

July 28, 2019

Reference: Application for Plan Approval

Mr. George Eckert Facilities Permitting Section Pennsylvania Department of Environmental Protection Bureau of Air Quality 2 East Main Street Norristown, PA 19401

Dear Mr. Eckert:

Enclosed please find an application for Plan Approval for the Sunoco Partners Marketing and Terminals, L.P. (SPMT), Marcus Hook Industrial Complex. The Marcus Hook Industrial Complex is proposing to add process equipment to the Marcus Hook Industrial Complex to receive, process, and store ethane. A detailed report of the project is provided.

The application package includes the following:

Appendix A – PADEP Forms including: General Information Form (GIF), Compliance Review Form (CRF), and Pennsylvania Plan Approval application forms including Addendum A.

Appendix B – Plot Plan and Process Flow Diagram;

Appendix C – Flare Connection List (CONFIDENTIAL);

Appendix D – Back-up Emissions Calculations;

Appendix E – Contemporaneous Tables

Appendix F – Flare Vendor Specification; and

Appendix G – County and Municipal Notifications.

In accordance with the adjudication decision by Judge Bernard A. Labuskes, Jr. of the Commonwealth of Pennsylvania Environmental Hearing Board, EHB Docket No. 2016-073-L, this project will be evaluated as part of a single aggregated project. Subsequently, the resubmittal of Plan Approval 23-0119E has been referenced in this application for applicability determinations. The resubmittal includes the following Plan Approvals and RFDs:

- Plan Approval 23-0119;
- Plan Approval 23-0119A;
- Plan Approval 23-0119B;
- Plan Approval 23-0119C;
- Plan Approval 23-0119D;
- Plan Approval 23-0119E;
- RFD 5236 (Spheres Project);
- RFD 5340 (Tank 609 Vapor Pressure);

- RFD 5918 (Propane Railcar Offloading);
- RFD 5944 (Portable Flare for Metering Maintenance);
- RFD 6484 (Methanol Tank); and
- RFD 7548 (H-5 Unloading Area Upgrade).

Additionally, this Plan Approval 23-0119J application will account for emission increases for the storage tank sources in Plan Approval 23-0119F that were also affected by Plan Approval 23-0119B.

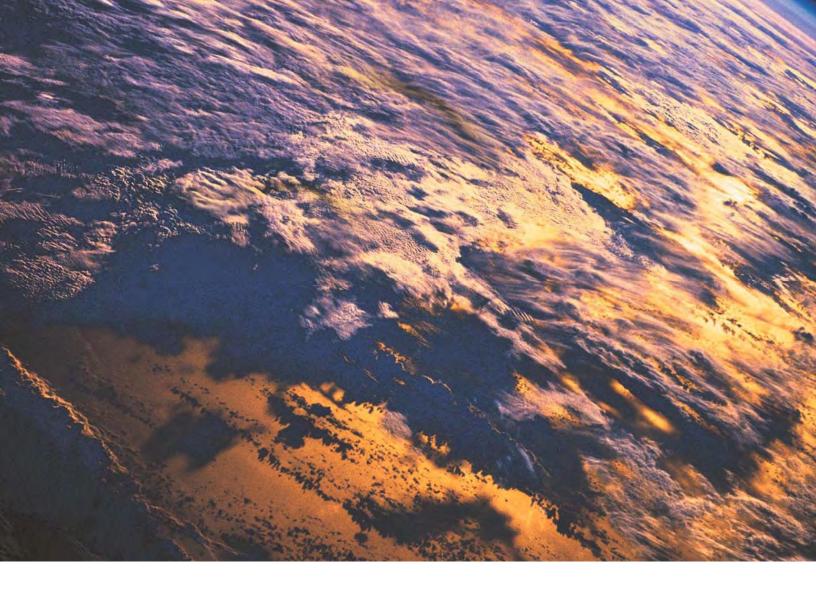
SPMT maintains the assertion that the permitting actions listed do not constitute a single project. Each project aggregated as part of the adjudication decision was evaluated at the time of the plan approval applications by both SPMT and the Department and the Department took final actions on each of these applications. These final actions by the Department were not appealed. Aggregation of the permitting actions will not result in additional regulatory triggers or the need for additional emissions controls.

Additionally, certain information attached to this response and any other similar information that may be provided by SPMT in the future related to the foregoing are being submitted subject to SPMT's contention and request that such information be treated as confidential, proprietary and/or trade secrets pursuant to Pennsylvania Law and Pennsylvania Administrative Code Title 25, Section 127.512 and any other appropriate sections in state and, if applicable, federal law and regulation.

Pursuant to the Air Pollution Control Act of 1959, P.L. 2119, No. 787, Section 13.2, in particular and without limitation, SPMT claims confidentiality for the Flare Connection List (Appendix C) in the attached on the basis that, if such information was acquired by a competitor of SPMT, such competitors would be capable of determining individual throughput and/or proprietary design information and would be likely to cause substantial harm to SPMT's competitive position.

This letter is based on knowledge, information and reasonable belief that SPMT has spent significant effort to develop the information and the attached information is not known to have been disclosed or become available outside SPMT or related entities in the format or to the extent provided in the attached except, at most, where such has been subject to confidentiality agreements/provisions. As such, reasonable measures to protect the confidentiality of the information have been undertaken by SPMT and SPMT intends to do so in the future with respect to this information.

Further, the information is not known to be, and is not known to have been, reasonably obtainable by other persons (other than perhaps governmental bodies) by use of means (other than court enforced order) without prior consent from SPMT. SPMT is also unaware of any statute or regulation that specifically requires disclosure of the attached information which is claimed to be confidential. Accordingly, SPMT has watermarked the attached materials "Confidential" in bold font in the attached and will follow a similar procedure going forward, where it is deemed appropriate.


Please do not hesitate to call me at 610-670-3297 with any comments or questions regarding this plan approval application.

Sincerely,

Julawerne

Jed A. Werner, Air Permitting Manager Energy Transfer, L.P.

Three copies of SPMT Plan Approval Application Enclosures: Check in the amount of \$7,000.00

Sunoco Partners Marketing & Terminals L.P.

Project Phoenix (Plan Approval 23-0119J)

Original: December 2017 Update: July 2019

Project No.: 0364735

The business of sustainability

CONTENTS

1.	INTRODUCTION1					
	1.1	Project P	Phoenix	2		
	1.2	Proposed	d Project Permitting	2		
	1.3	Prelimina	ary Project Schedule	2		
2.			RVIEW	1		
2.						
	2.1	•	Phoenix Amine Treatment System			
	2.2 2.3		tion Train Systemsanizer and Refrigeration System			
	2.3 2.4		Product Storage Tanks			
	2.4		Loading Operations			
	2.6		ission Sources			
		2.6.1	Fugitive Emissions—Piping Components			
		2.6.2	Project Phoenix Cold Flare			
		2.6.3	Wet Surface Air Cooler Systems			
	2.7		Utility Sources			
	2.1	2.7.1	-			
		2.7.1	Incremental Steam Demand from the Auxiliary Boilers Incremental Flows to the West Warm Flare			
		2.1.2				
3.	DETAI	LED PRO	DJECT EMISSIONS ANALYSIS	14		
	3.1		Emissions—Piping Components			
	3.2		Phoenix Cold Flare Emissions			
	3.3		face Air Cooler System Emissions			
	3.4		ntal Steam Demand Emissions			
	3.5		arm Flare—Incremental Emissions			
	3.6 3.7		ted Project Emissions Emissions Summary			
		-				
4.	PSD &	NANSR	REGULATORY REVIEW			
	4.1	Preventio	on of Significant Deterioration Analysis	21		
	4.2		on of Significant Netting Analysis			
	4.3		nment New Source Review Analysis—Ozone			
	4.4	Nonattair	nment New Source Review Analysis—PM _{2.5}	24		
5.	LAER	ANALYS	SIS			
	5.1	VOC LA	ER	25		
		5.1.1	VOC LAER Review	25		
		5.1.2	VOC LAER Determination			
	5.2	NO _x LAE	R			
		5.2.1	NOx LAER Review for Project Phoenix Cold Flare			
		5.2.2	NO _x LAER Determination for Project Phoenix Cold Flare			
	5.3	Offsets				
	5.4	SPMT So	ources in Pennsylvania	32		
	5.5	Alternativ	ves Analysis	32		
6.		ETERMI	NATION	34		
	6.1					
	6.2					
	6.3		face Air Cooler Systems			
			-			

7.	APPLICABLE STANDARDS— PROJECT PHOENIX	35
8.	REQUESTED PERMIT CONDITIONS	36

APPENDIX A	PADEP PLAN APPROVAL FORMS
APPENDIX B	PLOT PLAN AND BLOCK FLOW DIAGRAM
APPENDIX C	FLARE CONNECTION LIST - CONFIDENTIAL
APPENDIX D	DETAILED EMISSIONS CALCULATIONS
APPENDIX E	CONTEMPORANEOUS TABLES
APPENDIX F	FLARE VENDOR SPECIFICATION
APPENDIX G	COUNTY AND MUNICIPAL NOTIFICATIONS

List of Tables

Table 2-1: Project Phoenix Cold Flare Purge, Pilot and Sweep Gas Flow Rates	9
Table 2-2: Project Phoenix Cold Flare Operational & Maintenance Connections	10
Table 2-3: Project Phoenix Cold Flare Emergency Connections	11
Table 2-4: Project Phoenix Cold Flare Flows Overview	12
Table 2-5: Steam Demand from Project Phoenix Sources	13
Table 3-1: Potential Fugitive VOC and CO2e Emissions	15
Table 3-2: Potential Emissions from the Project Phoenix Cold Flare	
Table 3-3: Potential Emissions from the WSAC Systems	17
Table 3-4: Auxiliary Boilers Operational Demand and Limits	18
Table 3-5: Incremental Emissions to West Warm Flare	
Table 3-6: Aggregated Project Emissions Summary	
Table 3-7: Project Phoenix Emissions Summary	20
Table 4-1: PSD Emissions Analysis (Step 1)	21
Table 4-2: PSD Contemporaneous Netting Analysis (Step 2)	22
Table 4-3: NANSR Netting Analysis for NOx and VOC Emissions (5-calendar year)	23
Table 4-4: NANSR Analysis for SO ₂ , NO _x , and PM _{2.5} Emissions	24
Table 4-5: NANSR PM _{2.5} Precursor Netting Analysis for NO _x Emissions	
Table 5-1: Summary of VOC LAER Precedents for Elevated Flare Systems	
Table 5-2: Summary of NOx LAER Precedents for Elevated Flare Systems	31
Table 7-1: Federal Applicable Requirements— Project Phoenix	35

List of Figures

1. INTRODUCTION

Sunoco Partners Marketing & Terminals L.P. (SPMT), a subsidiary of Energy Transfer L.P., is proposing to add process equipment to the Marcus Hook Industrial Complex (MHIC) to receive approximately 140,000 standard barrels per day (BPD) of ethane by installing equipment to upgrade the ethane to meet the applicable specifications; chill and store the ethane; and transfer the product from the MHIC. For the purposes of this application, the project will be referred to as "Project Phoenix" or "the Project".

Only ethane feedstock is planned to be sent to the proposed new equipment associated with this Project. While other equipment associated with past projects at the MHIC process, chill, and store ethane; Project Phoenix involves a specific process design for the planned ethane feedstock¹. Project Phoenix will utilize the available capacity of existing utilities at the site including electricity, steam, the West Warm Flare header system, potable water, instrument air, nitrogen, and natural gas. Further discussion of the Project scope can be found in **Section 2** below.

In accordance with the adjudication decision by Judge Bernard A. Labuskes, Jr. of the Commonwealth of Pennsylvania Environmental Hearing Board, EHB Docket No. 2016-073-L, this project will be evaluated as part of a single aggregated project. Subsequently, the resubmittal of Plan Approval 23-0119E has been referenced in this application for applicability determinations. The resubmittal includes the following Plan Approvals and RFDs along with copies of their respective authorizations:

- Plan Approval 23-0119 (Issued February 2, 2013);
- Plan Approval 23-0119A (Issued September 5, 2013 and Revised March 2, 2015);
- Plan Approval 23-0119B (Issued January 30, 2014);
- Plan Approval 23-0119C (Issued November 19, 2014);
- Plan Approval 23-0119D (Issued February 26, 2015);
- Plan Approval 23-0119E (Issued April 1, 2016 and Revised March 28, 2017);
- RFD 5236 (Spheres Project);
- RFD 5340 (Tank 609 Vapor Pressure);
- RFD 5918 (Propane Railcar Offloading);
- RFD 5944 (Portable Flare for Metering Maintenance);
- RFD 6484 (Methanol Tank); and
- RFD 7548 (H-5 Unloading Area Upgrade).

Additionally, this Plan Approval 23-0119J application will account for emission increases for the storage tank sources² in Plan Approval 23-0119F that were also affected by Plan Approval 23-0119B.

SPMT maintains the assertion that the permitting actions listed do not constitute a single project. Each project aggregated as part of the adjudication decision was evaluated at the time of the plan approval applications by both SPMT and the Pennsylvania Department of Environmental Protection ("PADEP" or "Department") and the Department took final actions on each of these applications. These final actions by the Department were not appealed. Furthermore, aggregation of the permitting actions will not result in additional regulatory triggers or the need for additional emissions controls than what was previously determined in the past plan approval applications.

¹ Ethane feedstock contains 95.9 weight percent (wt%) Ethane, 0.5 wt% Methane, and 3.6 wt% Propane.

² Storage Tank 607 (Source ID 188), Storage Tank 609 (Source ID 190), and Storage Tank 611 (Source ID 192).

The Project is fully described in this permit application submitted to PADEP by SPMT. SPMT has evaluated the emission changes associated with the Project and the facility and determined that the requirements of Prevention of Significant Deterioration (PSD) are not triggered by the Project. Further, SPMT has found through its evaluation of the expected emission changes from the Project that Nonattainment New Source Review (NANSR) is triggered for VOC and NO_x.

1.1 **Project Phoenix**

SPMT is proposing the new equipment to allow for processing and storage of refrigerated ethane to be transferred offsite.

The Project will:

- Install two (2) new 600,000 barrel (bbl) refrigerated ethane storage tanks;
- Install one (1) new cold flare (Project Phoenix Cold Flare), equipped with low pressure and highpressure flare tips;
- Install the necessary piping for the refrigerated ethane process;
- Install two (2) identical trains each containing one (1) new dehydration train system;
- Install two (2) new closed-loop refrigeration systems utilizing propane as the working fluid;
- Install two (2) new open-loop refrigeration systems for final chilling of ethane;
- Install two (2) new demethanizers; and
- Install two (2) new identical wet surface air cooling systems.

1.2 Proposed Project Permitting

This plan approval application describes the proposed installation and regulatory analysis related to the Project. A detailed description of the Project and the related air emissions, along with the relevant regulatory analyses, are provided in **Sections 2 through 7**. Additional Project-related information is provided in the appendices as follows:

- PADEP Plan Approval Forms (Appendix A);
- Plot Plan and Process Flow Diagram (Appendix B);
- Flare Connection List CONFIDENTIAL (Appendix C);
- Detailed Emission Calculations (Appendix D);
- Contemporaneous Tables (Appendix E);
- Flare Vendor Specification (Appendix F); and
- Municipal and County Notifications (Appendix G).

1.3 Preliminary Project Schedule

SPMT requests issuance by the Department of the Plan Approval to allow commencement of construction as soon as possible. The preliminary Project schedule is as follows:

- Begin construction of the Project in December 2019; and
- Complete construction for all sources in 4th quarter 2022.

Based on construction timelines and due to the long lead time of certain equipment, it is possible that existing refrigerated ethane storage tanks will need to be temporarily utilized to store and/or transfer ethane while the proposed new refrigerated ethane storage tanks are being constructed.

SPMT recognizes that the preliminary Project construction schedule is projected to last more than 18 months, which is the normal permit term for Plan Approvals under 25 PA Code §127. The extended construction period is due to long-lead time materials that are needed for the construction of the refrigerated ethane storage tanks. Under 25 PA Code §127.13, SPMT is requesting that the Plan Approval be extended by 18 months from Plan Approval issuance (expiration date that is 36 months from issuance) to facilitate the continued construction and shakedown of the sources.

2. **PROJECT OVERVIEW**

This Project will provide for the storage of liquefied ethane products received through a pipeline that is planned to be dedicated to ethane transport. There will be two trains which will process approximately 70,000 barrels per day of ethane each. After exiting the pipeline, ethane will be treated to remove carbon dioxide via an amine treating system, and water via a dehydration system. Furthermore, methane impurities will be separated from the treated ethane feedstock by a demethanizer and will be recovered. Treated, dry ethane will be refrigerated before being routed to refrigerated product storage tanks and ultimately transferred offsite. The sections below discuss the associated process equipment and **Figure 2-1** below shows an overall process flow diagram for Project Phoenix.

2.1 **Project Phoenix Amine Treatment System**

Ethane feedstock received by SPMT is expected to contain carbon dioxide (CO_2) at varying concentrations (up to 1,000 parts per million [ppm]). Feedstock which does not meet the product specifications will be treated to remove excess CO₂. SPMT Plans to install a new Project Phoenix Amine Treatment System. The new system will have the ability to connect to existing amine equipment for reliability. Ethane feedstock which meets the product specification for CO₂ (<100 ppm) prior to treatment may bypass the Project Phoenix Amine Treatment System and be routed to the Dehydration System (**Section 2.2**).

Additional piping, discussed in **Section 2.6.1** below, will be installed to allow the installation of the new amine treatment system which will include fugitive components that will result in additional volatile organic compound (VOC) emissions. Components in amine service will be 90% water and 10% Diethanolamine (DEA) by weight. Since DEA is considered a VOC, fugitive VOC emissions expected from the components in amine service have been captured in **Section 3.1**.

As a result of the potential incremental increase in the CO₂ absorbed in the amine, an incremental increase in steam used in the Project Phoenix Amine Treatment System (amine stripper tower reboiler) is accounted for. Emissions associated with the incremental increase in steam demand by the Project Phoenix Amine Treatment System are discussed in **Section 2.7.1**.

The Project Phoenix Amine Treatment System will include maintenance and emergency connections to the Project Phoenix Cold Flare discussed in **Section 2.6.2**. Emissions resulting from these connections are accounted for at the flare.

Additionally, the Project Phoenix Amine Treatment System will include an operational connection to the West Warm Flare header, which will require additional sweep gas. Emissions associated with the incremental West Warm Flare connections are discussed in **Section 2.7.2**.

2.2 Dehydration Train Systems

SPMT will remove water from ethane feedstock using one new molecular sieve desiccant dehydration train system. Wet ethane feedstock will enter dehydration beds which contain a molecular sieve desiccant which adsorbs any water contained in the hydrocarbon stream. Periodically, the beds will be regenerated to remove the water from the desiccant using dry ethane. During regeneration, superheated, dry ethane will be run through the system causing water contained in the desiccant to desorb and exit the vessel with the wet regenerant ethane gas stream. Water is then condensed out of the regenerant ethane gas stream, degassed (flashed gas is sent to the West Warm Flare), and sent to the process sewer.

The Dehydration System (dehydrator regeneration vaporizer) will utilize incremental steam to vaporize the dry ethane regenerant gas. Emissions associated with the incremental increase in steam demand by the Dehydration Systems are discussed in **Section 2.7.1**.

The Dehydration Systems will include maintenance and emergency connections to the Project Phoenix Cold Flare discussed in **Section 2.6.2**. Additionally, operational connections to the West Warm Flare are included, discussed in **Section 2.7.2**. Emissions resulting from these connections are accounted for as part of the overall project emissions.

Components in ethane service will contain up to approximately 3.6% by weight of propane (VOC) and approximately 0.5% by weight of methane (greenhouse gas [GHG]). Therefore, fugitive VOC and GHG emissions expected from the piping, pumps, or other components in ethane service and have been captured in **Section 3.1**.

2.3 Demethanizer and Refrigeration System

Following removal of CO₂ and moisture, the ethane will be cooled using a proprietary refrigeration system consisting of a closed loop propane system followed by an open loop ethane system. The chilling system is closely integrated with the Demethanizer to remove methane from the dry ethane. Methane and other hydrocarbons separated from the ethane feedstock will be recovered to the MHIC fuel gas system and product sales.

The Demethanizer will include maintenance and emergency connections to the Project Phoenix Cold Flare discussed in **Section 2.6.2**. Emissions resulting from these connections are accounted for as part of the overall project emissions.

Propane will be used as the refrigerant for the Refrigeration System. Propane is compressed then cooled and condensed using Wet Surface Air Cooler (WSAC) System (**Section 2.6.3**). Propane refrigerant is then used to cool the ethane before reentering the propane compression cycle.

Similar to propane, ethane vapors are compressed then condensed using the WSAC System (**Section 2.6.3**) and through heat exchange with propane refrigerant. Methane-rich off-gases will be sent to the Demethanizer (**Section 2.3**). Refrigerated ethane product can be routed from the transfer pumps to the existing ethane storage tanks, TK-401 and TK-402 (Title V Operating Permit #23-00119, Source IDs 101 and 117) or the proposed new Project Phoenix Ethane Product Storage Tanks (**Section 2.4**) via a bi-directional transfer line.

The Refrigeration System will include operational, maintenance, and emergency connections to the Project Phoenix Cold Flare discussed in **Section 2.6.2**. Emissions resulting from these connections are accounted for as part of the overall project emissions.

Components in ethane service will contain up to approximately 3.6% by weight of propane (VOC) and approximately 0.5% by weight of methane (GHG). Therefore, fugitive VOC and GHG emissions are expected from the piping, pumps, compressors, or other components in ethane service. Fugitive VOC emissions are expected from the piping, pumps, compressors, or other components in propane service. These components in VOC service will be incorporated into the leak detection and repair (LDAR) program (See Section 2.6.1).

2.4 Ethane Product Storage Tanks

Two (2) new 600,000 barrel Ethane Product Storage Tanks, 130-TK-403 and 135-TK-404, are planned as part of Project Phoenix. The new refrigerated storage tanks will be double-walled tanks that employ boil-off gas management systems, consisting of a series of compressors that return vapors into the ethane refrigeration compression system. The Ethane Product Storage Tanks will be kept at a vapor pressure of approximately 1.0 pounds per square inch gauge (psig) and between approximately -135 and -125 degrees Fahrenheit (°F).

The ethane product storage tanks will include operational and maintenance connections to the Project Phoenix Cold Flare discussed in **Section 2.6.2**. Emissions resulting from these connections are accounted for as part of the overall project emissions.

Components in ethane service will contain up to approximately 3.6% by weight of propane (VOC) and approximately 0.5% by weight of methane (GHG). Therefore, fugitive VOC and GHG emissions are expected from the piping, pumps, or other components in ethane service.

2.5 Product Loading Operations

SPMT plans to transfer ethane via the existing loading docks, which will not be modified in any way. Each dock includes two identical loading arms and one vapor return line. The loading operation is a

closed loop system, where all boil-off gasses generated during product loading are collected. These collected vapors are subsequently chilled, condensed and returned to the product storage tanks. At the completion of each loading event, each loading arm will be purged with nitrogen to complete the transfer of liquid products into the marine vessels. Fugitive VOC and GHG emissions are expected from the piping, pumps, or other components in ethane service.

2.6 New Emission Sources

New emission sources included with the Project include fugitive VOC piping components, a new air-assisted Cold Flare with low-pressure and high pressure flare tips, and the WSAC System.

2.6.1 Fugitive Emissions—Piping Components

Detailed engineering of this Project is on-going; however, for permitting purposes, SPMT has conservatively estimated the number of new piping components in VOC service expected for this Project, including additional components in the Project Phoenix Amine Treatment System and in the Refrigeration System.

All new components in VOC service³ (having greater than 10% by weight total VOC) will be incorporated into the leak detection and repair (LDAR) program (see **Section 3.1** for details).

2.6.2 Project Phoenix Cold Flare

Project Phoenix will involve the installation of one new air-assisted cold flare with both high-pressure (HP) and low-pressure (LP) flare tips to be used for flaring refrigerated streams that do not contain water. For the purposes of this narrative, the new flare will be referred to as the "Project Phoenix Cold Flare". For safety purposes, any flaring streams containing water must be directed to the West Warm Flare header system (**Section 2.7.2**).

2.6.2.1 Project Phoenix Cold Flare Continuous Flows

The Project Phoenix Cold Flare will have purge gas and pilot gas flowing to it on a regular basis to ensure safe and reliable operation. These flows are assumed to be on a continuous basis and are necessary for the safe operation of the flare. The pilot and purge gas will be introduced directly into the flare system. SPMT will also introduce sweep gas (natural gas) into the cold flare header system upstream of the flare to prevent explosive conditions within the piping. See **Table 2-1** below for the pilot, purge and sweep gas flow rates in standard cubic feet per hour (scfh) for the planned new Project Phoenix Cold Flare.

³ 40 Code of Federal Regulations §60.481a – "in VOC service" means that the piece of equipment contains or contacts a process fluid that is at least 10 percent VOC by weight.

Parameter	Project Phoenix Cold Flare Flow (scfh)
HP Pilot gas flow rate	500
HP Purge gas flow rate	0
HP Sweep gas flow rate	6,875
LP Pilot gas flow rate	500
LP Purge gas flow rate	0
LP Sweep gas flow rate	1,576
Total Continuous Flow Rate	9,452

Table 2-1: Project Phoenix Cold Flare Purge, Pilot and Sweep Gas Flow Rates

2.6.2.2 Project Phoenix Cold Flare Operational & Maintenance Connections

Processes included with this Project will be connected to the Project Phoenix Cold Flare and will send material to the flare on an operational and/or maintenance basis as part of normal operation to prevent atmospheric releases and/or control process vessel pressure during abnormal high pressure. Operational flows are assumed to occur on a regular, routine, or continuous basis⁴. Maintenance flows occur at varying intervals depending upon the maintenance schedule, operational schedule, and condition of the equipment. The expected Project Phoenix Cold Flare connections for operational and maintenance flows are shown in **Table 2-2** below.

⁴ There are operational flows that are listed in the Project Phoenix Cold Flare overview that are conservatively assumed to occur annually. However, in practice, these flows may not occur annually because they can be influenced by feedstock characteristics, non-routine process conditions, and weather conditions.

