment Analysis – Inhalation only                                                                                                                                                                        |                                                             | \$10,000           |               |
| 8                                                          |                                         | Risk Assessment Analysis – Multi-pathway \$25,000                                                                                                                                                                 |                                                             | \$25,000           |               |
| Add Lines 1 thru 8 of Total Fees column and write it here. |                                         |                                                                                                                                                                                                                   |                                                             |                    | \$7,500       |