Table 2-2: Project Phoenix Cold Flare Operational & Maintenance Connections

Project Phoenix Process Area	Connection Type	Source Category	
Project Phoenix Amine Treatment	Maintenance	Exchanger	
System	Maintenance	Filter	
	Operational	Pump Seal	
		Exchanger	
Dehydration System	Maintenance	Filter	
	Maintenance	Pump	
		Vessel	
	Operational	Compressor Seal	
	Operational	Pump Seal	
officeration Quatern		Compressor	
efrigeration System	Maintenance	Exchanger	
	Maintenance	Pump	
		Vessel	
	Maintenanaa	Exchanger	
emethanizer	Maintenance	Vessel	
	Operational J.D.	Compressor Seal	
	Operational—LP	Pump Seal	
thane Product Storage Tanks		Compressor	
	Maintenance—LP	Pump	
		Tank	

2.6.2.3 Project Phoenix Cold Flare Emergency Connections

A purpose of the new Project Phoenix Cold Flare is to provide safe and reliable control and destruction of process gases during emergency situations and the design capacity of this flare is based on the worst case emergency relief scenarios. The planned flare header connections for emergency purposes are shown in **Table 2-3** below.

Emergency releases are not expected during normal operations nor can these conditions be reasonably predicted. Therefore, the exact emergency flow rates and associated emissions to the Project Phoenix Cold Flare are not included in the source's potential to emit.

Project Phoenix Process Area	Source Category		
Design Diversity Ansient Transferrent Original	Exchanger		
Project Phoenix Amine Treatment System	Filter		
	Pump Seals		
	Vessel		
Dehydration System	Exchanger		
	Filter		
	Vessel		
	Compressor Seals		
Refrigeration System	Exchanger		
	Pump Seals		
	Exchanger		
Demethanizer	Vessel		
Ethane Product Storage Tanks	Boil-off Gas Compressor Seal		

Table 2-3: Project Phoenix Cold Flare Emergency Connections

2.6.2.4 Project Phoenix Cold Flare Flow Overview

SPMT performed an engineering analysis of the proposed Project Phoenix Cold Flare system, which included a line by line review of piping and instrumentation diagrams (P&IDs) to identify connections to the flare header system. The confidential Project Phoenix Cold Flare connection list can be found in **Appendix C (Confidential)**.

Through this engineering analysis, each Project Phoenix Cold Flare connection has been identified including its location, conservatively estimated composition, expected frequency of venting material into the flare system, expected duration of venting to the flare system, the estimated quantity (mass) of material vented to the flare system, and type of operation (sweep, operational, maintenance, or emergency as described previously). **Appendix C (Confidential)** also includes a confidential summary of expected flare flow, flow type, composition, and area of origin for material sent to the new flare.

Table 2-4 below shows the expected overall flare flow, flow type, and composition for materials anticipated to be sent to the Project Phoenix Cold Flare.

Flare	Flow Type	Flow Quantity (lb/year) and Composition					
		Ethane	Methane	Fuel Gas	Amine	Propane	Total
	Emergency	_	_	—	—	—	_
	Maintenance	37,967	0	1	0	12,197	50,165
HP Cold	Operational	82,913	51,100	0	0	114,488	248,501
	Sweep	0	2,838,240	0	0	0	2,838,240
	Emergency		_			_	_
	Maintenance	488,204	0	0	0	25,695	513,899
LP Cold	Operational	3,196,750	7,300	0	0	168,250	3,372,300
	Sweep	0	798,912	0	0	0	798,912
Total		3,805,834	3,695,552	1	0	320,630	7,822,017

Table 2-4: Project Phoenix Cold Flare Flows Overview

2.6.3 Wet Surface Air Cooler Systems

Two new WSAC Systems that are designed to process 21,000 gallons per minute (gpm) of cooling water each will be required for the ethane and propane refrigeration systems. The WSAC Systems will be equipped with high efficiency drift eliminators. Cooling water make-up will be a mixture of potable water and low pressure steam condensate.

The WSAC Systems rely on evaporative cooling to transfer heat from process fluids. Since this evaporative cooling approach requires an open design of the heat exchange system, similar to an air-cooled fin fan type heat exchange system, VOCs from the process will not accumulate in each unit's water basin. Due the high volatility and low water solubility of ethane and propane, these process fluids are directly transferred to the air if a leak occurs. Subsequently, only VOC emissions which result from fugitive leak components were estimated, as discussed in **Section 2.6.1**.

2.7 Existing Utility Sources

Incremental impacts on existing utility sources by Project Phoenix include the Auxiliary Boilers and the West Warm Flare.

2.7.1 Incremental Steam Demand from the Auxiliary Boilers

Project Phoenix will require low pressure steam for the dehydration regeneration vaporizer and amine stripper tower reboiler, with the Project Phoenix Cold Flare now being air-assisted instead of steam assisted. The steam will be generated by the three existing Auxiliary Boilers at the MHIC. The steam demand from each of the proposed processes associated with Project Phoenix is outlined below in **Table 2-5**.

Project Phoenix Processes	Steam Demand (lb/hr)
Amine Stripper Tower Reboiler	9,300
Dehydrator Regeneration Vaporizer	27,000
Total Steam Demand	36,300

Table 2-5: Steam Demand from Project Phoenix Sources

2.7.2 Incremental Flows to the West Warm Flare

For safety reasons due to potential water content, the Project Phoenix Amine Treatment System will include connections to the West Warm Flare header. Due to the distance to the West Warm Flare header, incremental sweep gas flow (natural gas) will be used.

Emergency releases are not expected during normal operations nor can these conditions be reasonably predicted. Therefore, the exact emergency flow rates and associated emissions to the West Warm Flare are not included in the incremental emissions.

Table 2-6 below shows the expected overall flare flow, flow type, and composition for materials anticipated to be sent to the West Warm Flare.

Table 2-6: Pro	ject Phoenix	Flows to	West	Warm Flare
----------------	--------------	----------	------	------------

Flow Type	Flow Quantity (Ib/year) and Composition			
	Amine	Ethane	Methane	
Emergency	—	_	—	
Operational	—	0	—	
Maintenance	159	_		
Sweep	—	_	136,656	

3. DETAILED PROJECT EMISSIONS ANALYSIS

This section describes the calculations and assumptions associated with the estimated emissions from Project Phoenix. The emissions from each source identified in **Section 2** including nitrogen oxides (NOx), sulfur dioxide (SO₂), sulfuric acid mist (H₂SO₄), carbon monoxide (CO), VOC, particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), hazardous air pollutants (HAPs), and greenhouse gas emissions (carbon dioxide equivalents [CO₂e]) are detailed below. **Table 3-7** at the end of this section shows the total Project Phoenix emissions. Detailed calculations are presented in **Appendix D**.

3.1 Fugitive Emissions—Piping Components

This Project includes the installation of new piping equipment, associated valves, pressure relief valves, and flanges. SPMT has conservatively estimated a component count, including valves, flanges, and relief valves, based on preliminary engineering design⁵. All fugitive emissions were estimated using methodologies presented in United States Environmental Protection Agency's (USEPA) Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017. For components that are not in VOC service, potential fugitive emissions are based on the average emission factor approach (emission factors from Table 2-1 of the USEPA Protocol) in conjunction with component counts for Project Phoenix. No control efficiency was applied for fugitive emissions for components that are not in VOC service, as they will not be inspected as part of the facility's LDAR program. For those components in VOC service (specifically those within the Propane Refrigeration and Amine Treatment Systems), screening methodology was used, which utilizes an average leak concentration for each component type, a Screening Value Emission Factor (Tables 2-10, 2-12, and 2-14 of the USEPA Protocol), and component count to determine VOC and CO₂e emissions. Over two-years of leak concentration data from the facility's LDAR program were used to determine the average leak concentrations per component type. As this method uses data pertaining to facility-specific leak rates, the methodology is more refined and accurate as stated in Section 2.2.1 of the referenced USEPA protocol (EPA 453/R-95-017).

The fugitive components in VOC service associated with Project Phoenix will be subject to the requirements of 40 CFR 60 Subpart VVa for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry. For all new components in VOC service, an actual leak rate estimate gathered from the facility's LeakDAS® inspection database on existing fugitive components was used in conjunction with component counts for Project Phoenix to estimate VOC emissions using EPA's screening ranges approach. These two emission estimates were combined to determine an overall fugitive emissions total for the project which can be found below.

Potential fugitive CO₂e emissions are based on methodologies presented in United States Environmental Protection Agency's (USEPA) Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017 (emission factors from Table 2-4).

Estimated fugitive VOC and CO₂e emissions in tons per year (TPY) from potential leaks from new equipment are presented below in **Tables 3-1**.

⁵ The component count is conservative because a margin of 20% has been added.

Project Phoenix Units	New Fugitive Components	Number of Components	VOC Emissions ¹ (TPY)	CO₂e Emissions (TPY)		
	Valves	2,071	3.25	0.00		
Refrigeration	Pump Seals	2	0.02	0.00		
System	Compressor Seals	12	0.04	0.00		
Components	Pressure Relief Valves	77	77 0.04			
	Flanges/Connectors	6,745	3.15	0.00		
	Valves	1,397	0.22	0.00		
Amine Treatment	Pump Seals	6	0.01	0.00		
System	Pressure Relief Valves	30	0.00	0.00		
Components	Flanges/Connectors	3,862	0.18	0.00		
	Valves	5,375	9.30	32.28		
	Pump Seals	10	0.07	0.23		
Ethane System Components	Compressor Seals	14	1.14	3.96		
	Pressure Relief Valves	212	7.68	26.66		
	Flanges/Connectors	17,410	11.08	38.47		
Methane/Ethane	Valves	1,322	0	952.92		
System	Pressure Relief Valves	38	0	482.04		
Components	Flanges/Connectors	3,198	0	706.40		
Natural Gas	Valves	445	0	577.46		
System	Others	10	0	216.92		
Components	Flanges/Connectors	1,134	0	450.87		
Flare Sweep	Valves	815	0	1,044.88		
System Components	Flanges/Connectors	2,484	0	987.63		
Acid Gas	Valves	40	0	0.55		
System Components	Flanges/Connectors	48	0	0.20		
Total Fugitive Emis	sions	1	36.17	5,521		

Table 3-1: Potential Fugitive VOC and CO₂e Emissions

¹ Potential fugitive emissions are estimated based on USEPA guidance correlations ("Protocol for Equipment Leak Emission Estimates", EPA-453/R-95-017).

3.2 **Project Phoenix Cold Flare Emissions**

Project Phoenix will involve the installation of one (1) new air-assisted cold flare to be used for flaring streams that are less than -20°F. As described above, there are pilot, purge, sweep, operational, maintenance, and emergency flows to the Project Phoenix Cold Flare. A purpose of the Project Phoenix Cold Flare is to provide safe and reliable control and destruction of process gases during emergency situations.

These pilot, purge, sweep, operational, maintenance, and emergency flows, which vary in composition and VOC concentration, will contain methane, ethane, propane, and natural gas. An engineering analysis was conducted to determine the flow, composition, frequency, and origin of the expected flare flows at the planned flare. **Table 2-4** details the flow (lb/year) of various materials expected to be sent to the flare. The HHV for each material was used to convert the flow (lb/yr) to heating duty (MMBtu/yr) for each material. SPMT then added the heating duty from each material to obtain the total heating duty sent to the flare due to operational and maintenance flows. That annual heating duty was then multiplied by industry accepted flare emission factors from AP-42 Chapters 1.4 and 13.5 and 40 CFR Part 98 for Mandatory Greenhouse Gas Reporting to calculate potential emissions from operational and maintenance flows.

To calculate VOC emission rates, SPMT used a conservative flare VOC destruction efficiency of 98% (i.e., compliance with 40 CFR §60.18) and the measured VOC content of the flare gas (based on composition data) in place of the standard emission factors from AP-42. This methodology more accurately represents the VOC emissions from the flare flows.

The Project Phoenix Cold Flare will be designed to comply with 40 CFR §60.18(c)(1) for visible emissions; therefore, no particulate matter (PM) emissions are expected during normal flare operation.

The Project Phoenix Cold Flare emissions, detailed by flow in **Table 3-2** below, are based on the expected purge and pilot gas flows, expected sweep flows, expected operational and maintenance flows, AP-42 Chapter 13.5 emission factors, and 40 CFR 98 Subpart W emission methodologies for greenhouse gasses (GHG).

Parameter		Total			
	Pilot/Purge Flow	Sweep Continuous Flow	Operational / Maintenance Flow		
Heat Duty (MMBtu/hr) (annual average)	1.03	8.35	10.59	19.97	
NO _x Emissions (TPY)	0.31	2.49	3.15	5.95	
VOC Emissions (TPY)	0.04	0.33	3.21	3.57	
CO Emissions (TPY)	1.39	11.34	14.38	27.12	
SO ₂ Emissions (TPY)	0.003	0.02	0	0.02	
CO ₂ e Emissions (TPY)	591	4,992	5,698	11,281	

3.3 Wet Surface Air Cooler System Emissions

The two (2) new 21,000 gpm WSAC Systems each have the potential to emit trace amounts of particulates from solids in the cooling water. Cooling water will be a combination of steam condensate generated from Project Phoenix users and potable water.

The emissions calculations assume two systems each with a recirculation rate of 21,000 gpm, dissolved solids concentration of approximately 200 parts per million (ppm), and drift eliminator performance of 0.0005%. Emissions for PM, PM10, and PM2.5 are estimated based on the Reisman/Frisbie methodology. **Table 3-3** below shows the potential emissions in TPY from the new WSAC Systems.

Table 3-3: Potentia	Emissions from t	the WSAC Systems
---------------------	------------------	------------------

Pollutant	Potential Emissions (TPY)
PM	0.55
PM ₁₀	0.43
PM _{2.5}	0.001

3.4 Incremental Steam Demand Emissions

The total future expected annual average steam demand for the MHIC, including Project Phoenix, is approximately 619,292 pounds per hour of steam (lb/hr) as shown in **Tables 2-5** above and **Appendix D**. The Auxiliary Boilers will not be modified in any way to produce the incremental steam required for this Project. As shown in **Table 3-4** below, the total future expected annual average steam demand is below the combined steam production capacity of the Auxiliary Boilers (approximately 801,000 lb/hr) and this steam demand can be accommodated within the existing Title V Operating Permit emissions limits⁶. Therefore, the incremental steam demand emissions for this Project from the Auxiliary Boilers have already been previously permitted.

⁶ The emission limits were originally established for four Auxiliary Boilers with Plan Approval 23 0119B. The emissions limits for the remaining three Auxiliary Boilers were revised with the removal of Auxiliary Boiler 2 (Source ID 032) as part of the major operating permit modification to TVOP 23-00119 in December 2016.

Parameter	Title V Operating Permit Limits for Auxiliary Boilers (TPY) ¹					
NOx	92.71					
SO ₂	41.10					
VOC	5.49					
CO (current)	107.61					
CO (proposed) ¹	27.23					
PM/PM ₁₀ /PM _{2.5}	21.94					
H ₂ SO ₄	3.15					
Combined Steam Production Capacity (lb/hr steam) ²	801,000 Ib/hr steam					

¹ The CO emissions limit is proposed to be reduced through the July 2019 minor operating permit modification of TVOP 23-00119.

² Auxiliary Boilers 1 (Source ID 031), 3 (Source ID 033), and 4 (Source ID 034) each have a steam production capacity of 267,000 lb/hr each.

3.5 West Warm Flare—Incremental Emissions

As discussed in **Section 2.7.2**, operational and emergency flows will be sent to the West Warm Flare as part of normal operation to prevent atmospheric releases and/or control process vessel pressure. **Table 3-5** below shows the potential emissions from operational and maintenance flows at the West Warm Flare.

Parameter	Source					
	Sweep Flow	Operational/Maintenance Flow				
Heat Duty (MMBtu/hr) (annual average)	0.35	3.03E-04	0.35			
NO _x Emissions (TPY)	0.10	9.01E-05	0.10			
VOC Emissions (TPY)	0.01	0	0.01			
CO Emissions (TPY)	0.48	4.11E-04	0.48			
SO ₂ Emissions (TPY)	0.001	0	0.001			
CO ₂ e Emissions (TPY)	210	0.14	210			

3.6 Aggregated Project Emissions

In accordance with the adjudication decision by the Commonwealth of Pennsylvania Environmental Hearing Board, EHB Docket No. 2016-073-L, SPMT has evaluated the applicability of the Project as aggregated with prior permitting actions list below in **Table 3-6**. Emissions shown in the table reflect final

PADEP actions as represented in the review memorandums filed at the time of permit issuance, except as otherwise noted.

Emissions	Pollutant (TPY)									
	voc	NOx	со	РМ	PM 10	PM _{2.5}	SO ₂	H ₂ SO ₄	Lead	CO ₂ e
23-0119	8.78		0.09				0.0001			48
23-0119A	3.04	0.02								13
23-0119B ¹	10.19	24.40	19.02	8.13	8.13	8.13	39.4			74,400
23-0119C	5.52			0.25	0.23	0.01				
23-0119D ²	54.98	10.38	47.34	0.40	0.38	0.06	0.06	_	_	21,325
23-0119E	18.24	0.30		0.20	0.20	0.20		_	_	
23-0119F	13.67							_	_	
RFD 5236 (Spheres Project)	0.87							_		
RFD 5340 (Tank 609 Vapor Pressure)	2.69									
RFD 5918 (Propane Railcar Offloading)	2.19							_		
RFD 5944 (Portable Flare for Metering Maintenance)	0.002	0.0002						_		0
RFD 6484 (Methanol Tank)	0.65							_	_	
RFD 7548 (H-5 Unloading Area Upgrade)	0.21	0.02	0.07							
Total	121.03	35.12	66.51	8.98	8.94	8.40	39.46	_	_	95,786

Table 3-6: Aggregated Project Emissions Summary

¹ Note that the project CO emissions for Plan Approval 23-0119B are not the authorized permit limits. The CO emissions have been adjusted due to the establishment of a new CO emission limit for the Auxiliary Boilers. Details on the new emission limit can be found in the Title V Operating Permit 23-00119 Minor Modification Application. ² Note that the project emissions for Plan Approval 23-0119D, are not the authorized permit limits. The project emissions associated with Plan Approval 23-0119D for all pollutants have been adjusted due to increased flows and connections to the existing flares associated with that plan approval. Details on the updated emissions can be found in the resubmittal of Plan Approval 23-0119E.

3.7 **Project Emissions Summary**

Table 3-7 summarizes the total Project Phoenix emissions broken down by source. Additional information can be found in **Appendix D**.

Emissions	Pollutant (TPY)									
	VOC	NOx	со	РМ	PM 10	PM2.5	SO ₂	H ₂ SO ₄	Lead	CO ₂ e
Fugitive Components	36.17	_	_	_		_				5,521
Project Phoenix Cold Flare	3.57	5.95	27.12	_	_	_	0.02	_	_	11,281
Wet Surface Air Cooler Systems	_			0.55	0.43	0.001		_		
Incremental West Warm Flare Flows	0.01	0.10	0.48	_			0.001	_	_	210
Aggregated Projects	121.03	35.12	66.51	8.98	8.94	8.40	39.46	_	_	95786
Total	160.79	41.17	94.11	9.53	9.37	8.40	39.48	0.00	0.00	112,799

4. PSD & NANSR REGULATORY REVIEW

SPMT must comply with all federal and state requirements applicable to this proposed Project. The existing facility is a major stationary source for all criteria pollutants; therefore, the new sources in this plan approval must undergo a new source review analysis.

The MHIC is located in an area treated as severe nonattainment for ozone and nonattainment for PM_{2.5}. It is designated as attainment for other pollutants. Because of the above designations, SPMT must evaluate the project related activities for the applicability of the NANSR program for VOC and NO_x as ozone precursors along with PM_{2.5} emissions, and the applicability of the PSD program for NO₂, SO₂, CO, PM, PM₁₀, H₂SO₄, lead, and CO₂e. Under the NANSR program, the project is considered a major modification for ozone if the VOC or NO_x emissions exceed 25 TPY for the project alone or by aggregating with increases and decreases over the contemporaneous time period. For PM_{2.5}, the modification is considered major if the project emissions exceed 10 TPY (or when NO₂ or SO₂ emissions exceed 40 TPY [as they are both PM_{2.5} precursors]). Under PSD, a major modification occurs when NO₂ or SO₂ emissions exceed 15 TPY, sulfuric acid mist emissions exceed 7 TPY, CO₂e emissions exceed 75,000 TPY, or lead emissions exceed 0.6 TPY.

4.1 **Prevention of Significant Deterioration Analysis**

The Prevention of Significant Deterioration regulations (40 CFR §52.21) are Federal regulations that apply to new major sources or "major modifications" of existing "major stationary sources" located in attainment or unclassifiable areas for a given pollutant. The SPMT Marcus Hook facility is a major stationary source, and adding a new source to the facility source that would result in a "significant net emissions increase" would trigger PSD applicability.

As indicated in **Table 4-1** below, NO₂ and CO₂e emissions for the Project exceed the PSD thresholds; therefore, a netting analysis over the contemporaneous period must be performed.

Emissions	Pollutant (TPY)							
	NO ₂	SO ₂	со	РМ	PM 10	H ₂ SO ₄	Lead	CO ₂ e ¹
Aggregated Project	41.17	39.48	94.11	9.53	9.37	0	0	112,799
PSD Significant Level	40	40	100	25	15	7	0.6	75,000
PSD Triggered (Before Netting Analysis)	Yes	No	No	No	No	No	No	Yes

Table 4-1: PSD Emissions Analysis (Step 1)

¹ Based on the Supreme Court's decision on June 23, 2014 in Utility Air Regulatory Group v. EPA, a project's GHG emissions can only trigger PSD if a conventional pollutant is triggered PSD first. For the CO₂e emissions, the thresholds are 75,000 TPY for modified facilities and 100,000 TPY for new facilities.

4.2 **Prevention of Significant Netting Analysis**

PSD regulations allow the use of a netting analysis to determine if a "significant net emission increase" will occur as a result of a project. SPMT has performed the netting analysis consistent with PSD regulations in 40 CFR §52.21. A six-step procedure is used for determining the net emissions change and is summarized below.

- <u>Emission Increases from the Proposed Project</u> Determine the emission increases from the proposed project. If increases are significant, proceed; if not, the project is not subject to PSD review.
- 2. <u>Contemporaneous Period</u> Determine the beginning and ending dates of the contemporaneous period as it relates to the proposed project.
- 3. <u>Emissions Increases and Decreases during the Contemporaneous Period</u> Determine which emissions units at the facility experienced (or will experience, including any proposed decreases resulting from the proposed project) a creditable increase or decrease in emissions during the contemporaneous period.
- 4. <u>Creditable Emissions Changes</u> Determine which contemporaneous emissions changes are creditable.
- 5. <u>Amount of the Emissions Increase and Decrease</u> Determine, on a pollutant-by-pollutant basis, the amount of each contemporaneous and creditable emissions increase and decrease.
- 6. <u>PSD Review</u> Sum all contemporaneous and creditable increases and decreases with the emissions changes from the proposed project to determine if a significant net emissions increase will occur.

In order to perform a netting analysis, the contemporaneous periods must be determined. The term "contemporaneous period" is defined in the PSD regulation as the period that includes the five (5) years prior to initiating construction on a proposed modification, and the period between the initiation of construction and the initiation of operation of the new or altered equipment. The construction of the sources requested in this Plan Approval 23-0119J application is planned to begin in 2019 and continue through 4th quarter 2022. The five (5) year period for the Aggregated Project starts on April 1, 2011 based on the Plan Approval 23-0119E issuance date of April 1, 2016. Therefore, the contemporaneous period for this project runs from April 1, 2011 through 4th quarter 2022.

Contemporaneous and creditable emissions increases included in the PSD netting analysis are based on current facility permits. **Table 4-2** summarizes the contemporaneous and creditable emissions increase/decrease included in the Aggregated Project PSD netting analysis. Detailed emissions estimates and netting analysis are provided in **Appendix D** and **Appendix E**.

Emissions	Pollutant (TPY)			
	NO ₂	CO ₂ e ¹		
Aggregated Project	41.17	112,799		
Contemporaneous Increases/Decreases	-19.75	-4,848		
Total	21.42	107,951		
PSD Significant Level	40	75,000		
PSD Review Required	No	No		

Table 4-2: PSD Contemporaneous Netting Analysis (Step 2)

¹ Further PSD review (BACT analysis) would only be required for CO₂e if PSD is triggered for a conventional pollutant first.

As shown in **Table 4-2**, there are no significant net emissions increases associated with pollutants subject to PSD for the Aggregated Project; therefore, no further PSD review is required.

4.3 Nonattainment New Source Review Analysis—Ozone

Facilities located in nonattainment areas that plan construction or modification of a source must evaluate the applicability of nonattainment NSR. The requirements are defined in 25 PA Code §127.201 through §127.217. Sources located in a nonattainment area, ozone transport region, or attainment or unclassifiable area impacting a nonattainment area are subject to permit requirements defined in 25 PA Code §127.203. In Pennsylvania, facilities located in the five county area including Delaware County are subject to the special permit requirements codified at §127.203. Under the special permit requirements, proposed new sources are subject to the NANSR requirements if the cumulative emissions calculated using either one of the two scenarios below equals or exceeds 25 tons per year of NO_x or VOC:

- Increases or decreases in emissions from the project are aggregated with other net emissions increases over the consecutive 5-calendar year period including the year in which the project is constructed; or
- Increases or decreases in emissions from the project are aggregated with other net emission increases or decreases over the previous 10-year period. In this case, the facility is subject only to the emissions offset requirements codified at §127.205.

Contemporaneous and creditable emissions increases included in the netting analysis are based on current facility permits. Detailed emissions estimates and netting analysis are provided in **Appendices D** and **E**, respectively.

SPMT has evaluated the applicability of NANSR for ozone to the proposed Project. **Table 4-3** below presents a summary of Project emissions for NO_x and VOC aggregated with other net emissions increases over the consecutive 5-calendar year period including the year in which the Project construction is planned (calendar years 2012 through 2022)⁷.

Project	VOC Emissions (TPY)	NO _x Emissions (TPY)
Aggregated Project	160.79	41.17
Previous Contemporaneous Projects	82.05	9.54
Net Emissions Increase	242.84	50.71
NANSR Significance Level	25	25
NANSR Review Required	Yes	Yes

Table 4-3: NANSR Netting Analysis for NO_x and VOC Emissions (5-calendar year)

As shown in **Table 4-3**, the net emissions increases of both NO_x and VOC are greater than the NANSR regulatory threshold of 25 tons per year. Therefore, the proposed project is subject to the special permit requirements for both VOC and NO_x emissions in 25 PA Code §127.203 including a LAER analysis. See **Section 5.1** below for the VOC LAER Analysis and **Section 5.2** below for the NO_x LAER Analysis.

⁷ The construction of the sources requested in this Plan Approval 23-0119J application is planned to begin in 2019 and continue through 2022. The 5-calendar year period is limited to 2012 based on the Plan Approval 23-0119E issuance date of April 1, 2016. Therefore, the 5-calendar year period including the year the Project construction is planned is 2012 through 2022.

4.4 Nonattainment New Source Review Analysis—PM_{2.5}

As of December 2007, Delaware County was designated as nonattainment for $PM_{2.5}$. 25 PA Code §127.201 through §127.217 provide the framework for reviewing NANSR applicability for $PM_{2.5}$. These regulations require NANSR review both for direct $PM_{2.5}$ emissions, as well as emissions of SO₂ and NO_x as a $PM_{2.5}$ precursor.

Table 4-4 provides a summary of the Project emissions for $PM_{2.5}$, SO_2 , and NO_x as precursors. It can be seen that the NO_x emissions from the Project exceed the NANSR regulatory threshold as a precursor to $PM_{2.5}$; therefore, as per 25 PA Code §127.203a(a)(1)(i)(A), a netting analysis over the contemporaneous period must be performed.

Project	SO ₂ Emissions (TPY)	NO _x Emissions (TPY)	PM _{2.5} Emissions (TPY)
Aggregated Project	39.48	41.17	8.40
NANSR Significance Level	40	40	10
NANSR Review Required	No	Yes	No

Table 4-4: NANSR Analysis for SO₂, NO_x, and PM_{2.5} Emissions

As shown in **Table 4-5** below, the NO_x netting analysis over the contemporaneous period shows that the emissions from the Project are not greater than the NANSR $PM_{2.5}$ precursor threshold for NO_x. Therefore, nonattainment new source review is not triggered for $PM_{2.5}$ or its precursors.

Table 4-5: NANSR PM_{2.5} Precursor Netting Analysis for NO_x Emissions

Project	NO _x Emissions (as a PM _{2.5} precursor) (TPY)
Aggregated Project	41.17
Contemporaneous Increase/Decrease	-19.75
Net Emissions Increase	21.42
NANSR Significance Level	40
NANSR Review Required	No

5. LAER ANALYSIS

SPMT Project Phoenix exceeds the NANSR regulatory threshold for VOC and NO_x and in accordance with 25 PA Code §127.205, SPMT must:

- Implement LAER level of pollution control;
- Obtain emissions reductions (offsets), prior to commencement of operation of the affected source, from other sources that impact a nonattainment area in the same or lower nonattainment classification area than the one in which they were generated;
- Certify that all other sources in Pennsylvania owned by SPMT are complying with all applicable requirements of the CAA; and
- Demonstrate through an analysis of alternative sites, sizes, production processes, and environmental control techniques that benefits of the proposed source significantly outweigh the environmental and social costs imposed as a result of its location, construction, or modification.

5.1 VOC LAER

SPMT's LAER evaluation of the Project was conducted in accordance with USEPA's guidance in the draft New Source Review Workshop Manual (USEPA 1990) and applicable State and federal regulations. In accordance with 25 PA Code §127.205(1), only sources which are new or which are modified shall be required to implement VOC LAER, specifically the new fugitive piping and equipment components and the new cold flare system.

5.1.1 VOC LAER Review

5.1.1.1 Fugitive Components

Fugitive emissions, by definition, are those emissions which could not reasonably pass through a stack, chimney, vent, or other functionally equivalent opening. According to the New Source Review Workshop Manual (EPA 1990), it is "unreasonable to expect that relatively small quantities of VOC emissions, caused by leaking valves at outside storage tanks...could be captured and vented to a stack." Therefore, the only control technology for fugitive emissions is leak detection and repair program (LDAR).

5.1.1.2 Project Phoenix Cold Flare

The Pennsylvania Code defines LAER as a rate of emissions based on the following, whichever is more stringent: the most stringent emission limitation which is contained in the implementation plan of a state for the class or category of source unless the owner or operator of the proposed source demonstrates that the limitations are not achievable; or the most stringent emission limitation which is achieved in practice by the class or category of source.

To identify applicable VOC limitations and regulations, a state-by-state search of potentially applicable regulations was conducted. In addition, 40 CFR Parts 60, 61, and 63 were evaluated to determine whether SPMT Project Phoenix would be subject to any New Source Performance Standard (NSPS) or National Emission Standards for Hazardous Air Pollutant (NESHAP).

To identify the VOC limits "achieved in practice" or that have been established for similar source types, a series of searches of USEPA's RACT/BACT/LAER Clearinghouse (RBLC) database, individual state RBLC databases, and general literature was conducted. The majority of the items identified in the RBLC search were labeled as either "BACT" or "LAER" determinations.

Table 5-1 below shows the results of an RBLC search as well as recent and ongoing permitting actions for elevated flare systems or other similar facilities/sources. Note that several of the determinations are in draft applications (denoted with a "*" in front of the RBLC ID in **Table 5-1**) and have not yet commenced operation. Therefore, the emissions limits proposed in the determinations have not been achieved in practice.

RBLC ID/ Permit	Facility Name	Permit Issuance	Process Description	Control Description	Control Efficiency	Control Efficiency Verified
TX-0793	Bayport polypropylene plant	04/04/16	Polypropylene Production Units	Vent streams from routine and maintenance, start-up, and shutdown (MSS) activities are controlled by the air- assisted LOG Flare (EPN 30) or the steam-assisted Elevated Flare (EPN 34). The flares are expected to achieve a volatile organic compound (VOC) destruction efficiency of at least 99 percent (as previously permitted - raw materials have three or fewer carbons). Flares are approved as control devices due to the VOC concentration, together with the variability in flow rate and composition.	99% (for C3 or less)	No
TX-0774	Bishop facility	11/12/15	Reformer Start up and Shutdown	Flare shall meet 40 CFR §60.18 minimum Btu and maximum tip velocity requirements. 99% DRE for VOC molecules with three compounds or less, including methanol and CO (high hydrogen). 98% DRE for all other compounds.	99% (98% for C3+)	Unknown
TX-0754	Propane dehydrogenati on unit	07/10/15	Propane Dehydrogenation- Feed Treating and Product Recovery Process	Flare System. Facility will use the following three types of Flare: 1) Multipoint Ground Flare, 2) Merox Flare, 3) Low Pressure Flare. Multipoint flare will operate in accordance with an Alternative Method of Control (AMOC) authorization from EPA. Merox and Low pressure flare will meet 40 CFR §60.18 requirements.	98%	Unknown
*TX-0812	Crude oil processing facility	10/31/16	Refinery Flares	The flare must conform to 40 CFR §60.18 requirements. Vent stream composition and flow must be continuously monitored to demonstrate compliance.	98%	Unknown

Table 5-1: Summary of VOC LAER Precedents for Elevated Flare Systems

RBLC ID/ Permit	Facility Name	Permit Issuance	Process Description	Control Description	Control Efficiency	Control Efficiency Verified
*TX-0813	Odessa petrochemical plant	11/22/16	Polypropylene Process Vents	Emissions minimized by limited venting, and waste stream controlled by flare. The flare must conform to 40 CFR §60.18 requirements. Vent stream composition and flow must be continuously monitored to demonstrate compliance.	98%	Unknown
Shell Petrochemicals Complex Plan Approval Application	Shell petrochemicals complex	6/18/2015	Ethylene/ Polyethylene Production	Shell uses a flare system to control VOCs. Flare operated to meet minimum net heating value requirements for gas streams combusted in the flares, as set forth at 40 CFR §60.18 & §63.11. Flare designed to meet limitations on maximum exit velocity, as set forth in the general provisions at 40 CFR §60.18 & §63.11.	98% (based on §60.18)	Unknown
PA-0317 (SPMT Flare Replacement Project)	SPMT Marcus Hook	4/13/18	Natural Gas Liquids Processing	SPMT uses a flare system to control VOCs. Flare operated to meet minimum net heating value requirements for gas streams combusted in the flares, as set forth at 40 CFR §60.18. Flare designed to meet limitations on maximum exit velocity, as set forth in the general provisions at 40 CFR §60.18. See PA 23- 0119H for more detail.	98% (based on §60.18)	To be determined
Bay Area AQMD BACT/TBACT Workbook Guidance ¹	BACT Guidance; Section 3 petroleum Industry	Not Applicable	Refinery Flare	Achieved in Practice: Elevated flare, steam- or air- assisted, w/staged combustion; POC destruction efficiency ≥98%: use of natural gas or LPG as pilot fuel. Flare to be operated only during periods of emergency plant upset or breakdown; routine venting of process gases to be routed to fuel gas recovery system.	98%	Not Applicable

RBLC ID/ Permit	Facility Name	Permit Issuance	Process Description	Control Description	Control Efficiency	Control Efficiency Verified
Bay Area AQMD BACT/TBACT Workbook Guidance ²	BACT Guidance; Section 3 Petroleum Industry	Not Applicable	Pressure Relief Valves, Emergency – Process Units	Achieved in Practice: Vent to fuel gas recovery system, furnace, or flare with a recovery/destruction efficiency ≥98%.	98%	Not Applicable
South Coast AQMD ³ App No. 353730	Van Waters & Rogers	10/1999	Fixed Roof Storage tank	The applicant is planning to install 18 organic liquid storage tanks at this facility. All tanks will be vented to the thermal oxidizer included in application number 353767. The assumed overall efficiency of the thermal oxidizer is 95% VOC control. A temperature of not less than 1400 degrees Fahrenheit will be maintained in the thermal oxidizer when the equipment it serves is in operation, and no liquid wastes will be burned in the thermal oxidizer.	95%	Not Applicable

¹ Bay Area AQMD. "Section 3: Flare—Refinery" <u>http://www.baaqmd.gov/permits/permitting-manuals/bact-tbact-workbook</u>.

² Bay Area AQMD. "Section 3: Pressure Relief Valves, Emergency—Process Units. <u>http://www.baaqmd.gov/permits/permitting-manuals/bact-tbact-workbook</u>.

³ South Coast AQMD BACT Guidelines. <u>http://www.aqmd.gov/home/permits/bact/guidelines</u>.

5.1.2 VOC LAER Determination

5.1.2.1 Fugitive Components

SPMT is proposing that the leak levels and LDAR requirements of 40 CFR 60 Subpart VVa for Equipment Leaks of VOC in the Synthetic Organic Chemical Manufacturing Industry (SOCMI) constitute LAER for the proposed new valves, flanges, and relief valves components in VOC service. This is consistent with other facilities utilizing an LDAR program for control of VOC from fugitive equipment.

5.1.2.2 Project Phoenix Cold Flare

As shown by the VOC precedents shown in **Table 5-1** above, LAER for an elevated flare is 98% destruction removal efficiency (DRE) together with compliance with the design and operating requirements of 40 CFR §60.18. The highest DRE shown in **Table 5-1** is listed at the Bishop Facility and Bayport Propylene Plant sites where each flare is permitted with a 99% DRE for hydrocarbons with three carbons or less and 98% DRE for all other hydrocarbons. The remaining flares listed in **Table 5-1** are permitted with a 98% DRE. The flows to the Project Phoenix Cold Flare will always contain trace amounts of hydrocarbons with three carbons or more; therefore, a 98% DRE would apply. Two entries in **Table 5-1** above from the Bay Area AQMD BACT Guidance propose the use of fuel gas recovery, where available. The use of fuel gas recovery is feasible where flows are continuous to allow for collection, treatment, and use in combustion equipment. For the Project Phoenix Cold Flare, the operational and maintenance flows are continuous to allow which makes the use of fuel gas recovery infeasible. Furthermore, even if a fuel gas recovery system where utilized, the facility also does not have the available capacity in combustion equipment to combust all of the fuel that would be generated by the recovery system.

SPMT believes that the most analogous source in **Table 5-1** to the Cold Flare is the West Warm Flare Replacement Project. SPMT submitted a plan approval permit application to PADEP in October 2017 for the installation and operation of a new elevated flare (West Warm Flare). SPMT previously conducted a LAER analysis and proposed that the design and operating requirements from 40 CFR §60.18 and a VOC destruction efficiency of 98% was LAER. PADEP agreed with the determination and Plan Approval 23-0119H for construction of the West Warm Flare was issued in April 2018.

Based on the RBLC Search, recent permit applications/permits, and a technical feasibility analysis, SPMT determined that compliance with the design and operating requirements of 40 CFR §60.18 satisfy LAER for the Cold Flare associated with Project Phoenix. Specifically, the Project Phoenix Cold Flare shall be:

- Designed to meet maximum exit velocity and visible emissions requirements defined in the general provisions of 40 CFR §60.18; and
- Operated to meet minimum net heating value requirements for gas streams combusted in flares set forth in 40 CFR §60.18.

5.2 NO_x LAER

In accordance with 25 PA Code \$127.205(1), only sources which are new or which are modified are required to implement LAER. The only new or modified source of NO_x emissions associated with the Project is the new Project Phoenix Cold Flare.

5.2.1 NO_x LAER Review for Project Phoenix Cold Flare

SPMT's LAER evaluation of the Project was conducted in accordance with USEPA's guidance in the draft New Source Review Workshop Manual (USEPA 1990) and applicable State and federal regulations. The Project Phoenix Cold Flare is a control device which results in emissions of NO_x as a result of combustion. The Pennsylvania Code defines LAER as a rate of emissions based on the following, whichever is more stringent: the most stringent emission limitation which is contained in the implementation plan of a state for the class or category of source unless the owner or operator of the proposed source demonstrates that the limitations are not achievable; or the most stringent emission limitation which is achieved in practice by the class or category of source.

To identify applicable NO_x limitations and regulations, a state-by-state search of potentially applicable regulations was conducted. In addition, 40 CFR Parts 60, 61, and 63 were evaluated to determine whether SPMT Project Phoenix would be subject to any New Source Performance Standard (NSPS) or National Emission Standards for Hazardous Air Pollutant (NESHAP).

To identify the NO_x limits "achieved in practice" or that have been established for similar source types, a series of searches of USEPA's RACT/BACT/LAER Clearinghouse (RBLC) database, individual state RBLC databases, and general literature was conducted with results in **Table 5-2** below.

RBLC ID/ Permit	Facility Name	Permit Issuance	Process Description	Emission Rate ¹
AK-0083	Kinai Nitrogen Operations	01/06/2015	Three (3) flares at a nitrogenous fertilizer manufacturing facility. Control method includes work practice requirements and limited use.	0.068 Ib/MMBtu
IN-0173	Midwest Fertilizer Corporation	06/04/2014	A front end, back end, and ammonia storage flare for a stationary nitrogen fertilizer manufacturing facility. Control methods include flare minimization practices.	0.068 Ib/MMBtu
IN-0179	Ohio Valley Resources, LLC	09/25/2013	A front end process, back end ammonia, ammonia storage, and UAN Plant Vent flare system at a nitrogenous fertilizer production plant. Control methods include flare minimization practices.	0.068 Ib/MMBtu
LA-0314	Indorama Lake Charles Facility	08/03/2016	Three (3) flares at a previously mothballed ethylene manufacturing facility. Control methods include complying with NSPS and NESHAP regulations for flaring (40 CFR §60.18 and §63.11) and good combustion practices (including the establishment of flare minimization practices)	0.068 Ib/MMBtu
LA-0331	Calcasieu Pass LNG Project	09/21/2018	Warm, Cold, LP, and Marine flares at a new Liquefied Natural Gas (LNG) production, storage, and export terminal. Control methods include proper equipment design, proper operation, and good combustion practices.	0.068 Ib/MMBtu

Table 5-2: Summary of NO_x LAER Precedents for Elevated Flare Systems

¹ Open flares cannot be source tested due to the open flame and absence of a stack (USEPA AP-42 Chapter 13-5, Industrial Flares, Table 13.5-1). Emission rates provided line up with USEPA AP-42 Compilation of Air Pollutant Emission Factors for NO_x emissions for a flare.

5.2.2 NO_x LAER Determination for Project Phoenix Cold Flare

Open Flares cannot be source tested due to the open flame and absence of a stack. Consequently, the default emission factor of 0.068 pounds (lb) per million British thermal units (MMBtu) from USEPA's AP-42 Compilation of Air Pollutant Emission Factors is used to calculate NO_x emissions from the flare. This is the lowest NO_x limit achieved in practice for open flares.

5.3 Offsets

In addition to meeting LAER requirements for NO_x and VOC, SPMT is required to obtain emissions reduction credits (offsets) for these pollutants from other sources that impact the same non-attainment area. For NO_x and VOCs, the SPMT MHIC is located in an area that is treated as severe nonattainment for ozone. Accordingly, the offset ratio of 1.3 to 1 would be applied to this Project.

Therefore, in accordance with 25 PA Code §§127.205 and 127.210, SPMT plans to surrender 65.92 tons of NO_x offsets (50.71 tons of NO_x emissions at a 1.3:1 ratio) and 315.69 tons of VOC offsets (242.84 tons of VOC emissions at a 1.3:1 ratio). Per 25 PA Code §127.206(d)(1), SPMT must demonstrate that the proposed facility either has or will secure the appropriate ERCs which are suitable for use at the specific facility. SPMT has already surrendered 215.35 tons of VOC offsets from April 7, 2016 to November 2, 2018; therefore, an additional 100.34 tons of VOC offsets⁸ will be surrendered prior to commencement of operation of the sources associated with this Project. SPMT currently holds sufficient VOC offsets to satisfy this requirement, but SPMT may also choose to secure additional certified VOC offsets on March 6, 2017; therefore, an additional 33.12 tons of NO_x offsets⁹ will be surrendered prior to commencement of operation of the sources associated with this Project. SPMT will secure additional certified NO_x offsets suitable for use at the MHIC. Furthermore, SPMT has already surrendered 32.8 tons of NO_x offsets on March 6, 2017; therefore, an additional 33.12 tons of NO_x offsets⁹ will be surrendered prior to commencement of operation of the sources associated with this Project. SPMT will secure additional certified NO_x offsets suitable for use at the MHIC to satisfy this requirement.

5.4 SPMT Sources in Pennsylvania

To SPMT's knowledge, all existing sources in Pennsylvania owned or controlled by SPMT are in compliance with the applicable local, State, and federal regulations and consent decree requirements or are on a compliance schedule.

5.5 Alternatives Analysis

25 PA Code §127.205 requires that an alternatives analysis be performed for projects that trigger nonattainment new source review. This analysis must be conducted of alternative sites, sizes, production processes and environmental control techniques for the proposed facility, which demonstrates that the benefits of the proposed facility significantly outweigh the environmental and social costs imposed within this Commonwealth as a result of its location, construction or modification. SPMT has conservatively included such an analysis here.

The Project relies upon existing equipment and utilities at the MHIC including pipeline infrastructure which terminates at the facility. Relocating, replacing, or rerouting this pipeline infrastructure outside of existing right-of-ways would create an unnecessary net environmental and community disturbance. Furthermore, equipment sizing and production processes were determined in order to meet technical requirements and

⁸ Per the May 3, 2019 version of the Department's Certified Emission Reduction Credits in Pennsylvania's ERC Registry, SPMT currently holds 142.62 tons of VOC ERCs certified for Trading/Internal Use.

⁹ Per the May 3, 2019 version of the Department's Certified Emission Reduction Credits in Pennsylvania's ERC Registry, SPMT currently holds 38.00 tons of NO_x ERCs certified for Trading. This amount does not reflect the 32.8 tons of NO_x ERCs that were retired to satisfy conditions of Plan Approval 23-0119E issued on March 28, 2017. Therefore, SPMT currently holds a total of 5.20 tons of NO_x ERCs.

business demands of the MHIC. Lastly, because of the facility's location in a severe nonattainment region for ozone, the Project has been designed to minimize overall emissions and, as noted above, meets LAER requirements (which are the most stringent) including offsets of NO_x and VOC emissions increases. A suitable alternate industrial location, due to the National Ambient Air Quality Standards designations for the location, may not require the same emissions control requirements as the MHIC. For the reasons stated above, there are no feasible alternative sites. As such, the planned changes represent the best alternative for this Project.

6. BAT DETERMINATION

In accordance with 25 PA Code §127.12, an applicant for Plan Approval must demonstrate that the emissions from a new source will be the minimum attainable through use of the Best Available Technology (BAT). BAT is defined as equipment, devices, methods or techniques as determined by the Department that will prevent, reduce or control emissions of air contaminants to the maximum degree possible and that are available or can be made available to the facility.

SPMT conducted a BAT analysis for Project Phoenix. This analysis considers BAT determinations for the fugitive VOC emission components, the Project Phoenix Cold Flare, and Wet Surface Air Cooler Systems associated with Project Phoenix. In this analysis SPMT reviewed information from various databases to determine recent requirements and emission limits for the new sources associated with this Project, including:

- USEPA's New Source Review website;
- USEPA's RACT/BACT/LAER Clearinghouse (RBLC) Database;
- Various state air quality regulations and websites;
- Control technology vendors information;
- Technical books and articles; and
- State and federal guidance documents.

Note that BAT is a pollutant-specific determination. Based on a review of established emission limits in permits, the following sections document the results of the source and pollutant specific BAT determinations.

6.1 Fugitive Components

SPMT is proposing that the leak levels and LDAR requirements of 40 CFR 60 Subpart VVa for Equipment Leaks of VOC in the Synthetic Organic Chemical Manufacturing Industry (SOCMI) constitute BAT for the proposed new valves, flanges, and relief valves components in VOC service.

6.2 Project Phoenix Cold Flare

The new Project Phoenix Cold Flare associated with the Project is itself a control device. Therefore, SPMT will comply with 40 CFR §60.18 to satisfy BAT requirements for NO_x, CO, and SO₂. Please refer to **Section 5.2.2** for the NO_x LAER Determination which will satisfy BAT requirements for the Project Phoenix Cold Flare.

6.3 Wet Surface Air Cooler Systems

A review of the RBLC database was conducted for the WSAC Systems. BAT for particulates was identified as utilization of a drift eliminator with maximum total drift of 0.0005% of the circulating water flow rate. This maximum drift rate will be the basis for vendor specifications for this Project. SPMT is proposing drift eliminators with maximum total drift of 0.0005% constitute BAT for particulates for the proposed new WSAC Systems.

7. APPLICABLE STANDARDS— PROJECT PHOENIX

New sources included with this Project include fugitive VOC emission components, the Project Phoenix Cold Flare, and the WSAC Systems. All other sources will continue to meet their existing permitted limits and requirements. **Table 7-1** summarizes the potentially applicable requirements identified for the Project.

Regulatory Citation	Description	Emission Limit and/or Operational Restriction
40 CFR 60 Subpart A §60.18	Standards of Performance for New Stationary Sources – General control device and work practice standards	This subpart applies to certain control devices used to comply with applicable subparts of 40 CFR parts 60 and 61. Subject equipment includes flares. The Project Phoenix Cold Flare must be operated with no visible emissions, with flame present at all times, to meet exit velocity requirements, and maintain a minimum net heating value of the flare gas.
40 CFR 60 Subpart VVa	Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006	This subpart applies to the control of air emissions from equipment leaks associated with affected facilities in the organic chemicals manufacturing industry. Subject equipment includes each pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, and flange or other connector in VOC service. Additionally, if a flare is used to control VOC emissions from pumps, compressors or sampling systems, the flare must comply with 40 CFR §60.18. SPMT does route or plans to route pump and compressor seal systems and sampling systems to the Project Phoenix Cold Flare for VOC control; therefore, the Project Phoenix Cold Flare will comply with the requirements of §60.18.
40 CFR 60 Subpart Kb	Standards Of Performance For Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) For Which Construction, Reconstruction, Or Modification Commenced After July 23, 1984	This subpart applies to each of the storage tanks at the storage facility with a capacity greater than or equal to 75 cubic meters (471 barrels) that is used to store volatile organic liquids for which construction or modification is commenced after July 23, 1984; therefore, the recordkeeping requirements of 40 CFR 60.115b are applicable. However, the VOC standards of 40 CFR 60.112b (i.e., requiring the installation of a floating roof and conducting periodic inspections) are not applicable because of the high vapor pressure of the material being stored (vapor pressure of 108 kiloPascal [kPa]). 40 CFR 60.112b is only applicable to storage vessels with a design capacity greater than 151 cubic meters (949 barrels) and storing a volatile organic liquid that has a maximum true vapor pressure greater than 5.2 kPa but less than 76.6 kPa.

Table 7-1: Federal Applicable Requirements— Project Phoenix

8. **REQUESTED PERMIT CONDITIONS**

The following section provides requested permit conditions. As discussed in **Section 1.3** above, SPMT requests issuance of the Plan Approval to allow the commencement of construction in December 2019. Additionally, SPMT is requesting that the Plan Approval be extended by 18 months from Plan Approval issuance (expiration date that is 36 months from issuance) to facilitate the continued construction and shakedown of the sources. This request is in accordance with the guidance of Section 2.4 in PADEP Document 275-2101-002 for extended timelines which states:

"... expiration dates that are based on overly optimistic or inaccurate construction dates can burden the Department and the company with the need for issuance of new plan approvals or plan approval extensions. This can disrupt construction of a source and needlessly add to the Department's and company's administrative burdens."

APPENDIX A PADEP PLAN APPROVAL FORMS

July 2019

GENERAL INFORMATION FORM – AUTHORIZATION APPLICATION

Before completing this General Information Form (GIF), read the step-by-step instructions provided in this application pack age. This version of the General Information Form (GIF) must be completed and returned with any program-specific application being submitted to the Department.

	0#s (If Known)	DEP USE ONLY
Client ID# 161585	APS ID#	Date Received & General Notes
Site ID# 270459	Auth ID#	7
Facility ID#		
	CLIENT INFORMATI	ON
DEP Client ID#	Client Type / Code NPACO	
Organization Name or Register	red Fictitious Name E	Employer ID# (EIN) Dun & Bradstreet ID#
Sunoco Partners Marketing & Te	rminals L.P. 2	23-3102655
Individual Last Name	First Name	AI Suffix SSN
Additional Individual Last Nam	e First Name N	AI Suffix SSN
Mailing Address Line 1 100 Green Street	Mailing	Address Line 2
Address Last Line – City		IP+4 Country
Marcus Hook		9061-0426 U.S.A.
Client Contact Last Name	First Name	MI Suffix
Werner	Jed	A
Client Contact Title		Phone Ext
Air Permitting Manager Email Address		(610) 670-3297 FAX
jed.werner@energytransfer.com		
	SITE INFORMATIO	N
	SHEINFURMATIO	'N
DEP Site ID# Site Name	SHE INFORMATIO	N
Marcus Hool	< Industrial Complex	
Marcus Hool EPA ID#		
Marcus Hool EPA ID# Description of Site	< Industrial Complex Estimated Number of Employ	
Marcus Hool EPA ID# Description of Site Storage and Marine Loading Fac	< Industrial Complex Estimated Number of Employ ility	ees to be Present at Site
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name	< Industrial Complex Estimated Number of Employ ility Municipality	ees to be Present at Site City Boro Twp State
EPA ID# Description of Site Storage and Marine Loading Factor County Name Delaware	 K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook 	ees to be Present at Site City Boro Twp State □ ⊠ □
EPA ID# Description of Site Storage and Marine Loading Factor County Name Delaware	< Industrial Complex Estimated Number of Employ ility Municipality	ees to be Present at Site City Boro Twp State
EPA ID# Description of Site Storage and Marine Loading Factor County Name Delaware	 k Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality 	ees to be Present at Site City Boro Twp State City Boro Twp State City Boro Twp State
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name Site Location Line 1 100 Green Street	k Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca	ees to be Present at Site City Boro Twp State City Boro Twp State City Boro Twp State City Boro Twp State
Marcus HookEPA ID#Description of SiteStorage and Marine Loading FacCounty NameDelawareCounty NameCounty NameSite Location Line 1100 Green StreetSite Location Last Line – City	Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State	ees to be Present at Site City Boro Twp State City Boro Twp State City Boro Twp State City Boro Twp State IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Marcus HookEPA ID#Description of SiteStorage and Marine Loading FacCounty NameDelawareCounty NameCounty NameSite Location Line 1100 Green StreetSite Location Last Line – CityMarcus Hook Facility	K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA	ees to be Present at Site City Boro Twp State City Boro Twp State City Boro Twp State City Boro Twp State
Marcus HookEPA ID#Description of SiteStorage and Marine Loading FacCounty NameDelawareCounty NameCounty NameSite Location Line 1100 Green StreetSite Location Last Line – CityMarcus Hook FacilityDetailed Written Directions to S	K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA Site	City Boro Twp State State State State City Boro Twp State City Boro Twp State State State State State Sta
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET	K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA Site STREET / PA-452 exit- EXIT 2; Turner STREET / PA-452 exit- EXIT 2; Turner STREET / PA-452 exit- EXIT 2; Turner Street (PA-452 exit-EXIT 2; Turner)	City Boro Twp State State State State City Boro Twp State City Boro Twp State State State State State Sta
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET follow MARKET ST.; Turn RIGHT	K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA Site STREET / PA-452 exit- EXIT 2; Turn onto 11TH ST.; Turn LEFT onto GR	City Boro Twp State State State State City Boro Twp State City Boro Twp State State State State State Sta
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET follow MARKET ST.; Turn RIGHT escort by Environmental Dept. Period	k Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA Site STREET / PA-452 exit- EXIT 2; Turn onto 11TH ST.; Turn LEFT onto GR ersonnel.	City Boro Twp State City Boro Twp State City Boro Twp State Difference ZIP+4 19061-0426 Difference Difference City Boro Twp State Difference Difference City Boro Twp State Difference Difference Difference Difference City Boro Twp State Difference Difference Difference City Boro Twp State Difference
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET follow MARKET ST.; Turn RIGHT	K Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca State PA Site STREET / PA-452 exit- EXIT 2; Turn onto 11TH ST.; Turn LEFT onto GR	City Boro Twp State State State State City Boro Twp State City Boro Twp State State State State State Sta
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET follow MARKET ST.; Turn RIGHT escort by Environmental Dept. Peter Site Contact Last Name Smith Site Contact Title	k Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca Site PA Site STREET / PA-452 exit- EXIT 2; Turn onto 11TH ST.; Turn LEFT onto GR ersonnel. First Name Kevin Site Cont	City Boro Twp State Image: City Boro Twp State <
Marcus Hook EPA ID# Description of Site Storage and Marine Loading Fac County Name Delaware County Name County Name Site Location Line 1 100 Green Street Site Location Last Line – City Marcus Hook Facility Detailed Written Directions to S Follow I-95 S; Take the MARKET follow MARKET ST.; Turn RIGHT escort by Environmental Dept. Peter Site Contact Last Name Smith	k Industrial Complex Estimated Number of Employ ility Municipality Marcus Hook Municipality Site Loca Site PA Site STREET / PA-452 exit- EXIT 2; Turn onto 11TH ST.; Turn LEFT onto GR ersonnel. First Name Kevin Site Conf Sunoco P	City Boro Twp State City Boro Twp State City Boro Twp State City Boro Twp State Image: City Boro Twp State City Boro Twp State Image: City Boro Twp Stat

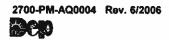
	i ng Address Last Lir us Hook	ne – City			State ⊃A	ZIP+4 19061-	1426		
Pho		Ext I	AX			Address	0420		
-	859-1279		,				rgytransfer.co	om	
<u> </u>	S Codes (Tw o- & Thre	e-Digit Codes	- List All That /				-Digit Code		
493	·	•					93190	, I <i>,</i>	
	nt to Site Relationsh	ір							
OWN	NOP								
			FACILIT	Y INF	ORM	ATION			
	ification of Existing							Yes	No
1.	Will this project m								
2.	Will this project in If "Yes", check all re								
	Facility Type	elevant racinty	DEP Fac			cility Type	allonnumber		DEP Fac ID#
	Air Emission Plant			10//		dustrial Mineral	s Mining Operat		
	Beneficial Use (water)					boratory Locat			
	Blasting Operation						leanupLocation		
	Captive Hazardous Wast				_	-	nt/LandRecyProj	Location	
	Coal Ash Beneficial Use Coal Mining Operation	Operation				unicipal Waste (& Gas Encroa	operation chment Location		
	Coal Pillar Location					& Gas Locatio			292970
	Commercial Hazardous V	Naste Operation				l & Gas Water F	oll Control Faci		
	Dam Location					blic Water Sup			
	Deep Mine Safety Opera				_	diation Facility			
	Deep Mine Safety Opera Deep Mine Safety Opera					sidual Waste C prage TankLoo	•		
	EncroachmentLocation					ater Pollution C			
	Erosion & SedimentCon				_	ater Resource	,		
	Explosive Storage Locat	ion			=	her:			
	Latitude/Longit				tude			Longitude	9
	Point of Origi		Degrees	Min	tude utes	Seconds	Degrees	Minutes	Seconds
	Point of Origi Entrance (general)	in	39	Min 48		41	-75	Minutes 25	-
Horiz	Point of Origi Entrance (general) zontal Accuracy Mea	asure	39 Feet 5	Min 48	utes	41 or	-75 Me	Minutes	Seconds
Horiz	Point of Origi Entrance (general)	asure	39 Feet 5 □ Nor	Min 48 rth Ame	utes erican [41 or Datum of 192	-75 Me 27	Minutes 25	Seconds
Horiz	Point of Origi Entrance (general) zontal Accuracy Mea	asure	39 Feet 5 □ Nor ☑ Nor	48 Th Ame	erican [erican [41 <i>or</i> Datum of 192 Datum of 193	-75 Me 27 33	Minutes 25	Seconds
Horiz Horiz	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da	in asure tum Code	39 Feet 5 □ Nor ☑ Nor	48 Th Ame	erican [erican [41 or Datum of 192	-75 Me 27 33	Minutes 25	Seconds
Horiz Horiz Horiz	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me	in asure tum Code	39 Feet 5 □ Nor ☑ Nor	48 Th Ame	erican [erican [41 <i>or</i> Datum of 192 Datum of 193	-75 Me 27 33	Minutes 25	Seconds
Horiz Horiz Horiz	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code	in asure tum Code	39 Feet 5 □ Nor ☑ Nor □ Wo	Min 48 rth Ame orld Geo 2	erican [erican [odetic \$	41 or Datum of 19 Datum of 19 System of 19 System of 19	-75 Me 27 33 984 Me	Minutes 25 eters	Seconds
Horiz Horiz Horiz Refe Altitu	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code	in asure tum Code	39 Feet 5 □ Nor ⊠ Nor □ Wo Feet 1 □ The	Min 48 7th Ame orld Geo 2 2 e Natio	erican [erican [odetic s	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929	Seconds 32
Horiz Horiz Horiz Refe Altitu Altitu	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name	in asure tum Code ethod Code	39 Feet 5 □ Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The	Min 48 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	erican [erican [odetic S nal Geo Americ	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic	-75 Me 27 33 984 Me	Minutes 25 eters eters 1929	Seconds 32
Horiz Horiz Refe Altitu Altitu	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name	in asure tum Code ethod Code	39 Feet 5 □ Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The	Min 48 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	erican [erican [odetic S nal Geo Americ	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929	Seconds 32
Horiz Horiz Refe Altitu Altitu Geo	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code	in asure tum Code ethod Code	39 Feet 5 □ Nor □ Wor □ Wor Feet 1 □ The ☑ The Illection Met	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican [erican [odetic S nal Geo Americ	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929	Seconds 32
Horiz Horiz Refe Altitu Altitu Geoi Data	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date	in asure tum Code ethod Code on Datum Co	39 Feet 5 □ Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The	Min 48 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	erican I erican I odetic S nal Geo Americ	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertical	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88	Seconds 32
Horiz Horiz Refe Altitu Altitu Geoi Data	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wc Feet 1 □ The ⊠ The Ilection Met 7/29/2015	Min 48 7th Ame orld Geo 2 2 2 North hod Co 5 1nch	erican E erican E odetic S nal Geo Americ ode	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertical	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88 Feet	Seconds 32
Horiz Horiz Refe Altitu Altitu Geoi Data	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The 1lection Met	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican E erican E odetic S nal Geo Americ ode	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88	Seconds 32
Horiz Horiz Refe Altitu Altitu Geon Data Sour	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date rce Map Scale Numb	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wc Feet 1 □ The ⊠ The Ilection Met 7/29/2015	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican E erican E odetic S nal Geo Americ ode	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88 Feet	Seconds 32
Horiz Horiz Refe Altitu Altitu Geon Data Soun	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date rce Map Scale Numb	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The 1lection Met	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican E erican E odetic S nal Geo Americ ode	41 <i>or</i> Datum of 19 Datum of 19 System of 19 System of 19 <i>or</i> odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88 Feet	Seconds 32
Horiz Horiz Refe Altitu Altitu Data Sour Projo SPM	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date rce Map Scale Numb	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The 1lection Met	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican E erican E odetic S nal Geo Americ ode	41 <i>or</i> Datum of 19 Datum of 19 System of 19 System of 19 <i>or</i> odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88 Feet	Seconds 32
Horiz Horiz Refe Altitu Altitu Geol Data Sour Proje SPM Proje	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date rce Map Scale Numb	in asure tum Code ethod Code on Datum Co	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The 1lection Met	Min 48 48 48 48 48 48 48 48 48 48 48 48 48	erican E erican E odetic S nal Geo Americ ode	41 <i>or</i> Datum of 19 Datum of 19 System of 19 System of 19 <i>or</i> odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters eters 1929 38 (NAVD88 Feet	Seconds 32
Horiz Horiz Refe Altitu Altitu Geol Data Sour Proje SPM Proje See	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date rce Map Scale Numb	in asure tum Code ethod Code on Datum Co per or	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The Ilection Met 7/29/2015 PROJEC	Min 48 th Ame th Ame orld Geo 2 e Nation e North hod Co Cen CT INF	erican E erican E odetic S nal Gec Americ ode	41 <i>or</i> Datum of 19 Datum of 19 System of 19 System of 19 <i>or</i> odetic Vertic can Vertical = r(s) =	-75 Me 27 33 84 Me al Datum of 1	Minutes 25 eters 929 38 (NAVD88 Feet Mete	Seconds 32
Horiz Horiz Refe Altitu Altitu Geol Data Sour Projo SPM See a Projo McG	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date ce Map Scale Numb ect Name T Project Phoenix ect Description attached report. ect Consultant Last I roarty	in asure tum Code ethod Code on Datum Co per or	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The Ilection Met 7/29/2015 PROJEC	Min 48 th Ame th Ame orld Geo 2 e Nation e North hod Co Cen CT INF	erican E erican E odetic S nal Gec Americ ode	41 <i>or</i> Datum of 19 Datum of 19 System of 19 System of 19 <i>or</i> odetic Vertic can Vertical = r(s) =	-75 Me 27 33 984 al Datum of 1 Datum of 198	Minutes 25 eters 929 38 (NAVD88 Feet Mete	Seconds 32
Horiz Horiz Horiz Refe Altitu Altitu Geol Data Sour Proje SPM Proje See 3 Proje McG Proje	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date ce Map Scale Numb	in asure tum Code ethod Code on Datum Co per or	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The Ilection Met 7/29/2015 PROJEC	Min 48 th Ame th Ame orld Geo 2 e Nation e North hod Co Cen CT INF	erican E erican E odetic S nal Geo Americ ode n(es) timeter ORM,	41 or Datum of 19 Datum of 19 System of 19 System of 19 System of 19 or codetic Vertic can Vertical = (s) = ATION	-75 Me 27 33 984 Me al Datum of 1 Datum of 198	Minutes 25 25 25 25 26 27 28 28 29 29 38 (NAVD88 20 20 20 20 20 20 20 20 20 20 20 20 20	Seconds 32
Horiz Horiz Horiz Refe Altitu Altitu Geon Data Soun Data Soun Proje SPM Proje See a Proje See a Proje	Point of Origi Entrance (general) zontal Accuracy Mea zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date ce Map Scale Numb act Name T Project Phoenix ect Description attached report. ect Consultant Last I roarty ect Consultant Title ipal Consultant	in asure tum Code ethod Code on Datum Co per or	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The Ilection Met 7/29/2015 PROJEC	Min 48 th Ame th Ame orld Geo 2 e Nation e North hod Co Cen CT INF	erican E erican E odetic S nal Geo Americ ode n(es) timeter Consu Enviro	41 or Datum of 19 Datum of 19 System of	-75 Me 27 33 984 Me al Datum of 1 Datum of 198 MI Sources Mar	Minutes 25 25 25 25 26 27 28 28 29 29 38 (NAVD88 20 20 20 20 20 20 20 20 20 20 20 20 20	Seconds 32
Horiz Horiz Refe Altitu Altitu Geol Data Sour Proje SPM Proje See a Proje McG Proje McG	Point of Origi Entrance (general) zontal Accuracy Mea zontal Reference Da zontal Collection Me rence Point Code ude ude Datum Name ude (Vertical) Locati metric Type Code Collection Date ce Map Scale Numb	in asure tum Code ethod Code on Datum Co per Or	39 Feet 5 Nor ⊠ Nor □ Wo Feet 1 □ The ⊠ The Ilection Met 7/29/2015 PROJEC	Min 48 th Ame th Ame orld Geo 2 e Nation e North hod Co Cen CT INF	erican E erican E odetic S nal Geo Americ ode n(es) timeter Consu Enviro	41 or Datum of 19 Datum of 19 System of 19 System of 19 or odetic Vertic can Vertical = r(s) = ATION	-75 Me 27 33 984 Me al Datum of 1 Datum of 198 MI Sources Mar	Minutes 25 25 25 25 26 27 28 28 29 29 38 (NAVD88 20 20 20 20 20 20 20 20 20 20 20 20 20	Seconds 32

	ess Last Line – C	ity		State	ZIP+			
Malve				PA	1935	5		
Phor	-	Ext	FAX	Email Address				
)13-0409	409		colin.mcgroarty@erm.co	m			
Time	Schedules	Project	Milestone (O	ptional)				
1.				g community and addressed any	\boxtimes	Yes		No
				ation to the Department?				
2.	ls your project f					Yes	\boxtimes	No
				bject is related to the grant and provide the g	grant sc	urce, co	ntact pe	erson
		expiration da						
		-	ted to Grant					
	Grant Sour				_			
		ration Date:						
3.				on on Appendix A of the Land Use	\boxtimes	Yes	П	No
э.				oppendix A of the Land Use Policy		165		NU
	attached to GIF			opendix A of the Land Use Policy				
				not subject to the Land Use Policy.				
	INDIG. IF "Vee" to	Question 3, <u>i</u>	the application	is subject to this policy and the Applicant sh	ould an	ew or the	additio	nal
			Use Information		ouiu ai			liai
	quootiono							
	A 11 <i>i</i>							
				es of local land use approvals or other	eviden	ce of co	mpliar	nce with
	comprehensive pla							
1.				unty comprehensive plan?		Yes		No
2.				municipal comprehensive plan?		Yes		No
3.				ning ordinance, municipal zoning	\boxtimes	Yes		No
	ordinance or joi				.			
				er Questions 1, 2 or 3, the provisions of the	e PA M	-C are no	ot applic	cable and
	the Applica	ant does not	<u>need to respon</u>	<u>d to questions 4 and 5 below</u> . tions 1, 2 <u>and</u> 3, the Applicant should respo	nd to a	unctions	4 and F	bolow
4.				ovisions of the zoning ordinance or		Yes		No
4.				0		162		INU
	received, attach do			approval? If zoning approval has been				
5.				ty Land Use Letters for the project?		Yes		No
U .	I I A VE YUU ALLAUI					100		

COORDINATION INFORMATION

<u>Note</u>: The PA Historical and Museum Commission must be notified of proposed projects in accordance with DEP Technical Guidance Document 012-0700-001 and the accompanying Cultural Resource Notice Form.

If the activity will be a mining project (i.e., mining of coal or industrial minerals, coal refuse disposal and/or the operation of a coal or industrial minerals preparation/processing facility), respond to questions 1.0 through 2.5 below.


If the activity will not be a mining project, skip questions 1.0 through 2.5 and begin with question 3.0.

1.0	Is this a coal mining project? If "Yes", respond to 1.1-1.6. If "No", skip to Question 2.0.	Yes	No
1.1	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be equal to or greater than 200 tons/day?	Yes	No
1.2	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be greater than 50,000 tons/year?	Yes	No
1.3	Will this coal mining project involve coal preparation/ processing activities in which thermal coal dryers or pneumatic coal cleaners will be used?	Yes	No
1.4	For this coal mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters?	Yes	No
1.5	Will this coal mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet?	Yes	No
1.6	Will this coal mining project involve underground coal mining to be conducted within 500 feet of an oil or gas well?	Yes	No
2.0	Is this a non-coal (industrial minerals) mining project? If "Yes", respond to 2.1-2.6. If "No", skip to Question 3.0.	Yes	No
2.1	Will this non-coal (industrial minerals) mining project involve the crushing and screening of non-coal minerals other than sand and gravel?	Yes	No
2.2	Will this non-coal (industrial minerals) mining project involve the crushing and/or screening of sand and gravel with the exception of wet sand and gravel operations (screening only) and dry sand and gravel operations with a capacity of less than 150 tons/hour of unconsolidated materials?	Yes	No
2.3	Will this non-coal (industrial minerals) mining project involve the construction, operation and/or modification of a portable non-metallic (i.e., non-coal) minerals processing plant under the authority of the General Permit for Portable Non-metallic Mineral Processing Plants (i.e., BAQ-PGPA/GP-3)?	Yes	No
2.4	For this non-coal (industrial minerals) mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters?	Yes	No
2.5	Will this non-coal (industrial minerals) mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 a cres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet?	Yes	No

3.0	Will your project, activity, or authorization have anything to do with a		Yes	\boxtimes	No
5.0	well related to oil or gas production, have construction within 200 feet of,		103		NO
	affect an oil or gas well, involve the waste from such a well, or string				
	power lines above an oil or gas well? If "Yes", respond to 3.1-3.3. If "No", skip to Question 4.0.				
3.1	Does the oil- or gas-related project involve any of the following:		Yes		No
	placement of fill, excavation within or placement of a structure, located				
	in, along, across or projecting into a watercourse, floodway or body of water (including wetlands)?				
3.2	Will the oil- or gas-related project involve discharge of industrial		Yes		No
	wastewater or stormwater to a dry swale, surface water, ground water or				
	an existing sanitary sewer system or storm water system? If "Yes",				
3.3	discuss in <i>Project Description</i> .		Yes		No
5.5	Will the oil- or gas-related project involve the construction and operation of industrial waste treatment facilities?		res		INO
4.0	Will the project involve a construction activity that results in earth	\boxtimes	Yes		No
+. U	disturbance? If "Yes", specify the total disturbed acreage.		103		TNO
	4.0.1 Total Disturbed Acreage 32.4 acres				
	Ū				
5.0	Does the project involve any of the following?		Yes	\boxtimes	No
	If "Yes", respond to 5.1-5.3. If "No", skip to Question 6.0.				
5.1	Water Obstruction and Encroachment Projects – Does the project involve any of the following: placement of fill, excavation within or		Yes		No
	placement of a structure, located in, along, across or projecting into a				
	watercourse, floodway or body of water?				
.2	Wetland Impacts – Does the project involve any of the following:		Yes		No
	placement of fill, excavation within or placement of a structure, located	_			
	in, along, across or projecting into a wetland?				
5.3	Floodplain Projects by the commonwealth, a Political Subdivision of the		Yes		No
	commonwealth or a Public Utility – Does the project involve any of the				
	following: placement of fill, excavation within or placement of a				
	structure, located in, along, across or projecting into a floodplain?				
6.0	Will the project involve discharge of stormwater or wastewater from an	\boxtimes	Yes		No
	industrial activity to a dry swale, surface water, ground water or an				
7.0	existing sanitary sewer system or separate storm water system?		Vaa	M	Na
7.0	Will the project involve the construction and operation of industrial waste treatment facilities?		Yes	\boxtimes	No
3.0	Will the project involve construction of sewage treatment facilities,		Yes	\boxtimes	No
5.0	sanitary sewers, or sewage pumping stations? If "Yes", indicate estimated		res		INU
	proposed flow (gal/day). Also, discuss the sanitary sewer pipe sizes and the				
	number of pumping stations/treatment facilities/name of downstream sewage				
	facilities in the <i>Project Description</i> , where applicable.				
	8.0.1 Estimated Proposed Flow (gal/day)				
9.0	Will the project involve the subdivision of land, or the generation of 800		Yes	\boxtimes	No
	gpd or more of sewage on an existing parcel of land or the generation of				
	an additional 400 gpd of sewage on an already-developed parcel, or the				
	generation of 800 gpd or more of industrial waste water that would be				
	discharged to an existing sanitary sewer system?	_		_	
	9.0.1 Was Act 537 sewage facilities planning submitted and		Yes		No
	approved by DEP? If "Yes" attach the approval letter. Approval				
	required prior to 105/NPDES approval.				
0.0	Is this project for the beneficial use of biosolids for land application		Yes	\boxtimes	No
	within Pennsylvania? If "Yes" indicate how much (i.e. gallons or dry tons per				
	year). 10.0.1 Gallona Bar Yaar (residential contage)				
	10.0.1 Gallons Per Year (residential septage)				
	10.0.2 Dry Tons Per Year (biosolids)				

1.0	Does the project involve construction, modification or removal of a dam?If "Yes", identify the dam.11.0.1Dam Name		Yes	\boxtimes	No
2.0	Will the project interfere with the flow from, or otherwise impact, a dam?		Yes	X	No
2.0	If "Yes", identify the dam. 12.0.1 Dam Name		100		110
3.0	Will the project involve operations (excluding during the construction period) that produce air emissions (i.e., NOX, VOC, etc.)? If "Yes", identify each type of emission followed by the amount of that emission.13.0.1Enter all types & amounts of emissions; separate 		Yes		No
4.0	Does the project include the construction or modification of a drinking water supply to serve 15 or more connections or 25 or more people, at least 60 days out of the year? If "Yes", check all proposed sub-facilities.14.0.1Number of Persons Served14.0.2Number of Employee/Guests14.0.3Number of Connections		Yes		No
	14.0.4 Sub-Fac: Distribution System		Yes		No
	14.0.5 Sub-Fac: Water Treatment Plant		Yes		No
	14.0.6 Sub-Fac: Source		Yes		No
	14.0.7 Sub-Fac: Pump Station		Yes		No
	14.0.8 Sub Fac: Transmission Main		Yes		No
	14.0.9 Sub-Fac: Storage Facility		Yes		No
5.0	Will your project include infiltration of storm water or waste water to ground water within one-half mile of a public water supply well, spring or infiltration gallery?		Yes	X	No
6.0	 Is your project to be served by an existing public water supply? If "Yes", indicate name of supplier and attach letter from supplier stating that it will serve the project. 16.0.1 Supplier's Name Chester Water Authority 		Yes		No
	16.0.2 Letter of Approval from Supplier is Attached		Yes	\boxtimes	No
7.0	Will this project involve a new or increased drinking water withdrawalfrom a stream or other water body? If "Yes", should reference both WaterSupply and Watershed Management.17.0.1Stream Name		Yes	X	No
8.0	Will the construction or operation of this project involve treatment, storage, reuse, or disposal of waste? If "Yes", indicate what type (i.e., hazardous, municipal (including infectious & chemotherapeutic), residual) and the amount to be treated, stored, re-used or disposed.	X	Yes		No
	18.0.1Type & Amount Refer to Section 3 of the Site Restoration/Post Management Plan	Const	ruction	Storm	wate
9.0	Will your project involve the removal of coal, minerals, etc. as part of any earth disturbance activities?		Yes		No
0.0	 Does your project involve installation of a field constructed underground storage tank? If "Yes", list each Substance & its Capacity. Note: Applicant may need a Storage Tank Site Specific Installation Permit. 20.0.1 Enter all substances & capacity of each; se parate each set with semicolons. 		Yes	X	No

21.0			on of an aboveground storage tank		Yes		No
	each Substan	nce & its Capacity. Note	y at an existing facility? If "Yes", list : Applicant may need a Storage Tank				
		Installation Permit.					
	Ca	nter all substances apacity of each; se par ach set with semicolor					
22.0	which will c Regulated S	ontain a highly hazar Substances List, 257	on of a tank greater than 1,100 gallons dous substance as defined in DEP's 0-BK-DEP2724? If "Yes", list each pplicant may need a Storage Tank Site		Yes	X	No
	Specific Insta		pplicant may need a Stolage fank Site				
	22.0.1 E	nter all substances					
		apacity of each; se par ach set with semicolor					
23.0	Does your pr	oject involve installati	on of a storage tank at a new facility		Yes	M	No
	with a total A	ST capacity greater th	an 21,000 gallons? If "Yes", list each pplicant may need a Storage Tank Site				
	Specific Insta		pplicant may need a Storage Tank Site				
		nter all substances	&				
		apacity of each; se par					
24.0		ach set with semicolor	e use of a radiation source?	Π	Yes	X	No
2410	win the men		CERTIFICATION		103	14.54	140
I certif	v that I have th	e authority to submit the	his application on behalf of the applica	ant na	a med h	erein	an
that th	e information	provided in this appl	ication is true and correct to the bes	t of m	y knov	vledge	e an
	or Print Name	Edward G. Human					
Type C	20		Director of Marcus Hook Operations			1	1
	XPI 10		Director of Marcus Hook Operations	>		125	110
Signat	1	162	Title			111-11	1.1

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

AIR POLLUTION CONTROL ACT COMPLIANCE REVIEW FORM

Fully and accurately provide the following information, as specified. Attach additional sheets as necessary.
Type of Compliance Review Form Submittal (check all that apply)
Original Filing Date of Last Compliance Review Form Filing:
Amended Filing <u>09/19/2018</u>
Type of Submittal
New Plan Approval New Operating Permit Renewal of Operating Permit
Extension of Plan Approval Change of Ownership Periodic Submission (@ 6 mos)
Other:
SECTION A. GENERAL APPLICATION INFORMATION
Name of Applicant/Permittee/("applicant")
(non-corporations-attach documentation of legal name)
Sunoco Partners Marketing & Terminals, L.P.
Address 3807 West Chester Pike
Newtown Square, PA 19072
Telephone 610-670-3297 Taxpayer ID# 23-310-2655
Permit, Plan Approval or Application ID#
Identify the form of management under which the applicant conducts its business (check appropriate box) Individual Syndicate Government Agency Municipality Municipal Authority Joint Venture Proprietorship Fictitious Name Association Public Corporation Partnership Other Type of Business, specify below: Private Corporation Limited Partnership Describe below the type(s) of business activities performed. SIC Code 4226 – Petroleum & Chemical Bulk Stations & Terminals for Hire SIC Code 1321- Natural Gas Liquids

SECTION B. GENERAL INFORMATION REGARDING "APPLICANT"

If applicant is a corporation or a division or other unit of a corporation, provide the names, principal places of business, state of incorporation, and taxpayer ID numbers of all domestic and foreign parent corporations (including the ultimate parent corporation), and all domestic and foreign subsidiary corporations of the ultimate parent corporation with operations in Pennsylvania. Please include all corporate divisions or units, (whether incorporated or unincorporated) and privately held corporations. (A diagram of corporate relationships may be provided to illustrate corporate relationships.) Attach additional sheets as necessary.

Unit Name	Principal Places of Business	State of Incorporation	Taxpayer ID	Relationship to Applicant
Sunoco Partners Marketing & Terminals L.P.	PA	ТХ	23-3102655	Applicant
Sunoco Logistics Partners Operations GP LLC	PA	DE	23-3102660	General Partner of Applicant
Sunoco Logistics Partners Operations L.P.	PA	DE	23-3102657	Limited Partner and owner of General Partner of Applicant
Sunoco Logistics Partners GP LLC	PA	DE	23-3102658	General partner of Limited Partner of Applicant
Energy Transfer L.P.	тх	DE	73-1493906	Ultimate Parent – limited partner of the Limited Partner and owner of the general partner of the limited partner of the Applicant
Subsidiaries of ultimate parent with operations in PA- See Attachment 3				
			PPLICANT AND ITS "RI	

2700-PM-AQ0004 Rev. 6/2006

	me	Bu	siness Address	
Sunoco Partners Mar L.P.		3807 West Chester Pike, Ne		073
List the names and being permitted (i.e.	business address of . plant manager).	f persons with overall man	agement responsibili	ity for the process
Nar	me	Bu	siness Address	-
see attachment #1				
Department or an a parties that are curr form is notarized. issuance and expira	pproved local air pol ently in effect or hav This list shall inclu ation dates. Attach ad	List ail plan approvals lution control agency unde e been in effect at any time de the plan approval and dditional sheets as necess	er the APCA to the ap 5 years prior to the o operating permit nu ary.	pplicant or related date on which this imbers, locations,
Department or an apparties that are curr form is notarized.	pproved local air pol rently in effect or hav This list shall inclu ation dates. Attach ad Plan Approval/	lution control agency unde e been in effect at any time de the plan approval and dditional sheets as necess	er the APCA to the ap 5 years prior to the o operating permit nu ary.	pplicant or related date on which this
Department or an a parties that are curr form is notarized. issuance and expira Air Contamination	pproved local air pol ently in effect or hav This list shall inclu ation dates. Attach ad	lution control agency unde e been in effect at any time de the plan approval and dditional sheets as necess	er the APCA to the ap 5 years prior to the o operating permit nu ary.	pplicant or related date on which this imbers, locations, Expiration
Department or an a parties that are curr form is notarized. issuance and expira Air Contamination Source	pproved local air pol rently in effect or hav This list shall inclu ation dates. Attach ad Plan Approval/	lution control agency unde e been in effect at any time de the plan approval and dditional sheets as necess	er the APCA to the ap 5 years prior to the o operating permit nu ary.	pplicant or related date on which this imbers, locations, Expiration

Compliance Background. (Note: Copies of specific documents, if applicable, must be made available to the Department upon its request.) List all documented conduct of violations or enforcement actions identified by the Department pursuant to the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. Attach additional sheets as necessary. See the definition of "documented conduct" for further clarification. Unless specifically directed by the Department, deviations which have been previously reported to the Department in writing, relating to monitoring and reporting, need not be reported.

Date	Location	Plan Approval/ Operating Permit#	Nature of Documented Conduct	Type of Department Action	Status: Litigation Existing/Continuing or Corrected/Date	Dollar Amount Penalty
5/2014	Belmont Terminal	PLID No: 01507	Failure to submit annual compliance certification to the Philadelphia Depart. Of Health	NOV/FOV	SXL submitted report but it was not recorded by the AMS.	\$1,500
3/24/15	Marcus Hook Industrial Complex	23-00119	Failure to submit an extension for a plan approval.	NOV/FOV	The plan approval extension request was submitted on February 26, 2015.	\$4,000
5/11/15	Twin Oaks Terminal	23-00045	PADEP issued an NOV for late submittal of a Permit Application.	ADEP issued an NOV for NOV The abate ate submittal of a Permit submitted		\$0
6/16/15	Marcus Hook Industrial Complex	23-00119	Failure to maintain permit required records regarding tank repair work	equired records regarding PADEP July 9, 201		\$0
8/20/15	Marcus Hook Industriał Complex (MHIC)	23-00119	Failure to maintain permit records regarding sample collection of process gas to analyze for sulfur, for failure to maintain Stage II Vapor Recovery Test Results and for exceeding NOX emissions during ozone season in 2013 and 2014.	NOV	Corrective Action submitted to PADEP September 16, 2015 and October 30, 2015.	
10/23/15	Malvern Terminal	15-00043	PADEP issued a NOV for not having records available at the time of an unannounced inspection.	NOV	The requested information was provided on November 11, 2015.	\$0
06/07/16	MHIC	23-00119	Exceeded 12 month rolling emission limit for tanks 607, 611 and 23.	NOV	Submitted plan approval for increase in tank emissions.	\$0
1/24/17	Twin Oaks Terminal	23-00045	Penalty for late permit application and operating without a valid permit	FOV	Paid the penalty	\$3,750
6/8/2017	MHIC	23-00119	Violations for missing required inspections.	NOV/CACP*	Corrected inspection deficiencies.	03/15/19 global settlement
7/7/2017	Twin Oaks Terminal	23-00045	Did not identify the cause of a delayed repair in the AVO log.	NOV/CACP*	Corrected deficiency and conducted training to personnel to record delays and cause of delay on the log form.	03/15/19 global settlement
9/15/17	Delmont Terminal	65-00354	Late submittal of the annual compliance certification.	NOV/CACP	Submitted the annual compliance certification and ensured reporting deadline is correct in the EMS.	\$1,000
12/19/17	Pittsburgh Terminal	TVOP 0007	Exceeded Emission limit for tank 4 & 321	FOV	A Permit modification is pending to increase emissions	\$0
1/12/18	MHIC	23-00119	Propane release to the outdoor atmosphere.	NOV	Corrective actions completed and summarized in a letter to the Department dated April 26, 2018.	\$0

2700-PM-AQ0004 Rev. 6/2006

7/10/18	MHIC	23-0119D	Allegedly failed to monitor valves in gas/vapor service and light liquid service within 30 days of the end of startup.	NOV/CACP*	All valves have been monitored.	03/15/19 global settlement \$110,000
3/18/2019	MHIC	23-00119	Butane release to the outdoor atmosphere	NOV	Root Cause analyses are being completed, and will be submitted to PADEP prior to due date.	\$0
plan app and loca unknown	roval or or tion in rev	der by applicativerse chronolog partment. Attac	nt or any related party, u gical order. This list m	using the fol lust include	nditions of an operating lowing format grouped to items both currently kn be the definition of "devia Incident S Litigati Existing/Co	by source lown and tions" for tatus:
Date		Location	Plan Approval/ Operating Permit#	Natur Devia		l/Date
	-					
				-		
				1		
	JING OBLIG	GATION. Appl	icant is under a continu	ling obligation	on to update this form	using

VERIFICATION STATEMENT

Subject to the penalties of Title 18 Pa.C.S. Section 4904 and 35 P.S. Section 4009(b)(2), I verify under penalty of law that I am authorized to make this verification on behalf of the Applicant/Permittee. I further verify that the information contained in this Compliance Review Form is true and complete to the best of my belief formed after reasonable inquiry. I further verify that reasonable procedures are in place to ensure that "documented conduct" and "deviations" as defined in 25 Pa Code Section 121.1 are identified and included in the information set forth in this Compliance Review Form. $\frac{4/10/19}{Date}$

Jonathan A. Hunt

Name (Print or Type)

Vice-President, Energy Transfer L.P.

Title

Facility Name	Owner/Operator	Federal Tax ID #	SiC Code	Facility Address	City	Zip Code	County	Facility Manager	Office Number
Belmont Term	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	2700 West Passyunk Ave	Philadelphia	19145	Philadelphia	Jacolyn Abdala	610-859-5752
Blawnox Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	Freeport Road & Boyd	Pittsburgh	15238	Allegheny	Adam Bechtel	412-828-7500
Delmont Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	Route 66	North Deimont	15626	Westmoreland	Mark Whalen	724-468-4072
Eldorado (Altoona) Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	Rt. 764 N. & Sugar Run Road	Altoona	16601	Blair	Mark Whalen	814-944-8153
Exton Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	601 E. Lincoln Highway	Exton	19134	Chester	Jacolyn Abdala	215-778-0206
Fullerton Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	2480 Main Street	Fullerton	18052	Lehigh	Steve Kutney	610-264-0526
Kingston Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	Rt. 11, Box 1479	Kingston	18704-3102	Luzeme	Steve Kutney	570-288-2555
Malvern Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	41 Malin Road	Malvern	10355	Chester	Jacolyn Abdala	215-778-0206
Marcus Hook Industrial Complex	Sunoco Partners Marketing & Terminals L.P	23-3102655	4226	100 Green Street	Marcus Hook	19061	Delaware	Ed Human	610-859-1912
Mechanicsburg Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	5145 Simpson Ferry Road	Mechanicsburg	17055	Cumberland	Terry Wolfe	717-766-2526
Montello Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	PO Box 2089, Fritztown Road	Montello	19608	Berks	Terry Wolfe	610-927-2090
Northumberland Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	Rd#1, Box 285 E	Northumberland	17857	Northumberland	Steve Kutney	570-473-3575
Pittsburgh Term.	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	5733 Butler Street	Pittsburgh	15210	Allegheny	Adam Bechtel	412-784-3460
Twin Oaks Term	Sunoco Partners Marketing & Terminals L.P.	23-3102655	4226	4041 Market Street	Aston	19014	Delaware	Mike Billman	610-859-5742

Attachment #1: Names, Locations and Facility Managers for all Sunoco Partners Marketing & Terminals L.P. Related Parties in PA.

Facility Owner / **Permit Type** Permit # State Effective Expiration Operator Belmont Sunoco Partners PA Title V Permit V04-004 08/01/2010 08/01/2015 (permit renewal Marketing & submitted Terminals L.P. 1/29/15) Blawnox Sunoco Partners PA ACHD 06/27/2016 0011 06/28/2011 Synthetic (permit renewal Marketing & Submitted Terminals L.P. Minor 12/18/2015) Sunoco Partners PA Delmont Title V Permit 65-00354 07/12/2017 07/12/2022 Marketing & Terminals, L.P. Eldorado Sunoco Partners PA Synthetic 07-05025 02/01/2014 01/31/2019 Marketing & Minor (permit renewal submitted Terminals L.P. 6/29/2018) Exton Sunoco Partners PA Synthetic 15-00044 05/28/2020 05/28/2015 Marketing & Minor Terminals L.P. Fullerton Sunoco Partners PA Synthetic 39-00022 09/17/2014 09/17/2019 Marketing & Minor Terminals L.P. Kingston Sunoco Partners PA Synthetic 40-00025 09/17/2014 09/17/2019 Marketing & Minor Terminals L.P. Marcus Hook Sunoco Partners PA Title V Permit 23-00119 4/01/2015 4/01/2020 Industrial Marketing & Complex Terminals L.P. Marcus Hook Sunoco Partners PA Plan Approval 23-0119D 2/26/2015 05/18/2019 Industrial Marketing & Complex Terminals, L.P. Marcus Hook Sunoco Partners PA Plan Approval 23-0119E 04/01/2016 10/01/2019 Industrial Marketing &

Plan Approval

Title V Permit

Title V Permit

Title V Permit

23-0119H

15-00043

21-05029

06-05064

04/13/2018

05/01/2014

04/01/2014

10/01/2014

10/13/2019

04/30/2019

(permit renewal submitted

8/17/2018)

03/31/2019

(permit renewal

submitted

10/9/2018)

9/30/2019

Complex

Industrial

Complex

Malvern

Montello

Marcus Hook

Mechanicsburg

Terminals, L.P.

Terminals, L.P.

Marketing &

Marketing &

Marketing &

Marketing & Terminals L.P.

Terminals L.P.

Terminals L.P.

Sunoco Partners PA

Sunoco Partners PA

Sunoco Partners PA

Sunoco Partners PA

Attachment #2: Plan Approvals & Operating Permits

	Sunoco Partners Marketing & Terminals L.P.	PA	Synthetic Minor	49-00019	12/26/2014	12/25/2019
Pittsburgh	Sunoco Partners Marketing & Terminals L.P.	PA	ACHD Title V Permit	0007	06/30/2011	06/29/2016 (permit renewal Submitted 12/22/2015)
Twin Oaks	Sunoco Partners Marketing & Terminals L.P.	PA	Title V Permit	23-00045	12/02/2015	12/01/2020

.

Attachment 3 APCA Compliance Review Form Subsidiaries with Operations in Pennsylvania of Parent Energy Transfer L.P. of Applicant Sunoco Partners Marketing & Terminals L.P. April 8, 2019

Entity Name	Entity Main Address	Domestic Jurisdiction	Taxpayer ID	Relationship to Applicant
Sunoco Pipeline L.P.	3807 West Chester Pike, Newtown Square, PA 19073	DE	23-3102656	Indirect subsidiary of ultimate parent
Regency Marcellus Gas Gathering LLC	8111 Westchester Drive Suite 600 Dallas, TX 75225	DE	27-2142725	Indirect subsidiary of ultimate parent
Regency NEPA GAS Gathering LLC	8111 Westchester Drive Suite 600 Dailas, TX 75225	ТХ	38-3877838	Indirect subsidiary of ultimate parent
ET Rover Pipeline LLC	8111 Westchester Drive Suite 600 Dallas, TX 75225	DE	46-5655475	Indirect subsidiary of ultimate parent and Member Rover Pipeline LLC Joint venture
Rover Pipeline LLC	8111 Westchester Drive Suite 600 Dallas, TX 75225	DE	47-1958303	Joint Venture of ET Rover Pipeline LLC, and non affiliated company, AE-MidCo Rover, LLC
PEI Power Corporation	1 P E I CTR Wilkes-Barre, PA 18711-0601	PA	23-2933578	Indirect subsidiary of ultimate parent

1

2700-PM-AQ0007 Rev.7/2004

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

PROCESSES

Application for Plan Approval to Construct, Modify or Reactivate an Air Contamination Source and/or Install an Air Cleaning Device

This application must be submitted with the General Information Form (GIF).

Before completing this form, read the instructions provided for the form.

Before completin	ig this form, read the instruction	ons provided for the form.
Section A	- Facility Name, Checklist	And Certification
Organization Name or Registered Fictitio	ous Name/Facility Name: <u>Sunoc</u>	o Partners Marketing & Terminals, L.P. Marcus
DEP Client ID# (if known): 161585		
Type of Review required and Fees:		
 Source which is not subject to I Source requiring approval unde Source requiring approval unde Source requiring the establishm Source requiring approval unde 	r NSPS or NESHAPS or both: r NSR regulations: nent of a MACT limitation:	\$ <u>1,700</u> \$ <u>5,300</u> \$
	Applicant's Checkli	st
Check the following li	st to make sure that all the rec	uired documents are included.
General Information Form (GIF)	
Processes Plan Approval A	pplication	
Compliance Review Forn facilities submitting on a perio	n or provide reference of most	recently submitted compliance review form for
Copy and Proof of County a	and Municipal Notifications	
Permit Fees		
Addendum A: Source Appli	cable Requirements (only applic	able to existing Title V facility)
I, Edward G. Human 35 P.S. §4009(b) (2) that based on infor	, certify under penalty mation and belief formed after rea	ess by a Responsible Official of law in 18 Pa. C. S. A. §4904, and asonable inquiry, the statements and information
in this application are true, accurate and	complete.	
in Edd at		Taclia
(Signature): Name (Print): Edward G. Human		7/29/19 Pirector of Marcus Hook Operations
Name (Find). <u>Edward O. Haman</u>		
	OFFICIAL USE ONLY	
Application No	Unit ID	Site ID
DEP Client ID #	APS. ID	Site ID AUTH. ID
Date Received	Date Assigned	Reviewed By
Date of 1 st Technical Deficiency Comments:	Date o	f 2 nd Technical Deficiency

	S	ection B - Pro	cesses Informat	ion		
1. Source Info	rmation					
	n (give type, use, raw	· •	,		,	
	uct storage, cold flare ed report for additiona		cooler, and product l	oading opera	tions from existing loading	
Manufacturer		Model N	No.		ber of Sources	
N/A Source Designatio	n	N/A Maximu	um Capacity	4 Rate	d Capacity	
Ū			. ,			
Type of Material Pr Liquid hydrocarbor	rocessed ns consisting of mostly	y ethane				
Maximum Operat	•					
Hours/Day 24	Days/We 7	ek	Days/Year 365		Hours/Year 8760	
Operational restric	tions existing or reque	ested, if any (e.g.,	bottlenecks or volun	tary restrictio	ns to limit PTE)	
Capacity (specify	vunits)					
Per Hour	Per Day		Per Week		Per Year	
Operating Sched						
Hours/Day 24	Days/We 7	ek	Days/Year 365		Hours/Year 8760	
Seasonal variation	s (Months) From		to			
2. Fuel – Not A	nnliachla					
Z. Fuer-Not A	Quantity			% Ash		
Туре	Hourly	Annually	Sulfur	(Weight)	BTU Content	
Oil Number	GPH @ 60°F	X 10 ³ Gal	% by wt		Btu/Gal. & Lbs./Gal. @ 60 °F	
Oil Number	GPH @ 60°F	X 10 ³ Gal	% by wt		Btu/Gal. & Lbs./Gal. @ 60 °F	
Natural Gas	SCFH	X 10 ⁶ SCF	grain/100 SCF		Btu/SCF	
Gas (other)	0.0511					
	SCFH	X 10 ⁶ SCF	grain/100 SCF		Btu/SCF	
Coal	TPH	Tons	% by wt		Btu/lb	
Other *						
*Note: Describe a	I I nd furnish information	separately for ot	her fuels in Addendu	m B.	1	

Section B - Processes Information (Continued)								
B. For Solids – Not Applicable								
Type: Silo Storage Bin Othe	er, Describe	Name of	Material S	Stored				
Silo/Storage Bin I.D. No.	Manufacturer			Date Installed				
State whether the material will be stored in loose or bags in silos			Capacity (Tons)					
Turn over per year in tons			Turn over per day in tons					
Describe fugitive dust control system fo	r loading and handlir	ig operatio	ns					
Describe material handling system								
5. Request for Confidentiality								
Do you request any information on this If yes, include justification for confidenti								

Section B - Processes Information (Continued)

6. Miscellaneous Information

Attach flow diagram of process giving all (gaseous, liquid and solid) flow rates. Also, list all raw materials charged to process equipment, and the amounts charged (tons/hour, etc.) at rated capacity (give maximum, minimum and average charges describing fully expected variations in production rates). Indicate (on diagram) all points where contaminants are controlled (location of water sprays, collection hoods, or other pickup points, etc.). Describe collection hoods location, design, airflow and capture efficiency. Describe any restriction requested and how it will be monitored.

See simplified process flow diagram included in attached report.

Describe fully the facilities provided to monitor and to record process operating conditions, which may affect the emission of air contaminants. Show that they are reasonable and adequate.

The majority of air contaminant emissions occur from the Project Phoenix Cold Flare which is affected by the throughput of material in the process, but is itself a control device. The flare will be operated according to the manufacturer's specifications. The largest source of VOC emissions occur from fugitive leaking components, which are not affected by the throughput of the material in the process. All the fugitive leak components will be included in a facility LDAR program to detect and repair leaking components. Air contaminant emissions from the product loading operations will be minimized through best management practices.

Describe each proposed modification to an existing source.

No modifications will be made as a result of this project. Incremental increases in utilization of utility sources and existing product loading equipment will result from the project. Associated piping connections will need to be completed to utilize existing utilities and processes.

Identify and describe all fugitive emission points, all relief and emergency valves and any by-pass stacks.

See the back-up emissions calculations included in the attached report.

Describe how emissions will be minimized especially during start up, shut down, process upsets and/or disruptions.

As part of the project both the high pressure and low pressure cold flares, and the existing West Warm Flare, will be used to minimize releases of air contaminants to the atmosphere during emergency depressurizations.

Anticipated Milestones:

- i. Expected commencement date of construction/reconstruction/installation: December 2019
- ii. Expected completion date of construction/reconstruction/installation:
- iii. Anticipated date of start-up:

: <u>December 2019</u> <u>4th Quarter 2022</u> 4th Quarter 2022

Section C - Air Cleaning Device									
1. Precontrol Emissions*									
			Maximum	Emission Rate		Calculation/			
F	Pollutant	Specify Units	Pounds/Hour	Hours/Year	Tons/Year	Estimation Method			
РМ			2.18	8760	9.53	See attached			
PM ₁₀			2.14	8760	9.37	See attached			
SOx			9.01	8760	39.48	See attached			
CO			21.49	8760	94.11	See attached			
NOx			9.40	8760	41.17	See attached			
VOC			36.71	8760	160.79	See attached			
Others	: (e.g., HAPs)								
PM _{2.5}			1.92	8760	8.40	See attached			
CO2e			25,753	8760	112,799	See attached			
sche value	edule for maximu es were determin	m limits or restricted ed. Attach calculati	hours of operation	d operating schedule and/or restricted thro					
	Gas Cooling – N								
	quenching		Water injection ra	te					
Radiati □ Yes	ion and convection I no	on cooling		Air dilution	Yes □No FM				
Forced	d Draft 🛛 Yes	🗆 No		Water cooled duct wo	ork 🗌 Yes 🗌	No			
Other									
Inlet Vo	olume	ACFM		Outlet Volume	ACFM				
@	°F	% Moisture		@°F	% Moisture				
Descril	be the system in	detail.							

Section C - Air Cleaning Device (Continued)								
3. Settling Chambers – Not Applic	able							
	/olume of gas handle ACF ⊉°F		Gas velocity	y (ft/sec.)				
Length of chamber (ft.) Width of	chamber (ft.)	Height of chambe	er (ft.)	Number of trays				
Water injection 🛛 Yes 🗍 No		Water injection ra	te (GPM)	•				
Emissions Data			-					
Inlet	Ou	tlet	R	emoval Efficiency (%)				
4. Inertial and Cyclone Collectors			-					
Manufacturer	Туре		Model N	0.				
Pressure drop (in. of water)	Inlet volumeACFM @°F		Outlet volumeACFM @°F					
Number of individual cyclone(s)		Outlet straightening vanes used?						
Length of Cyclone(s) Cylinder (ft.)	Diameter of Cyclone(s) Cylinder (ft.)		Length c	Length of Cyclone(s) cone (ft.)				
Inlet Diameter (ft.) or duct area (ft. ²) of c	yclone(s)	Outlet Diameter (ft.) or duct area (ft. ²) of cyclone(s)						
If a multi-clone or multi-tube unit is insta	lled, will any of the in	dividual cyclones or	cyclone tub	es be blanked or blocked off?				
Describe any exhaust gas recirculation loop to be employed.								
Attach particle size efficiency curve	Attach particle size efficiency curve							
Emissions Data								
Inlet	Ou	tlet	R	emoval Efficiency (%)				

Section C - Air Cleaning Device (Continued)								
5. Fabric Collector – Not	t applicable							
Equipment Specifications								
Manufacturer			Мос	del No.			Pressurized I Suction Desig	0
Number of Compartments		Number of Filter	s Pei	r Compartment		aghouse ∃ Yes	e Insulated? □ No	
Can each compartment be isolated for repairs and/or filter replacement?								
Are temperature controls provided? (Describe in detail)								
Dew point at maximum moist	ure	°F	[Design inlet volume	e			SCFM
Type of Fabric								
Material		Felted		Membra	ane			
Weight		🗌 Woven		Others:	List:			
Thickness			Wow	en				
Fabric permeability (clean) @								
Filter dimensions Length		Diame	eter/V	Vidth				
Effective area per filter				Maximum operating				
Effective air to cloth ratio	Minimur	n	Ν	Maximum				
Drawing of Fabric Filter A sketch of the fabric filter and temperature indicator			twalk	s, ladders and exha	aust dı	uctwork,	location of ea	chpressure
Operation and Cleaning					-			
Volume of gases handled		Describe the		ross collector (in. of pment to be used to			oressure drop	
ACFM @	°F		oqu		o mon			1
Type of filter cleaning Manual Cleaning Mechanical Shakers Pneumatic Shakers		 □ Bag Collapse □ Sonic Cleani □ Reverse Air F 	ng Flow			Reverse Other	Air Jets	
Describe the equipment prov	ided if dry oi	il free air is requir	ed fo	r collector operation	n			
Cleaning Initiated By		Frequency if tim	in.	of water 🗌 O		pecify		
Does air cleaning device em	ploy hopper	heaters, hopper	<i>i</i> brat	ors or hopper level	detec	tors? If y	yes, describe.	1
Describe the warning/alarm s	system that p	protects against c	pera	tion when the unit i	s not n	neeting	design require	ments.
Emissions Data								
Pollutant		Inlet		Outlet		Re	emoval Effici	ency (%)

Section C - Air Cleaning Device (Continued)							
6. Wet Collection Equipment – Not Applicable							
Equipment Specification	ıs	-		-			
Manufacturer		Туре		Model No.			
Design Inlet Volume (SCFM) Relative Particulate/Gas Velocity (ejector scrubbe							
Describe the internal features (e.g., variable throat, gas/liquid diffusion plates, spray nozzles, liquid redistributors, bed limiters, etc.).							
Describe pH monitoring a	nd pH adjustme	ent systems, if a	pplicable.				
Describe mist eliminator o	or separator (typ	be, configuratior	n, backflush capability, free	quency).			
Attach particulate size effi	ciency curve.						
Operating Parameters							
Inlet volume of gases har	ndled	(ACFM)	Outlet volume of gases handled (ACFM)				
	@	°F	@	°F	% Moisture		
Liquid flow rates. Describe equipment provided to measure liquid flow rates to scrubber (e.g., quenching section, recirculating solution, makeup water, bleed flow, etc.)							
Describe scrubber liquid supply system (amount of make-up and recirculating liquid, capacity of recirculating liquid system, etc.)							
State pressure drop range (in water) across scrubber (e.g., venturi throat, packed bed, etc.) only. Describe the equipment provide to measure the pressure drop. Do not include duct or de-mister losses.							
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.							
Emissions Data							
Pollutant	1	nlet	Outlet	R	emoval Efficiency (%)		

Section C - Air Cleaning Device (Continued)								
7. Electrostatic Precipitator – Not Applicable								
Equipment Specifications								
Manufacturer	Model No.				☐ Wet ☐ Single-	Stage	□ Dry □ Two-Stage	
Gas distribution grids Yes No Design Inlet Volume (SCFM) Maximum operating temperature (°F) Maximum operating temperature (°F)								
Total collecting surface area sq. ft. Collector plates size length ft. x width						ft.		
Number of fields Number of collector plates/field								
Spacing between collector	Spacing between collector plates inches.							
Maximum gas velocity	fi	t./sec.	Minim	num gas treatment time	e:	_sec.		
-	Total discharge electrode lengthft. Number of discharge electrodes Number of discharge electrodes							
Rapper control Image: Magnetic Imagnetic Image: Other Image: Describe in detail								
Operating Parameters								
Inlet gas temperature (°F)	_		State pressure drop range (inches water gauge) across					
Outlet gas temperature (°	F)	—		collector only Describe the equipment				
Volume of gas handled (A	Dust resistivity (ohm-cm). Will resistivity vary?							
Power requirements								
Number and size of Trans	former Rectifie	r sets by ele	ectrical	field				
Field No.	No. of Sets		Ea	ich Transformer KVA	Each Rectifier KV Ave./Peak Ma DC			
Current Density Corona Power Micro amperes/ft ² . W			atts/1000 ACFM	s/1000 ACFM Corona Power Density Watts/ft ² .				
Will a flue gas conditioning system be employed? If yes, describe it.								
Does air cleaning device employ hopper heaters, hopper vibrators or hopper level detectors? If yes, describe.								
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.								
Emissions Data								
Pollutant	l	nlet		Outlet		Removal Efficiency (%)		

Section C - Air Cleaning Device (Continued)							
8. Adsorption Equipr	nent – Not App	olicable					
Equipment Specification	าร						
Manufacturer		Туре			Model N	0.	
Design Inlet Volume (SCFM) Adsorbent charge per adsorber vessel and number of adsorber ve					d number of adsorber vessels		
Length of Mass Transfer Zone (MTZ), supplied by the manufacturer based upon laboratory data.							
Adsorber diameter (ft.) and area ft ² .)				Adsorption bed depth (ft.)			
Adsorbent information							
Adsorbent type and physical properties.							
Working capacity of adsorbent (%)				Heel percent or unrecoverable solvent weight % in the adsorbent after regeneration.			
Operating Parameters							
Inlet volume of gases han	dled	(ACI	FM)@	°F			
Adsorption time per adsorption bed Breakthrough capacity: Lbs. of solvent / 100 lbs. of adsorbent =				sorbent =			
Vapor pressure of solvents at the inlet temperature				Available steam in pounds to regenerate carbon adsorber (if applicable)			
Percent relative saturation of each solvent at the inlet temperature							
Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment.							
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.							
Emissions Data							
Pollutant	Pollutant Inlet			Outlet		Removal Efficiency (%)	

Section C - Air Cleaning Device (Continued)							
9. Absorption Equipment – Not Applicable							
Equipment Specification	าร	-					
Manufacturer		Туре			lo.		
Design Inlet Volume (SCF	FM)	·	Tower height (ft.) and inside diameter (ft.)				
Packing type and size (if a	applicable)		Height of packing	Height of packing (ft.) (if applicable)			
Number of trays (if application	able)		Number of bubble	Number of bubble caps (if applicable)			
Configuration	nt [Cross flow	Cocurrent fl	ow			
Describe pH and/or other monitoring and controls.							
Absorbent information							
Absorbent type and conce	entration.		Retention time (sec.)				
Attach equilibrium data for absorption (if applicable)							
Attach any additional information regarding auxiliary equipment, absorption solution supply system (once through or recirculating, system capacity, etc.) to thoroughly evaluate the control equipment. Indicate the flow rates for makeup, bleed and recirculation.							
Operating Parameters							
Volume of gas handled (A	ume of gas handled (ACFM) Inlet temperature (°F)			Pressure drop (in. of water) and liquid flow rate. Describe the monitoring equipment.			
State operating range for pH and/or absorbent concentration in scrubber liquid.							
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.							
Emissions Data							
Pollutant	Inlet		Outlet		Removal Efficiency (%)		

Section C - Air Cleaning Device (Continued)									
10. 🗌 Selective Cata	lytic Reduction	(SCR) – Not App	blicable						
Selective Non-Catalytic Reduction (SNCR) – Not Applicable									
Non-Selective Catalytic Reduction (NSCR) – Not Applicable									
Equipment Specification	ns			1					
Manufacturer		Туре		Model No.					
Design Inlet Volume (SCF	Design Inlet Volume (SCFM) Design operating temperature (°F)								
Is the system equipped w details.	Is the system equipped with process controls for proper mixing/control of the reducing agent in gas stream? If yes, give details.								
Attach efficiency and othe	er pertinent infor	mation (e.g., amm	onia slip)						
Operating Parameters									
Volume of gases handled (ACFM) @ °F									
Operating temperature ra	Operating temperature range for the SCR/SNCR/NSCR system (°F) From°F To°F								
Reducing agent used, if a	ny		Oxidation catalyst	used, if any					
State expected range of u	isage rate and c	oncentration.							
Service life of catalyst			Ammonia slip (ppn	n)					
Describe fully with a sketch giving locations of equipment, controls systems, important parameters and method of operation.									
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.									
Emissions Data									
Pollutant	Ir	nlet	Outlet		Removal Efficiency (%)				

Section C - Air Cleaning Device (Continued)									
11. Oxidizer/Afterburners – Not Applicable									
Equipment Specifications									
Manufacturer		Туре 🛛	The	ermal	☐ Catalytic	Model No.			
Design Inlet Volume (SCFM) Combustion c chamber volume						length, cross-sectional area, effective			
Describe design features, which will ensure mixing in combustion chamber.									
Describe method of pre applicable).	eheating incor	ning gases	(if		ribe heat excha cable).	nger system used for heat recovery (if			
Catalyst used				pected temperature rise ross catalyst (°F)		 Dimensions of bed (in inches). Height: Diameter or Width: Depth: 			
Are temperature sensing devices being provided to measure the temperature rise across the catalyst? Yes No If yes, describe.									
Describe any temperature sensing and/or recording devices (including specific location of temperature probe in a drawing or sketch.									
Burner Information									
Burner Manufacturer		Model No.				Fuel Used			
Number and capacity of b	urners	Rated capa	acity	(each) Maximum capacity (each)					
Describe the operation of	the burner	L		Attach dimensioned diagram of afterburner					
Operating Parameters									
Inlet flow rate (ACFM) @°F				Outlet flow rate (ACFM)@°F					
State pressure drop range across catalytic bed (in. of water).				Describe the method adopted for regeneration or disposal of the used catalyst.					
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.									
Emissions Data									
Pollutant	l.	nlet			Outlet	Removal Efficiency (%)			

Section C - Air Cleaning Device (Continued)									
12. Flares – HP Flare Tip									
Equipment Specification	าร								
Manufacturer John Zink or equal		21	Type Image: Elevated flare Ground flare Model No. Image: Other Describe To Be Determined						
Design Volume (SCFM) 77,120			Dimensions of stack (ft.) Diameter <u>2.00</u> Height <u>195</u>						
Residence time (sec.) and temperature (°F)	l outlet	Turn down rati	0		Burner details R0 smokeless				
flare with a sketch.	Describe the flare design (air/steam-assisted or nonassisted), essential auxiliaries including pilot flame monitor of proposed flare with a sketch. Air-assisted HP cold flare for cold liquids. Pilot flame monitoring using a thermocouple(s).								
	·		Ū	0	,				
Describe the operation of the flare's ignition system. In total for both the high pressure and low pressure flare tips, two or more flare pilots along with natural gas at total of 500 standard cubic feet per hour (scfh) will be used for the ignition system.									
Describe the provisions to introduce auxiliary fuel to the flare. Not Applicable									
Operation Parameters					<u> </u>				
Detailed composition of th	ne waste gas		Heat content			Exit velocity			
Methane (0-100%)		1,000 - 2,503 B	TO Be Determined						
Ethane (0-100%)									
Propane (0-100%)									
Maximum and average ga	is flow burned	(ACFM)	Operating	temperature ((°F)				
To Be Determined	To Be Determined								
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.									
Remote alarms will be used when flare pilot is extinguished.									
Emissions Data	Emissions Data								
Pollutant		nlet		Outlet	Removal E	fficiency (%)			
VOC					98%				

Section C - Air Cleaning Device (Continued)									
12. Flares – LP Flare Tip									
Equipment Specification	าร								
Manufacturer		JI	TypeImage: Elevated flareImage: Ground flareModel No.						
John Zink or equal		□ Otr	Other Describe To Be Determined						
Design Volume (SCFM) 5,270			Dimensions of stack (ft.) Diameter 1.33 Height 195						
Residence time (sec.) and	doutlet	Turn down ratio	0		Burner details				
temperature (°F)			-		R0 smokeless				
Describe the flare design flare with a sketch.	(air/steam-ass	isted or nonassist	ed), essenti	al auxiliaries i	ncluding pilot flame r	nonitor of proposed			
Air-assisted LP cold flare	for cold liquids	. Pilot flame mon	itoring using	a thermocou	ıple(s).				
Describe the operation of	the flare's ioni	tion system							
In total for both the high pressure and low pressure flare tips, two or more flare pilots along with natural gas at total of 500									
standard cubic feet per hour (scfh) will be used for the ignition system.									
Describe the provisions to introduce auxiliary fuel to the flare.									
Not Applicable									
Operation Parameters									
Detailed composition of the	ne waste gas	Heat content			Exit velocity				
Methane (0-100%)		1,000 - 1,750 B	TU/SCF (HI	U/SCF (HHV) To Be Determined					
Ethane (0-100%)									
Maximum and average ga	as flow burned	(ACFM)	Operating	temperature	(°F)				
To Be Determined									
ا Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.									
Remote alarms will be used when flare pilot is extinguished.									
Emissions Data									
Pollutant		nlet	0	Dutlet	Removal E	fficiency (%)			
VOC					98%				

Section C - Air Cleaning Device (Continued)										
13. Other Control Equ	-	Applicable								
Equipment Specifications										
Manufacturer		Туре		Model No.						
Design Volume (SCFM) Capacity										
Describe pH monitoring a	Describe pH monitoring and pH adjustment, if any.									
Indicate the liquid flow rat	Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.									
Attach efficiency curve and/or other efficiency information.										
Attach any additional date including auxiliary equipment and operation details to thoroughly evaluate the control equipment.										
Operation Parameters										
Volume of gas handled	FM @	°F	% N	loisture						
Describe fully giving important parameters and method of operation.										
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.										
Emissions Data										
Pollutant	 	nlet	Outlet	Removal Efficiency (%)						

Section C - Air Cleaning Device (Continued)

14. Costs – Not Applicable

Indicate cost associated with air cleaning device and its operating cost (attach documentation if necessary)

		•		
Device	Direct Cost	Indirect Cost	Total Cost	Annual Operating Cost

15. Miscellaneous

Describe in detail the removal, handling and disposal of dust, effluent, etc. from the air cleaning device including proposed methods of controlling fugitive emissions.

Attach manufacturer's performance guarantees and/or warranties for each of the major components of the control system (or complete system).

See Appendix F.

Attach the maintenance schedule for the control equipment and any part of the process equipment that if in disrepair would increase air contaminant emissions.

Section D - Additional Information

Will the construction, modification, etc. of the sources covered by this application increase the facility? If so, describe and quantify.	emissions from ot	her sources at
The project will utilize previously permitted sources at the Marcus Hook Industrial Complex West Warm Flare, pipeline associated components, existing storage tanks, and the product		
these units will not be used outside of current permitted allowable emissions.	เป็นใหม่ เป็นเหล่า เ	10wever,
If this project is subject to any one of the following, attach a demonstration to show complia	ance with applicab	le standards
See attached report.		Cotanda do.
a. Prevention of Significant Deterioration permit (PSD), 40 CFR 52?	□ YES	⊠ NO
b. New Source Review (NSR), 25 Pa. Code Chapter 127, Subchapter E?	🛛 YES	
c. New Source Performance Standards (NSPS), 40 CFR Part 60?	🛛 YES	
(If Yes, which subpart) <u>Subparts A, Kb, and VVa</u>		
 National Emissions Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 61? (If Yes, which subpart) 	□ YES	⊠ NO
e. Maximum Achievable Control Technology (MACT) 40 CFR Part 63? (If Yes, which part)	□ YES	⊠ NO
Attack a democratical showing that the emissions from any new sources will be the mining		
Attach a demonstration showing that the emissions from any new sources will be the minin of best available technology (BAT).	num aπainable thr	ougntneuse
See attached report.		
Provide emission increases and decreases in allowable (or potential) and actual emissions applicable PSD pollutant(s) if the facility is an existing major facility (PSD purposes).	within the last five	(5) years for
See attached report.		

Section D - Additional Information (Continued)

Indicate emission increases and decreases in tons per year (tpy), for volatile organic compounds (VOCs) and nitrogen oxides (NOx) for NSR applicability since January 1, 1991 or other applicable dates (see other applicable dates in instructions). The emissions increases include all emissions including stack, fugitive, material transfer, other emission generating activities, quantifiable emissions from exempted source(s), etc.

or No if emission increases and decreasesEmission increases and decreasesEmission increasesCreditable emission increasesEmission creditablePermitwere usedto emitin actualpotential in actualin actual					-			-
emission increases and decreasesemission increases and decreasesincreases emissionCreditable increasesEmission increasesCreditable emissionPermit numberwere used previously for (if applicable)were used increasesin actual emissionspotential in actual emissionsin actual emissionspotential in actual emissionsin actual emissionSee attachedsudenettingSource I. D. or Name(tpy)(tpy)(tpy)(tpy)			Indicate Yes			DCs	N	Ox
Permit number (if applicable)increases and decreases were used nettingincreases and decreases were used previously for nettingincreases potential to emitincreases decreases in actual emissionsincreases decreases in actual emissionsemission to emitSee attachedImage: second s			or No if		Emission			
Permitdecreases were used previously for (if applicable)decreases in actual previously for nettingin actual emissiondecreases in actual emissionsin actual emissionspotential in actual emissionsin actual emissionSee attached			emission		increases	Creditable	Emission	Creditable
Permitwere usedto emitin actualpotentialin actualnumberDatepreviously foremissionsto emitemissionsto emitemissions(if applicable)issuednettingSource I. D. or Name(tpy)(tpy)(tpy)(tpy)			increases and		in	emission	increases	emission
number (if applicable)Date issuedpreviously for nettingemission Source I. D. or Nameemission (tpy)to emit (tpy)emission (tpy)See attached </td <td></td> <td></td> <td>decreases</td> <td></td> <td>potential</td> <td>decreases</td> <td></td> <td>decreases</td>			decreases		potential	decreases		decreases
(if applicable)issuednettingSource I. D. or Name(tpy)(tpy)(tpy)(tpy)See attached </td <td>Permit</td> <td></td> <td>were used</td> <td></td> <td>to emit</td> <td>in actual</td> <td>potential</td> <td>in actual</td>	Permit		were used		to emit	in actual	potential	in actual
(if applicable)issuednettingSource I. D. or Name(tpy)(tpy)(tpy)(tpy)See attached </td <td>number</td> <td>Date</td> <td>previously for</td> <td></td> <td></td> <td>emissions</td> <td>to emit</td> <td>emissions</td>	number	Date	previously for			emissions	to emit	emissions
See attached	(if applicable)	issued		Source I. D. or Name	(tpy)	(tpy)	(tpy)	(tpy)
report Image: Constraint of the second sec								
Image: Sector of the sector	report							
Image: state of the state of								
Image: Second								

If the source is subject to 25 Pa. Code Chapter 127, Subchapter E, New Source Review requirements,

- a. Identify Emission Reduction Credits (ERCs) for emission offsets or demonstrate ability to obtain suitable ERCs for emission offsets.
- b. Provide a demonstration that the lowest achievable emission rate (LAER) control techniques will be employed (if applicable).
- c. Provide an analysis of alternate sites, sizes, production processes and environmental control techniques demonstrating that the benefits of the proposed source outweigh the environmental and social costs (if applicable).

Attach calculations and any additional information necessary to thoroughly evaluate compliance with all the applicable requirements of Article III and applicable requirements of the Clean Air Act adopted the requirement may request additional information to evaluate the application such as a standby plan, a plan for air pollution emergencies, air quality modeling, etc. See attached report.

	Sec	tion E - Compliance	Demonstration – See Addendum A
Note:	Complete this section	on if source is not a Title	V facility. Title V facilities must complete Addendum A.
Methe	od of Compliance Typ	e: Check all that apply an	d complete all appropriate sections below
	Monitoring	□ Testing	Reporting
	Recordkeeping	U Work Practice Stand	ard
Monit	oring:		
a.	Monitoring device ty	e (Parameter, CEM, etc):	See Addendum A
b.	Monitoring device lo	cation:	
C.	Describe all paramet	ters being monitored along	with the frequency and duration of monitoring each parameter:
Testir	na.		
	Reference Test Meth	nod: Citation	
b.	Reference Test Meth	noa: Description	
Reco	rdkeeping:		
De	escribe what paramete	rs will be recorded and the	recording frequency:
Se	e Addendum A		
Repo	rtina:		
-	-	e reported and frequency	of reporting:
h	Penorting start date:		
			_
_			
De	escribe each.		
Work	Reporting start date: Practice Standard: escribe each:		

Section F - Flue and Air Contaminant Emission										
1. Estimated Atmos	spheric Emiss	ions*								
			Max	imum em	ission ra	ate			Calculatio	n/
Pollutant	specify u	nits		lbs/hr			tons/yr.	E	Estimation M	
PM			2.1	8		9.53		See	e attached rep	ort
PM ₁₀			2.1	4		9.37		See	See attached report	
SOx			9.0	1		39.4	8	See	e attached rep	ort
СО			21.	49		94.1	1	See	e attached rep	ort
NO _x			9.4	0		41.1	7	See	e attached rep	ort
VOC			36.	71		160.1	79	See	e attached rep	ort
Others: (e.g., HAPs)				-						
PM _{2.5}			1.9	2		8.40		See	e attached rep	ort
CO2e			25,	753		112,	799	See	e attached rep	ort
* These emissions must be calculated based on the requested operating schedule and/or process rate e.g., operating schedule for maximum limits or restricted hours of operation and /or restricted throughput. Describe how the emission values were determined. Attach calculations.										
2. Stack and Exhauster – Not Applicable										
Stack Designation/Number										
List Source(s) or source ID exhausted to this stack: % of flow exhausted to stack:										
Stack height above grad Grade elevation (ft.)	ade (ft.) Stack diameter (ft) or Outlet duct area (sq. ft.) f. Weather Cap									
Distance of discharge to	o nearest prop	erty line	e (ft.)	. Locate o	n topogi	raphic	map.			
Does stack height meet Good Engineering Practice (GEP)?										
If modeling (estimating) of ambient air quality impacts is needed, attach a site plan with buildings and their dimensions and other obstructions.							ensions			
Location of sta Latitude/Longit		Latitude Longitude								
Point of Origi	n	Degre	es	Minutes	Sec	onds	Degrees	Minutes	Seco	onds
Stack exhaust										
Volume ACFM Temperature °F Moisture %										
Indicate on an attached sheet the location of sampling ports with respect to exhaust fan, breeching, etc. Give all necessary dimensions.						Give all				
Exhauster (attach fan cu	irves)			in.	of wate	r		HP @ _		_RPM.
	** If the data and collection method codes differ from those provided on the General Information Form-Authorization Application, provide the additional detail required by that form on a separate form.							Informatio	on Form-Auth	orization

Section G - Attachments Number and list all attachments submitted with this application below: PADEP Plan Approval Forms А В Plot Plan and Block Flow Diagram С Flare Connection List (CONFIDENTIAL) D **Back-up Emissions Calculations** Е Contemporaneous Tables F Flare Vendor Specification G County and Municipal Notifications

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

Addendum A: Source Applicable Requirements

Describe and cite all applicable requirements pertaining to this source. <u>Note:</u> A Method of Compliance Worksheet (Addendum 1) must be completed for each requirement listed.

Citation Number	Citation Limitation	Limitation Used
40 CFR 60 Subpart A §60.18	This subpart applies to certain control devices used to comply with applicable subparts of 40 CFR parts 60 and 61. Subject equipment includes flares. The Project Phoenix Cold Flare must be operated with	Same
	no visible emissions, with flame present at all times, to meet exit velocity requirements, and maintain a minimum net heating value of the flare gas.	
40 CFR 60 Subpart Kb	This subpart applies to each of the storage tanks at the storage facility with a capacity greater than or equal to 75 cubic meters (471 barrels) that is used to store volatile organic liquids for which construction or modification is commenced after July 23, 1984; therefore, the recordkeeping requirements of 40 CFR 60.115b are applicable. However, the VOC standards of 40 CFR 60.112b (i.e., requiring the installation of a floating roof and conducting periodic inspections) are not applicable because of the high vapor pressure of the material being stored (vapor pressure of 108 kiloPascal [kPa]). 40 CFR 60.112b is only applicable to storage vessels with a design capacity greater than 151 cubic meters (949 barrels) and storing a volatile organic liquid that has a maximum true vapor pressure greater than 5.2 kPa but less than 76.6 kPa.	Same
40 0 CFR 60 Subpart VVa	This subpart applies to the control of air emissions from equipment leaks associated with affected facilities in the organic chemicals manufacturing industry. Subject equipment includes each pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, and flange or other connector in VOC service.	Same
	Additionally, if a flare is used to control VOC emissions from pumps, compressors or sampling systems, the flare must comply with 40 CFR §60.18. SPMT does route or plans to route pump and compressor seal systems and sampling systems to the Project Phoenix Cold Flare for VOC control; therefore, the Project Phoenix Cold Flare will comply with the requirements of	

Citation Number	Citation Limitation	Limitation Used
	§60.18.	

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

Addendum 1 Method Of Compliance Worksheet

SEC	SECTION 1. APPLICABLE REQUIREMENT							
Fede	eral Tax Id:	23-1743283-12	Firm Name:	Sunoco Partners Marketing & Terminals, L.P.				
Plan	t Code:		Plant	Marcus Hook Industrial Complex				
Appl	icable Requi	rement for: (r	lease check	k only one box below)				
	The entire s			- ,				
		sources, Group						
\boxtimes	A single sou	urce, Unit ID:	Cold FI	Flare (Project Phoenix), Source ID To Be Determined				
	Alternative Name:	Scenario, Sco	enario					
Citat	ion #:40 C	FR § 60.18						
Com upor	pliance Meth n:	od based	Ar	Applicable Requirement Gap Filling Requirement				
Meth	od of Compl	iance Type: (Check all tha	nat applies and complete all appropriate sections below)				
	Monitorir		Testing					
	Record Keeping	. ,	•	Practice Standard				
Sec	tion 2: Mo	onitoring						
1. Monitoring device type (stack test, CEM, etc.):				TO BE DETERMINED				
2. Monitoring device location: TO BE DETER				ETERMINED				

Describe all parameters being monitored along with the frequency and duration of monitoring each parameter:

(a) The permittee shall continuously monitor the presence of a pilot flame for this flare by using an infrared sensor or other device approved by the Department

(b) The permittee shall monitor the type and amount of fuel combusted in the flare on a daily basis.

3.	How will data be reported:	TO BE DETERMINED

Section 3: Testing

1.	Reference Test Method Description:	EPA Test Methods 22, 2(A, C, or D), 3A, 18, ASTM D 2504-67, ASTM D 2382-76
2.	Reference Test Method Citation:	40 CFR § 60.18

Section 4: Record Keeping

Describe what parameters will be recorded and the frequency of recording:

(a) The permittee shall maintain hourly records for the presence of a pilot flame on this flare

(b) The permittee shall maintain daily records of the type and amount of fuel combusted in this flare

Section 5: Reporting

Describe what is to be reported and the frequency of reporting:

The permittee shall submit to the Department semi-annual exception reports of the date and time the pilot flame was not working.

1. Reporting start date: TO BE DETERMINED

Section 6: Work Practice Standard

Describe any work practice standards:

The permittee shall ensure that the flare is operated and maintained in conformance with its design.

(a) The flare shall be operated with a flame present at all times

(b) The flare shall be used only with the net heating value of the gas being combusted is 300 BTU/SCF or

greater. The net heating value of the gas being combusted shall be determined by the methods specified in

40 CFR §60.18(f)

(c) The air-assisted flare shall be designed and operated with an exit velocity less than the maximum velocity

(Vmax) as determined by the method specified in 40 CFR §60.18(f)(6)

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

Addendum 1 Method Of Compliance Worksheet

SEC	SECTION 1. APPLICABLE REQUIREMENT								
Fede	Federal Tax Id: 23-1743283-12 Firm Name: Sunoco Partners Marketing & Terminals, L.P.								
Plan	t Code:		Plant	Marcus Hook Indu	strial Cor	mplex			
Appl	The entire s			eck only one box below	w)				
\boxtimes	ID: A single sou	ırce, Unit ID:		igerated Ethane Storage	Tank, 1	30-TK	-403 - Source ID To Be		
	Alternative Name:	Scenario, Sc		ermined					
Citat	ion #:40 C	FR § 60.112b -	60.116b						
Com upor	pliance Meth	od based		Applicable Requirem	ent		Gap Filling Requirement		
Method of Compliance Type: (Check all that applies and complete all appropriate sections below)									
	Monitorir	ng 🗌	Testir	ng [X R	Report	ing		
\boxtimes	Record Keeping	\boxtimes	Work	Practice Standard					

2700-PM-AQ0018 6/2003 Addendum 1
Section 2: Monitoring
1. Monitoring device type (stack test, CEM, etc.):
2. Monitoring device location:
Describe all parameters being monitored along with the frequency and duration of monitoring each parameter:
3. How will data be reported:
Section 3: Testing
1. Reference Test Method Description:
2. Reference Test Method Citation:
Section 4: Record Keeping

Describe what parameters will be recorded and the frequency of recording:

Refer to TVOP #23-00119 Section D, Source ID 101 Conditions #001-003

Section 5: Reporting

Describe what is to be reported and the frequency of reporting:

Refer to TVOP #23-00119 Section D, Source ID 101 Conditions #004-005

2. Reporting start date: TO BE DETERMINED

2700-PM-AQ0018 6/2003 Addendum 1

Section 6: Work Practice Standard

Describe any work practice standards:

Refer to TVOP #23-00119 Section D, Source ID 101 Conditions #006

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

Addendum 1 Method Of Compliance Worksheet

SECTION 1. APPLICABLE REQUIREMENT						
Federal Tax Id: 23-1743283-12 Firm Name: Sunoco Partners Marketing & Terminals, L.P.						
Plant Code:		Plant	Marcus Hook Industrial Complex			

2700-PM-AQ0018 6/2003 Addendum 1

Applicable Requirement for: (please check only one box below)

	The e	ntire site								
	A grou ID:	up of sourc	ces, Group							
\boxtimes	A single source, Unit ID: Refrigerated Ethane Storage Tank, 135-TK-404 - Source ID To Be Determined							-404 - Source ID To Be		
	Alternative Scenario, Scenario Name:									
Cita	tion #:	40 CFR §	60.112b - 6	60.116b						
Con upo	-	e Method k	based	\boxtimes	Applica	ble Requiren	nent		Gap Filling Requirement	
Met	hod of C	Complianc	e Type: (C	check all	that app	lies and com	plete a	ll appro	opriate sections below)	
	Мо	nitoring		Testi	ng		\boxtimes	Report	ting	
\boxtimes		cord eping	\boxtimes	Work	Practice	Standard				
Sec	tion 2:	Monito	oring							
	Monitor etc.):	ing device	type (stac	k test, C∣	EM,					
5.	Monitor	ing device	location:							
	cribe al ameter:	l paramete	ers being n	nonitore	d along v	vith the frequ	iency a	nd dura	ation of monitoring each	
	How will reported	ll data be d:								

Section 3: Testing

3. Reference Test Method Description:	
4. Reference Test Method Citation:	
Section 4: Record Keeping	
Describe what parameters will be record	ed and the frequency of recording:
Refer to TVOP #23-00119 Section D, Source	ID 101 Conditions #001-003
Section 5: Reporting	
Describe what is to be reported and the f	requency of reporting:
Refer to TVOP #23-00119 Section D, Source	ID 101 Conditions #004-005
3. Reporting start date: TO BE DETER	MINED
Section 6: Work Practice Standard	

Describe any work practice standards:

Refer to TVOP #23-00119 Section D, Source ID 101 Conditions #006

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

Addendum 1 Method Of Compliance Worksheet

SEC	SECTION 1. APPLICABLE REQUIREMENT							
Fed	Federal Tax Id: 23-1743283-12 Firm Name: Sunoco Partners Marketing & Terminals, L.P.							
Plai	nt Code:		Plant	Marcus Hook Industrial Complex				
_			_					
Арр	licable Requi	irement for:(please check	only one box below)				
	The entire s	site						
\boxtimes	A group of s ID:	sources, Grou	p Fugitive	Equipment Leaks from equipment in VOC service, ID 103				
	A single sou	urce, Unit ID:						
	Alternative Name:	Scenario, Sc	enario					
Cita	tion #: 40 C	FR § 60.485a						
Con upo	npliance Meth n:	nod based	🛛 Ар	plicable Requirement				
Met	hod of Compl	iance Type:(Check all tha	t applies and complete all appropriate sections below)				
\boxtimes	Monitorii	ng 🛛	Testing	Reporting				
	Record Work Practice Standard Keeping							
Sec	tion 2: Mo	onitoring						
7. Monitoring device type (stack test, CEM, etc.):				Refer to TVOP #23-00119 Section D, Source ID 103 Conditions #002-004				
8.	Monitoring de	vice location	: Refer to TV	OP #23-00119 Section D, Source ID 103 Conditions #002-004				

Describe all parameters being monitored along with the frequency and duration of monitoring each parameter:

Refer to TVOP #23-00119 Section D, Source ID 103 Conditions #002-004

9. How will data be reported: Refer to TVOP #23-00119 Section D, Source ID 103 Conditions #002-004

Section 3: Testing

5. Reference Test Method Description:	Refer to TVOP #23-00119 Section D, Source ID 103 Condition #001		
6. Reference Test Method Citation:	Refer to TVOP #23-00119 Section D, Source ID 103 Condition #001		

Section 4: Record Keeping

Describe what parameters will be recorded and the frequency of recording:

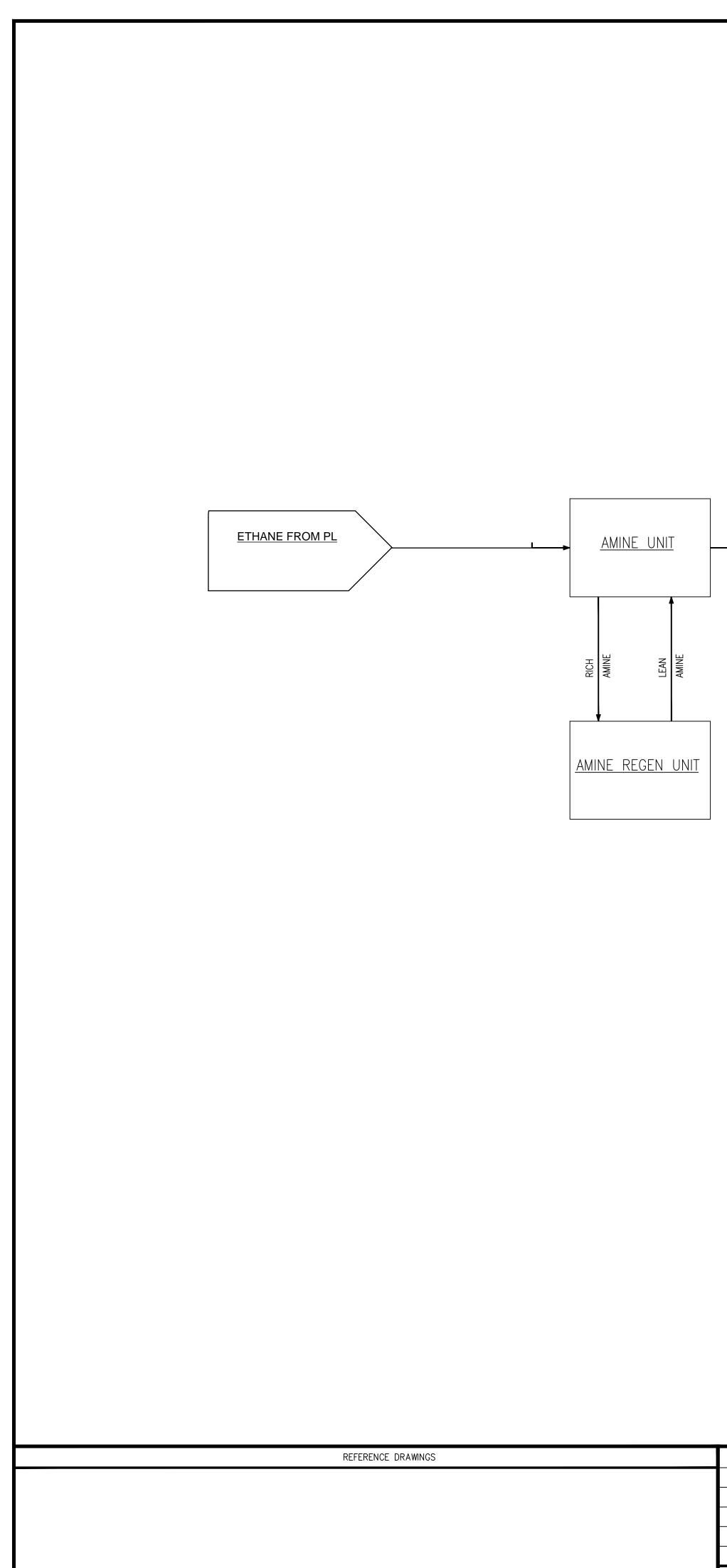
Refer to TVOP #23-00119 Section D, Source ID 103 Conditions #005-006

Section 5: Reporting

Describe what is to be reported and the frequency of reporting:

Refer to TVOP #23-00119 Section D, Source ID 103 Condition #007

4. Reporting start date: TO BE DETERMINED


Section 6: Work Practice Standard

Describe any work practice standards:

Refer to TVOP #23-00119 Section D, Source ID 103 Conditions #008-024

APPENDIX B PLOT PLAN AND BLOCK FLOW DIAGRAM

July 2019

<u>DEHYDRATORS</u>

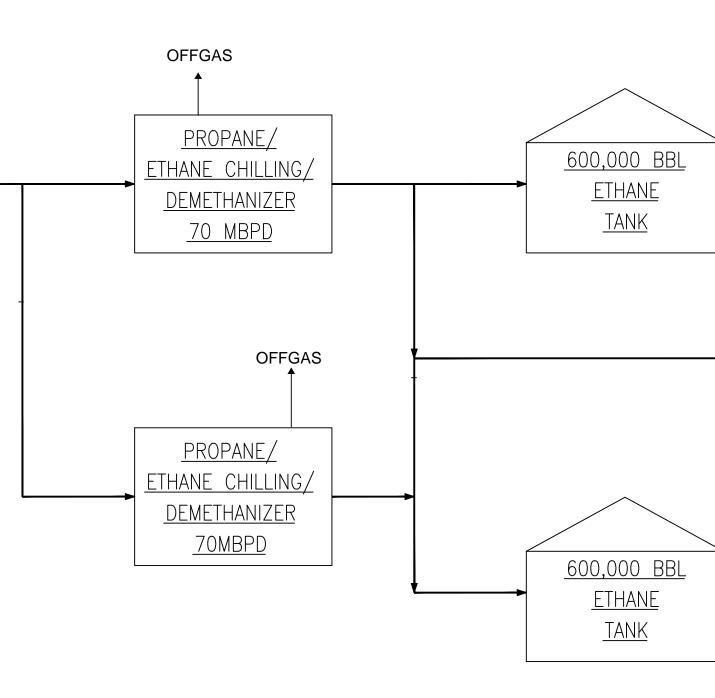


 Image: Second state in the second s

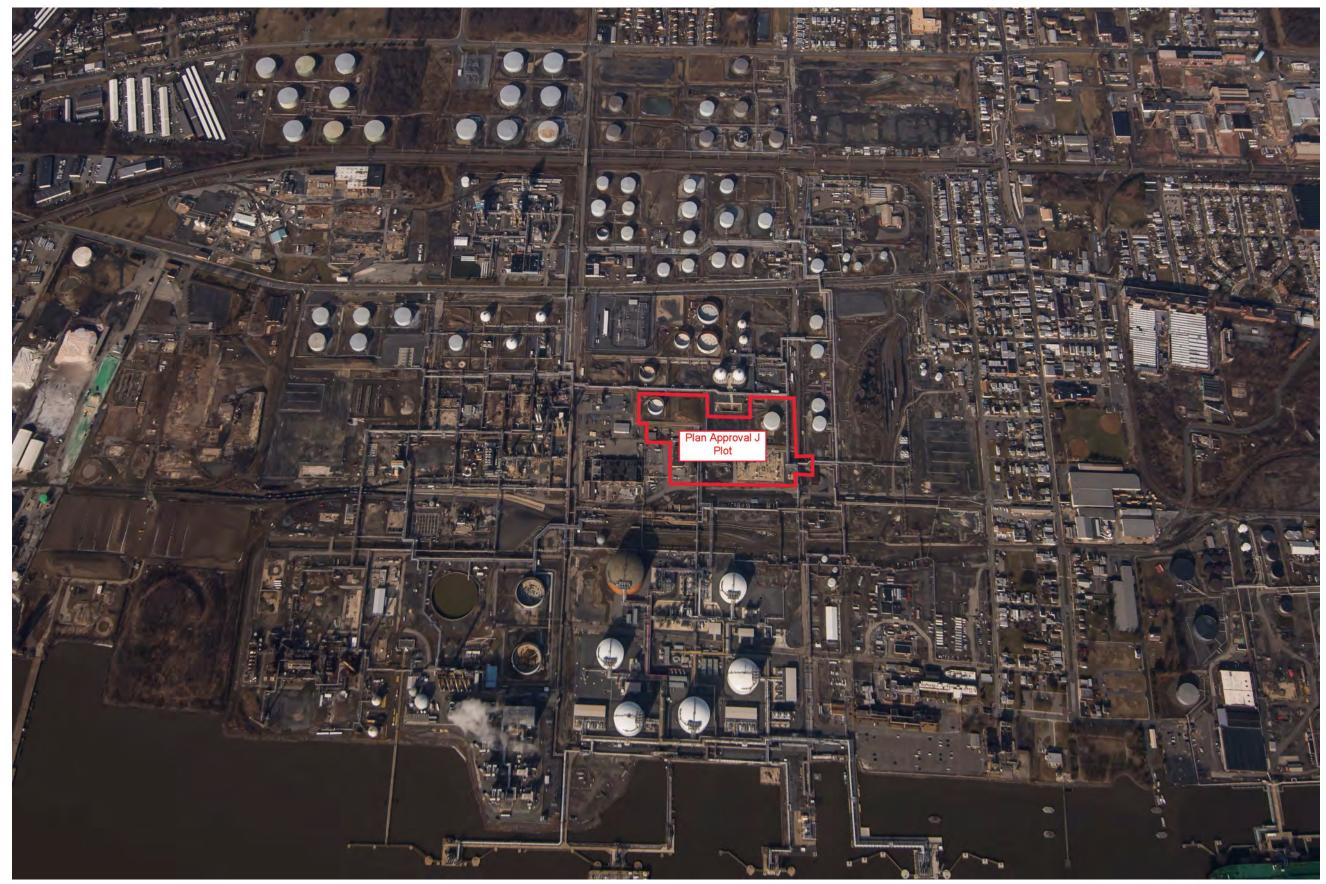
→ ETHANE PRODUCT TO DOCK 1A/2A

PRELIMINARY - NOT FOR CONSTRUCTION

AFE NO.

ENERGY [®] TRANSFER

____►


BLOCK DIAGRAM PROJECT PHOENIX

OLD DRAWING NO.

MARCUS HOOK, PA, USA

drawing no. SK-100-002

rev. no. **J**

PRELIMINARY - NOT FOR CONSTRUCTION

	1			ISSUED FOR REFERENCE	DG		
And the second second	REV.	DATE APP	P#	DESCRIPTION	APPROVA		
ENGINEERING RECOR	RD	~		MARCUS HOOK INDUSTR	IAL COMPLEX		
DRAWN BY		12	× .	PROJECT PHOENIX			
CHECKED BY							
APPROVED BY		-		MECHANICA	L		
DATE	9	Sunoco Logis	tics	PERMIT OVERVIEW P	OT PLAN		
SCALE		Partners L.					
SCADA		rattiers L.					
	MARCU	JS HOOK			DELAWARE COUNTY P		
and the second		DW	/G. NO.		REV. NO.		
OLD DRAWING NO.					2		

APPENDIX C FLARE CONNECTION LIST - CONFIDENTIAL

July 2019

APPENDIX D DETAILED EMISSIONS CALCULATIONS

July 2019

Sunoco Partners Marketing & Terminals L.P.

Project Phoenix

Project Emissions Summary

July 2019

Source	Emissions (TPY)							
Source	NO _x	VOC	СО	PM	PM10	PM2.5	SO ₂	CO ₂ e
Fugitive Equipment		36.17						5,521
Cold Flare HP/LP	5.95	3.57	27.12				0.02	11,281
Wet Surface Air Cooler System (2 Units)				0.55	0.43	0.001		
Incremental Flows to West Warm Flare	0.10	0.01	0.48				0.001	210
Aggregated Projects ¹	35.12	121.03	66.51	8.98	8.94	8.40	39.46	95,786
Total	41.17	160.79	94.11	9.53	9.37	8.40	39.48	112,799

Table D-1: Summary of Projected Annual Emissions

¹In accordance with the adjudication decision by Judge Bernard A. Labuskes, Jr. of the Commonwealth of Pennsylvania Environmental Hearing Board, EHB Docket No. 2016-073-L, this project will be evaluated as part of a single aggregated project. Refer to "Aggregated Projects" table for list of all Plan Approvals and RFDs included.

Source	Emissions (lb/hour)								
Source	NO _x	VOC	CO	PM	PM10	PM2.5	SO ₂	CO ₂ e	
Fugitive Equipment		8.26						1,261	
Cold Flare HP/LP	1.36	0.82	6.19				0.01	2,576	
Wet Surface Air Cooler System				0.13	0.10	0.0003			
Incremental Flows to West Warm Flare	0.02	0.003	0.11				0.0002	48	
Aggregated Projects	8.02	27.63	15.19				9.01	21,869	
Total	9.40	36.71	21.49	2.18	2.14	1.9183	9.014	25,753	

Table D-2: Summary of Projected Short Term Emission Rates

Sunoco Partners Marketing & Terminals L.P.

Project Phoenix

Aggregated Projects

July 2019

Emissions	Pollutant (TPY) ¹								
Emissions	VOC	NO _x	СО	PM	PM10	PM2.5	SO ₂	CO ₂ e	
23-0119	8.78		0.09				0.0001	48	
23-0119A	3.04	0.02						13	
23-0119B ²	10.19	24.40	19.02	8.13	8.13	8.13	39.40	74,400	
23-0119C	5.52			0.25	0.23	0.01			
23-0019D ³	54.98	10.38	47.34	0.40	0.38	0.06	0.06	21,325	
23-0119E	18.24	0.30		0.20	0.20	0.20			
23-0119F	13.67								
RFD 5236 (Spheres Project)	0.87								
RFD 5340 (Tank 609 Vapor Pressure)	2.69								
RFD 5918 (Propane Railcar Offloading)	2.19								
RFD 5944 (Portable Flare for Metering Maintenance)	0.002	0.0002						0.48	
RFD 6484 (Methanol Tank)	0.65								
RFD 7548 (H-5 Unloading Area Upgrade)	0.21	0.02	0.07						
Total	121.03	35.12	66.51	8.98	8.94	8.40	39.46	95,786	

Table D-3: Summary of Annual Emissions from Aggregated 23-0119E

¹All emissions from this table are permitted thresholds from PADEP Review Memos.

²All emissions for Plan Approval 23-0119B are from its respective PADEP Review Memo with exception to CO emissions, which have been re-evaluated using actual emissions data from CEMs.

³All emissions for Plan Approval 23-0119D are inclusive of new flows and connections to associated Cold Flares (ME-1 Cold Flare - C01, ME-2 Cold Flare - C02), in addition to permitted thresholds from the respective PADEP Review Memo.

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Fugitive Emissions Summary

Source	Emissio	ns (TPY)
Source	VOC	CO ₂ e
Propane Refrigeration System	6.49	0.00
Amine Treatment System	0.42	0.00
Natural Gas System	0.00	1245.25
Ethane System	29.26	101.61
Methane / Ethane System	0.00	2,141.35
Flare System	0.00	2,032.51
Acid Gas System	0.00	0.75
Total	36.17	5,521

Table D-4: Summary of Emissions from Fugitive Source Systems

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Fugitive Component Emissions

Area	Equipment Type	Service	Emission Factor (kg/hr/source) ^a	Component Counts	Control Efficiency for LDAR Monitored Components	Total VOC (weight %)	Total GHG (weight %)	VOC Emissions (tons/year)	CO₂e Emissions (tons/year) ^g
	Valves	Gas ^b	0.00597	445	0%	0%	90%	0.00	577.46
Natural Gas System	Pressure Relief Valves	Gas	0.104	10	0%	0%	90%	0.00	216.92
	Connectors	All	0.00183	1,134	0%	0%	90%	0.00	450.87
	Valves	Gas ^b	0.00597	1,748	0%	4%	1%	3.63	12.60
	valves	Light Liquid ^c	0.00403	2,623	0%	4%	1%	3.67	12.76
	Pump Seal Valves	Light Liquid ^c	0.00403	108	0%	4%	1%	0.15	0.53
	Pump Seal Connectors	All	0.00183	343	0%	4%	1%	0.22	0.76
	Analyzer Valves	Gas ^b	0.00597	540	0%	4%	1%	1.12	3.89
	Analyzer Connectors	All	0.00183	1,140	0%	4%	1%	0.73	2.52
	Sample Station Valves	Light Liquid ^c	0.00403	24	0%	4%	1%	0.03	0.12
	Sample Station Connectors	All	0.00183	120	0%	4%	1%	0.08	0.27
Ethane System	Compressor Seal Valves Compressor Seal Connectors	Gas	0.00597	331	0%	4%	1%	0.69	2.39
Ethane System		Light Liquid ^c	0.00403	0	0%	4%	1%	0.00	0.00
		Heavy Liquid ^d	0.00023	0	0%	4%	1%	0.00	0.00
		All	0.00183	840	0%	4%	1%	0.53	1.86
		Light Liquid ^c	0.0199	10	0%	4%	1%	0.07	0.23
	Pump Seals	Heavy Liquid ^d	0.00862	0	0%	4%	1%	0.00	0.00
	Compressor Seals	Gas	0.228	14	0%	4%	1%	1.14	3.96
	Pressure Relief Valves	Gas	0.104	212	0%	4%	1%	7.68	26.66
	Connectors	All	0.00183	14,965	0%	4%	1%	9.52	33.06
	Sampling Connections	All	0.015	1	0%	4%	1%	0.01	0.02
	Valves	Gas ^b	0.00597	602	0%	0%	50%	0.00	434.09
	Analyzer Valves	Gas ^b	0.00597	720	0%	0%	50%	0.00	518.83
Methane / Ethane System	Analyzer Connectors	All	0.00183	1,440	0%	0%	50%	0.00	318.08
	Pressure Relief Valves	Gas	0.104	38	0%	0%	50%	0.00	482.04
	Connectors	All	0.00183	1,758	0%	0%	50%	0.00	388.32
	Valves	Gas ^b	0.00597	685	0%	0%	90%	0.00	888.76
	Pump Seal Valves	Heavy Liquid ^d	0.00023	10	0%	0%	90%	0.00	0.48
Elson Constant	Pump Seal Connectors	All	0.00183	65	0%	0%	90%	0.00	25.76
Flare System	Analyzer Valves	Gas ^b	0.00597	120	0%	0%	90%	0.00	155.65
	Analyzer Connectors	All	0.00183	300	0%	0%	90%	0.00	119.28
	Connectors	All	0.00183	2,119	0%	0%	90%	0.00	842.59
	Valves	Gas ^b	0.00597	40	0%	0%	24%	0.00	0.55
Acid Gas System	Connectors	All	0.00183	48	0%	0%	24%	0.00	0.20
	1			1			TOTALS	29.26	5,521.48

Table D-5: Detailed Fugitive Component Emissions

Sunoco Partners Marketing & Terminals L.P. **Project Phoenix** July 2019 **Fugitive Component Emissions**

Speciation ^f	Propane Refrigeration System - Weight %	Amine Treatment System - Weight %	Natural Gas System - Weight %	Ethane System - Weight %	Methane/Ethane System - Weight %	Flare System - Weight %	Acid Gas System - Weight %
Methane			90.0%	0.5%	50.0%	90.0%	
Ethane	2.0%		10.0%	95.9%	50.0%	10.0%	1.0%
Propane	97.0%			3.6%			
i-Butane	1.0%						
Diethanolamine (DEA)		10.0%					
Water		90.0%					75.0%
CO2							24.0%
Total VOC	98.0%	10.0%	0.0%	3.6%	0.0%	0.0%	0.0%
Total GHG	0.0%	0.0%	90.0%	0.5%	50.0%	90.0%	24.0%

Table D-6: Gas Speciation for Fugitive Source Systems

^b Gas/vapor - material in a gaseous state at operating conditions.

^c Light liquid - material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over

0.3 kilopascals (kPa) at 20 degree C is greater than or equal to 20 weight percent.

^d Heavy liquid - not in gas/vapor service or light liquid service.

^e Control Efficiency from Texas Commission on Environmental Quality (TCEQ) 28VHP Leak Detection and Repair Program for compenents in VOC service.

^f The composition (weight %) is an engineering estimate only and should not be considered a permit representation.

^g The global warming potential of methane is 25 from 40 CFR Part 98, Table A-1.

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Fugitive Component Emissions, Screening Methodology

		Component Counts (Units/Streams	in VOC service and in LDAR Program)	
Component Category	Component	Propane Refrigeration System	Amine Treatment System	
	Valves	1787	1323	
	Pump Seal Valves	29	26	
Valves	Compressor Seal Valves	254	0	
	Sample Station Valves	0	48	
	Analyzer Valves	0	0	
Reliefs	Pressure Relief Valves	77	30	
	Connectors	5,996	3416	
	Analyzer Connectors	0	0	
Connectors	Pump Seal Connectors	86	204	
connectors	Compressor Seal Connectors	662	0	
	Sampling Connections	0	2	
	Sample Station Connectors	0	240	
	Compressor Seals	12	0	
	Pump Seals	2	6	

_ .. _ _ .. _ .. _ .

Tab	lo D_8.	IDAR	Screening Values	

	Default 0	0-500	500-1000	1,001-10,000	>10000	
Assumed Leak Concentration		18	751	1393	61483	
Assumed Leak Rate - Valves	0.02%	97.40%	0.79%	1.58%	0.21%	
Assumed Leak Rate - Pump Seals	0.44%	94.36%	0.77%	3.76%	0.66%	
Assumed Leak Rate - Connectors	0.01%	98.95%	0.24%	0.67%	0.12%	
Assumed Leak Rate - Others	0.06%	98.51%	0.46%	0.97%	0.00%	

Table D-9: Screening Value Emission Factors

Leak Rate (kg/hr)							
Component Type							
Valves	7.80E-06	2.000E-05	3.201E-04	5.074E-04	6.400E-02		
Pump Seals	2.40E-05	2.959E-04	2.857E-03	4.164E-03	7.400E-02		
Connectors	7.50E-06	1.294E-05	1.988E-04	3.130E-04	2.800E-02		
Others	4.00E-06	7.527E-05	6.721E-04	9.670E-04	7.300E-02		
	Table 2-12	Table 2-10	Table 2-10	Table 2-10	Table 2-14		

(Source: "Protocol for Equipment Leak Emission Estimates", EPA-453/R-95-017)

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Fugitive Component Emissions, Screening Methodology

Table D-10: Total Material Emissions Due to Fugitive Equipment (lbs)

Component			Leak Rate (lb/yr)			Total (lbs/day)		
component	Default 0	0-500	500-1000	1,001-10,000	>10000	Total (105/day)	Total (lbs/year)	Total (tons/year)
Valves	0	1304	169	535	9098	30.43	11106.87	5.55
Pump Seals	0	45	4	25	80	0.42	153.98	0.08
Connectors	0	2623	99	432	6955	27.70	10109.35	5.05
Others	0	171	7	22	0	0.55	199.83	0.10
Total (all components)	0	4143.86	278.08	1014.36	16133.35	59.10	21570.02	10.79

Table D-11 Percent (%) of Total Components per Unit

	Propane Refrigeration System	Amine Treatment System
Valves	59.7%	40.3%
Pump Seals	28.6%	71.4%
Connectors	63.6%	36.4%
July 2019	74.9%	25.1%
Total (all components)	62.7%	37.3%

Table D-12: Gas Speciation for New Fugitive Equipment

Speciation	Propane Refrigeration System - Weight %	Amine Treatment System - Weight %		
Methane				
Ethane	2%			
Propane	97%			
i-Butane	1%			
Diethanolamine (DEA)		10%		
Water		90%		
CO2				
Total VOC	98%	10%		
Total GHG	0%	0%		

Table D-13: Emissions Summary by Component Type

Components	Total (tons/year)	Propane Refrigeration System (TPY)	Amine Treatment System (TPY)		
Valves	5.55	3.32	2.24		
Pump Seals	0.08	0.02	0.05		
Connectors	5.05	3.21	1.84		
Others	0.10	0.07	0.03		
Total (all components)	Total (all components) 10.79		4.16		
Total VOC Percentage By Unit Stream (%)		98%	10%		
Total VOC Emissions By Unit Stream (TPY)		6.49	0.42		
Total CO2e Percentage	Total CO ₂ e Percentage By Unit Stream (%)		0%		
Total CO ₂ e Emissions B	Total CO ₂ e Emissions By Unit Stream (TPY)		0.00		

Total VOC Emissions (TPY)	6.91		
Total CO ₂ e Emissions (TPY)	0.00		

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Flare Emissions Summary

New Cold Flare	MMD _{fu} /b _i	Emissions (TPY)				
	MMBtu/hr	NO _x	CO	VOC	SO ₂	CO ₂ e
Project Phoenix HP Cold Flare					-	
Pilot & Purge Continuous Flows	0.51	0.15	0.70	0.02	0.001	295
Sweep Continuous Flows	6.80	2.02	9.23	0.26	0.02	4,061
Operational & Maintenance Flows	0.76	0.23	1.03	1.27	8.1E-09	418
Project Phoenix LP Cold Flare						
Pilot & Purge Continuous Flows	0.51	0.15	0.70	0.02	0.001	295
Sweep Continuous Flows	1.56	0.46	2.12	0.06	0.004	931
Operational & Maintenance Flows	9.84	2.93	13.35	1.94		5,280
Total	19.97	5.95	27.12	3.57	0.02	11281

Table D-14: Emissions Summary for New Project Phoenix Cold Flare

Table D-15: Emissions Summary for Existing West Warm Flare

Incremental Flows to West Warm Flare	MMBtu/hr	Emissions (TPY)				
		NO _x	CO	VOC	SO ₂	CO ₂ e
Sweep Continuous Flows	0.35	0.10	0.48	0.01	0.001	210
Operational & Maintenance Flows	0.00	0.00	0.00			0
Total	0.35	0.10	0.48	0.01	0.001	210

Project Phoenix	Project Phoenix
HP Cold Flare (1)	LP Cold Flare (1)

Contin	uous Flow		Value	Value	Units	Notes
[A]	Pilot Flow Rate	=	500	500	scfh	Design
[B]	Purge Flow Rate	=	0	0	scfh	Design
[C]	Total Flow	=	0.0005	0.0005	MMscfh	= ([A] + [B]) / 1,000,000
[D]	Total Flow	=	22.0	22.0	lb/hr	= ([A] + [B]) / 379 * [F]
[E]	HHV (natural gas)	=	1026	1026	Btu/scf	40 CFR Part 98, Table C-1
[F]	Molecular weight (natural gas)	=	16.65	16.65	lb/lbmol	Supplier Data
[G]	Heating Duty	=	0.51	0.51	MMBtu/hr	= [C] * [E]
[H]	Annual Heating Duty	=	4,494	4,494	MMBtu/yr	= [G] * 8760
Flare F	missions				Units	Notes
[1]	NO _x Emission Factor	=	0.068	0.068	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-1
m	VOC Destruction Efficiency	=	98%	98%	% DRE	Compliance with 40 CFR 60.18
[K]	VOC Content of natural gas	=	1%	1%	% VOC	Composition Data
[L]	CO Emission Factor	=	0.31	0.31	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-2 (Updated April 2015)
[M]	SO ₂ Emission Factor	=	0.0006	0.0006	lb/MMBtu	AP-42 Table 1.4-2 (converted to lb/MMBtu)
[N]	NO _x Emission Rate	=	0.03	0.03	lb/hr	= [G] * [I]
[O]	VOC Emission Rate	=	0.00	0.004	lb/hr	= [D] * (1 - [J]) * [K]
[P]	CO Emission Rate	=	0.16	0.16	lb/hr	= [G] * [L]
[Q]	SO ₂ Emission Rate	=	0.0003	0.0003	lb/hr	= [G] * [M]
[R]	NO _x Emissions	=	0.15	0.15	TPY	= [N] * 8760/2000
[S]	VOC Emissions	=	0.02	0.02	TPY	= [O] * 8760/2000
[T]	CO Emissions	=	0.70	0.70	TPY	= [P] * 8760/2000
[U]	SO ₂ Emissions	=	0.001	0.001	TPY	= [Q] * 8760/2000
[V]	Volumetric CO ₂ Emissions ¹	=	4,292,400	4,292,400	scf CO ₂ /year	40 CFR Part 98, Equation W-20
[W]	Volumetric CH ₄ Emissions ¹	=	87,600	87,600	scf CH ₄ /year	40 CFR Part 98, Equation W-19
[X]	N ₂ O Emission factor for Natural Gas	=	0.0001	0.0001	kg/MMBtu	40 CFR Part 98, Equation W-40
[Y]	CO ₂ Emissions	=	249	249	TPY	40 CFR Part 98, Equation W-36
[Z]	CH ₄ Emissions	=	1.85	1.85	TPY	40 CFR Part 98, Equation W-36
[AA]	CH ₄ Global Warming Potential	=	25	25		40 CFR Part 98, Table A-1
[AB]	N ₂ O Emissions	=	0.000	0.000	TPY	40 CFR Part 98, Equation W-40
	N ₂ O Global Warming Potential	=	298	298		40 CFR Part 98, Table A-1
	CO ₂ e Emissions	=	295	295	TPY	= [Y] + [Z] * [AA] + [AB] * [AC]
[]			2,0	2,0	•	[-] [-] [rm] [rm] [rm]

¹ Assuming composition of 100% methane.

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Flare Sweep Gas Flow Emissions

			Project Phoenix HP Cold Flare (1)	Project Phoenix LP Cold Flare (1)	West Warm Flare (1)		
<u>Sweep</u>	Gas Flow		Value	Value	Value	Units	Notes
[A]	Natural Gas Mass Flow	=	2,645,820	606,492	136,656	lb/yr	Engineering Analysis
[B]	Natural Gas Volume Flow		6,875	1,576	355	scfh	Engineering Analysis
[C]	Natural Gas HHV	=	22,500	22,500	22,500	Btu/lb	Engineering Analysis
[D]	Heating Duty (Natural Gas)	=	59,531	13,646	3,075	MMBtu/yr	= [A] * [C] / 1000000
[E]	Operating Hours	=	8,760	8,760	8,760	hrs/yr	Assumption
[F]	SPMT Heating Duty	=	6.80	1.56	0.35	MMBtu/hr	= [D] / [E]
Flare E	<u>Emissions</u>		Value	Value	Value	Units	Notes
[G]	NO _x Emission Factor	=	0.068	0.068	0.068	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-1
[H]	VOC Destruction Efficiency	=	98%	98%	98%	% DRE	Compliance with 40 CFR 60.18
[I]	VOC Content of natural gas	=	1%	1%	1%	% VOC	Composition Data
[J]	CO Emission Factor	=	0.31	0.31	0.31	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-2 (Updated April 2015)
[K]	SO ₂ Emission Factor	=	0.0006	0.0006	0.0006	lb/MMBtu	AP-42 Table 1.4-2 (converted to lb/MMBtu)
[L]	NO _x Emission Rate	=	0.46	0.11	0.02	lb/hr	= [F] * [G]
[M]	VOC Emission Rate	=	0.06	0.01	0.003	lb/hr	= [A] / [E] * (1 - [H]) * [I]
[N]	CO Emission Rate	=	2.11	0.48	0.11	lb/hr	= [F] * [J]
[O]	SO ₂ Emission Rate	=	0.0040	0.0009	0.0002	lb/hr	= [F] * [K]
[P]	NO _x Emissions	=	2.02	0.46	0.10	TPY	= [L] * 8760/2000
[Q]	VOC Emissions	=	0.26	0.06	0.01	TPY	= [M] * 8760/2000
[R]	CO Emissions	=	9.23	2.12	0.48	TPY	= [N] * 8760/2000
[S]	SO ₂ Emissions	=	0.02	0.004	0.001	TPY	= [O] * 8760/2000
[T]	Volumetric CO ₂ Emissions ¹	=	59,021,660	13,529,335	3,048,455	$scf CO_2/year$	40 CFR Part 98, Equation W-20
[U]	Volumetric CH ₄ Emissions ¹	=	1,204,524	276,109	62,213	$scf CH_4/year$	40 CFR Part 98, Equation W-19
[V]	N ₂ O Emission factor for Natural Gas	=	0.0001	0.0001	0.0001	kg/MMBtu	40 CFR Part 98, Equation W-40
[W]	CO ₂ Emissions	=	3,422	784	177	TPY	40 CFR Part 98, Equation W-36
[X]	CH_4 Emissions	=	25.49	5.84	1.32	TPY	40 CFR Part 98, Equation W-36
[Y]	CH ₄ Global Warming Potential	=	25	25	25		40 CFR Part 98, Table A-1
[Z]	N_2O Emissions	=	0.0066	0.0015	0.0003	TPY	40 CFR Part 98, Equation W-40
[AA]	N_2O Global Warming Potential	=	298	298	298	-	40 CFR Part 98, Table A-1
[AB]	8	=	4,061	931	210	TPY	= [W] + [X] * [Y] + [Z] * [AA]
			7,001	<i>9</i> , 9 , 1	210	11 1	

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Flare Operational & Maintenance Flow Emissions

			Project Phoenix HP Cold Flare (1)	Project Phoenix LP Cold Flare (1)	West Warm Flare (1)		
Operat	ional & Maintenance Flow		Value	Value	Value	Units	Notes
[A]	Ethane Mass Flow	=	120,880	3,684,954	0	lb/yr	Engineering Analysis
[B]	Methane Mass Flow	=	51,100	7,300	0	lb/yr	Engineering Analysis
[C]	Natural Gas Mass Flow	=	1	0	0	lb/yr	Engineering Analysis
[D]	Propane Mass Flow	=	126,685	193,945	0	lb/yr	Engineering Analysis
[E]	Amine Mass Flow	=	0	0	159	lb/yr	Engineering Analysis
[F]	Ethane HHV	=	22,198	22,198	22,198	Btu/lb	Engineering Analysis
[G]	Methane HHV	=	23,811	23,811	23,811	Btu/lb	Engineering Analysis
[H]	Natural Gas HHV	=	22,500	22,500	22,500	Btu/lb	Engineering Analysis
[I]	Propane HHV	=	21,564	21,564	21,564	Btu/lb	Engineering Analysis
[J]	Amine HHV	=	16,636	16,636	16,636	Btu/lb	Engineering Analysis
[K]	Ethane Heating Duty	=	2,683	81,799	0	MMBtu/yr	= [A] * [F] /1000000
[L]	Methane Heating Duty	=	1,217	174	0	MMBtu/yr	= [B] * [G] /1000000
[M]	Natural Gas Heating Duty	=	0.03	0	0	MMBtu/yr	= [C] * [H] /1000000
[N]	Propane Heating Duty	=	2,732	4,182	0	MMBtu/yr	= [D] * [I] /1000000
[O]	Amine Heating Duty	=	0	0	3	MMBtu/yr	= [E] * [J] /1000000
[P]	Total Heating Duty	=	6,632	86,155	3	MMBtu/yr	= [K] + [L] + [M] + [N] + [O]
[Q]	Operating Hours	=	8,760	8,760	8,760	hrs/yr	Assumption
[R]	SPMT Heating Duty	=	0.76	9.84	0.00	MMBtu/hr	= [P] / [Q]

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Flare Operational & Maintenance Flow Emissions

<u>Flare E</u>	missions		Value	Value	Value	Units	Notes
[S]	NO _x Emission Factor	=	0.068	0.068	0.068	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-1
[T]	VOC Destruction Efficiency	=	98%	98%	98%	% DRE	Compliance with 40 CFR 60.18
[U]	VOC Content of natural gas	=	1%	1%	1%	% VOC	Composition Data
[V]	CO Emission Factor	=	0.31	0.31	0.31	lb/MMBtu	AP-42 Ch 13.5, Table 13.5-2 (Updated April 2015)
[W]	SO ₂ Emission Factor (Natural Gas Only)	=	0.0006	0.0006	0.0006	lb/MMBtu	AP-42 Table 1.4-2 (converted to lb/MMBtu)
[X]	NO _x Emission Rate	=	0.05	0.67	0.00	lb/hr	= [R] * [S]
[Y]	VOC Emission Rate	=	0.29	0.44	0.00	lb/hr	= ((([C] * [U]) + [D]) * (1 - [T])) / [Q]
[Z]	CO Emission Rate	=	0.23	3.05	0.00	lb/hr	= [R] * [V]
[AA]	SO ₂ Emission Rate	=	1.8E-09	0	0	lb/hr	= [W] * [M] / [Q] (Natural gas only)
[AB]	NO _x Emissions	=	0.23	2.93	0.00	TPY	= [X] * 8760/2000
[AC]	VOC Emissions	=	1.27	1.94	0.00	TPY	= [Y] * 8760/2000
[AD]	CO Emissions	=	1.03	13.35	0.00	TPY	= [Z] * 8760/2000
[AE]	SO ₂ Emissions	=	8.1E-09	0	0	TPY	= [AA] * 8760/2000
[AF]	Volumetric CO ₂ Emissions	=	6,978,338	90,989,617	2,485	$scf CO_2/year$	40 CFR Part 98, Equation W-20
uly 201	CO_2 density	=	0.0526	0.0526	0.0526	kg/scf	40 CFR Part 98 (t)
[AH]	CO ₂ Emissions	=	405	5,276	0.14	TPY	40 CFR Part 98, Equation W-36
[AI]	Volumetric CH ₄ Emissions	=	24,145	3,449	0	scf CH ₄ /year	40 CFR Part 98, Equation W-19
[AJ]	CH ₄ Density	=	0.0192	0.0192	0.0192	kg/scf	40 CFR Part 98 (t)
[AK]	CH ₄ Emissions	=	0.51	0.07	0.00	TPY	40 CFR Part 98, Equation W-36
[AL]	CH ₄ Global Warming Potential	=	25	25	25		40 CFR Part 98, Table A-1
[AM]	N ₂ O Emission Factor	=	0.0001	0.0001	0.0001	kg/MMBtu	40 CFR Part 98, Equation W-40
[AN]	N ₂ O Emissions	=	0.0007	0.0095	0.0000	TPY	40 CFR Part 98, Equation W-40
[AO]	N ₂ O Global Warming Potential	=	298	298	298		40 CFR Part 98, Table A-1
[AP]	CO ₂ e Emissions	=	418	5,280	0.14	TPY	= [AH] + [AK] * [AL] + [AN] * [AO]

Sunoco Partners Marketing & Terminals L.P. Project Phoenix July 2019 Wet Surface Air Cooler Systems

Table D-16: WSAC System Parameters

Parameter	Value
Number of Units	2
Design Water Flow Rate (gpm)	21,000
Design Water Flow Rate in	0
VOC-service (gpm)	0
Cooling Tower Drift Rate	0.0005
(% of circulating water)	0.0005
Total Dissolved Solids (ppm)	200
Cycles of Concentration Ratio	6
(tower/makeup water)	0
VOC EF (lb/MMgal)	0.7
PM ₁₀ Fraction	0.7763
PM _{2.5} Fraction	0.0024

Table D-17: WSAC Emission Summary

Parameter	PM ¹	PM_{10}^{2}	$PM_{2.5}^{2}$	VOC		
Hourly (lb/hr)	0.13	0.10	0.0003	0		
Daily (lb/day)	3.03	2.35	0.007	0		
Annual (tpy)	0.55	0.43	0.001	0		

¹ PM calculated based on flow rate, drift rate, and total dissolved solids.

² Reisman, J. and Frisbie, G., "Calculating Realistic PM10 Emissions From Cooling Towers."

Factors:

60 min/hr 8.345 water density (CWS) 8760 hr/yr 2000 lb/ton

Sunoco Partners Marketing & Terminals L.P. **Project Phoenix** July 2019 Wet Surface Air Cooler Systems Sunoco Partners Marketing & Terminals L.P. **Project Phoenix** July 2019 Wet Surface Air Cooler Systems

	Table D-1	8: Example from F	leisinan/ Phisble	aper			
	Eq2	Eq 3	Eq 4		Eq 7		-
EPRI Droplet Diameter (µm)	Droplet Volume (µm ³)	Droplet Mass (µg)	Particle Mass (Solids) (µg)	Solid Particle Volume (µm ³)	Solid Particle Diameter (µm)	EPRI % Mass Smaller	
10	524	5.24E-04	6.29E-07	0.29	0.817	0.000	
20	4189	4.19E-03	5.03E-06	2.29	1.634	0.196	PM2.
30	14137	1.41E-02	1.70E-05	7.72	2.452	0.226	0.24
40	33510	3.35E-02	4.02E-05	18.29	3.269	0.514	
50	65450	6.55E-02	7.86E-05	35.72	4.086	1.816	
60	113097	1.13E-01	1.36E-04	61.73	4.903	5.702	
70	179594	1.80E-01	2.16E-04	98.02	5.721	21.348	
90	381704	3.82E-01	4.58E-04	208.33	7.355	49.812	PM10
110	696910	6.97E-01	8.37E-04	380.36	8.989	70.509	77.63
130	1150347	1.15E+00	1.38E-03	627.84	10.624	82.023	
150	1767146	1.77E+00	2.12E-03	964.48	12.258	88.012	
180	3053628	3.06E+00	3.67E-03	1666.61	14.710	91.032	
210	4849048	4.85E+00	5.82E-03	2646.52	17.162	92.468	
240	7238229	7.24E+00	8.69E-03	3950.49	19.613	94.091	
270	10305995	1.03E+01	1.24E-02	5624.82	22.065	94.689	
300	14137167	1.41E+01	1.70E-02	7715.80	24.517	96.288	
350	22449298	2.25E+01	2.70E-02	12252.41	28.603	97.011	
400	33510322	3.35E+01	4.02E-02	18289.32	32.689	98.340	
450	47712938	4.77E+01	5.73E-02	26040.84	36.775	99.071	
500	65449847	6.55E+01	7.86E-02	35721.32	40.861	99.071	
600	113097336	1.13E+02	1.36E-01	61726.44	49.033	100.000	

Table D-18: Example from Reisman/Frisbie Paper

3.14159
1.000600
1,200 Test
2.2

Sunoco Partners Marketing & Terminals L.P. Project Phoenix

July 2019

Auxiliary Boiler Emissions

Table D-19: Project Phoenix Steam Demand

Project Phoenix	Steam Demand (lb/hr)
Dehydrator regeneration vaporizer	27,000
Amine stripper tower reboiler	9,300
Total Project Phoenix Steam Demand	36,300

Table D-20: Steam Demand by Project/Plan Approval

Project	Plan Approval	Steam Demand (lb/hr)
Project Mariner and Base Facility	23-0119	210,000
Project Mariner - Deethanizer	23-0119A	62,000
Natural Gasoline Project	23-0119B	53,000
Project Mariner - Cooling Tower	23-0119C	0
New Tanks Project	23-0119D	17,000
ETP Project Revolution and SXL Depropanizer Project	23-0119E	238,700
Storage Tank Update	23-0119F	0
Crude Storage	23-0119G	0
Flare Replacement (Warm Flare)	23-0119H	0
Methanol Removal Project	RFD 6484	2,292
Project Phoenix	23-0119J	36,300
Total MHIC Steam Demand		619,292

Sunoco Partners Marketing & Terminals L.P.

Project Phoenix

July 2019

Emission Reduction Credits

Table D-21: ERC Accounting

Plan Approval	VOC ERC (TPY)	NO _x ERC (TPY)
Aggregated Project	-315.69	-65.92
Plan Approval 23-0119B	34.65	0.00
Plan Approval 23-0119E	56.10	32.80
Plan Approval 23-0119F	17.77	0.00
Plan Approval 23-0119H	106.83	0.00
Remaining ERCs to be Surrendered	-100.34	-33.12

*Negative numbers indicate the amount of additional ERC Credits that have or will be surrendered. Positive numbers indicate previously surrendered credits.

APPENDIX E CONTEMPORANEOUS TABLES

July 2019

Table E-1Evaluation of Applicability of 40 CFR 52.21Facility Emission Aggregation Occurring Within 5 Years of ApplicationSPMT Marcus Hook Industrial Complex

	Source Description	Date	Emission Rates							
PA/RFD No.			NO ₂	SO ₂	CO	PM	PM ₁₀	H_2SO_4	Lead	CO ₂ e
			(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Marcus Hook Industrial Complex										
Pa23-0001AD	CO controls for 6 WWTA diesels	5/17/2012	0.44	0.53	-1.27	0.05	0.05			363.81
ERC Application	Shutdown of Delaware Sources (SRU1/SRU2, Ethylene Cooling Tower, 17-1P heater, 17-1P Cooling Tower)	11/5/2012	-29.29	-20.62	-17.52	-3.93	-3.93			-20,425
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016				-0.04	-0.04			
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016				0.15	0.15			
Pa23-0119F	Storage Tank Update Plan Approval	8/16/2016								
RFD 5865	Diesel Tanks and Pumps	8/29/2016	1.56		0.32	0.03				
Pa23-0119G	Crude Storage Plan Approval	Sept. 2016								
De Minimis	Mobile Thermal Oxidizer	10/3/2016								
De Minimis	Crude Pump	11/14/2016								
De Minimis	Spheres S-20 and S-21 Commissioning	4/10/2018	0.06	0.00	0.28	0.00	0.00	0.00	0.00	0
RFD 6991	Temporary Dock Flaring	4/12/2018	0.32	0.00	1.46	0.00	0.00	0.00	0.00	597
Pa23-0119H	Flare Replacement Project Plan Approval	4/13/2018	7.16	0.03	32.64	0.00	0.00	0.00	0.00	14,616
De Minimis	Source ID 118 Butane Tank TOOS	8/24/2018								
De Minimis	West Warm Flare Connections	3/22/2019	0.00		0.00					
Marcus Hook Industrial Complex 5-Year (extended) Sub-total		-19.75	-20.06	15.91	-3.73	-3.77	0.00	0.00	-4,848	

Contemporaneous Period Begins: 2012

Table E-2

Evaluation of Applicability of 25 PA Code §127.203(b)(1)(i) Facility Emission Aggregation for Consecutive 5 Calendar-Year Period SPMT Marcus Hook Industrial Complex

	Source Description		Emission Rates				
Permit No.		Date	NO _x	VOC			
			(tons/yr)	(tons/yr)			
	Marcus Hook Industrial Complex						
Pa23-0001AD	CO controls for 6 WWTA diesels	5/17/2012	0.44				
ERC Application	Shutdown of Delaware Sources (SRU1/SRU2, Ethylene Cooling Tower, 17-1P heater, 17-1P Cooling Tower)	11/5/2012	-29.29				
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016					
Pa23-0119F	Storage Tank Update Plan Approval ¹	8/16/2016		5.65			
RFD 5865	Diesel Tanks and Pumps	8/29/2016	1.56	0.01			
Pa23-0119G	Crude Storage Plan Approval	Sept. 2016		13.63			
De Minimis	Mobile Thermal Oxidizer	10/3/2016		1.00			
De Minimis	Crude Pump	11/14/2016		0.81			
De Minimis	Spheres S-20 and S-21 Commissioning	4/10/2018	0.06	0.55			
RFD 6991	Temporary Dock Flaring	4/12/2018	0.32	1.17			
Pa23-0119H	Flare Replacement Project Plan Approval ²	4/13/2018	7.16	58.23			
De Minimis	Source ID 118 Butane Tank TOOS	8/24/2018		1.00			
De Minimis	West Warm Flare Connections	3/22/2019	0.00	0.00			
Marcus Hook Industrial Complex 5-Calendar Year (extended) Sub-total			9.54	82.05			

Notes:

¹ The Storage Tank Update Plan Approval (23-0119F) is linked to Natural Gasoline Project because the VOC emissions limits set forth for Tanks 607, 609, and 611 in the Natural Gasoline Plan Approval (23-0119B) were revised. The total shown in this table is the total VOC emissions from the tanks not associated with the Natural Gasoline Plan Approval, without any offsets applied in order to allow for a total offset accounting during the aggregated project period.

² The Flare Replacement Project triggered NANSR requirements for ozone for the precursor VOC. SPMT provided VOC offsets for the project and contemporaneous emissions of VOC, however, the number shown in this table is the total VOC emissions from the project without the applied offsets in order to allow for a total offset accounting during the aggregated project period.

Project Date: 2016

Contemporaneous Period Begins: 2007

Table E-3

Evaluation of Applicability of 25 PA Code §127.203(b)(1)(ii) Facility Emission Aggregation Occuring Within 10 Years of Application Marcus Hook Industrial Complex

			Emission Rates				
Permit No.	Source Description	Date	NO _x	VOC			
			(tons/yr)	(tons/yr)			
Marcus Hook Industrial Complex							
eRFD 112	Inject water in CO boiler combustion zone	6/20/2007	-177.00				
Pa23-0001AA	12 - 3 New Cooling Tower 10/28/2009	10/28/2009					
Pa23-0001AD	CO controls for 6 WWTA diesels	5/17/2012	0.44				
ERC Application	Shutdown of Delaware Sources (SRU1/SRU2, Ethylene Cooling T	11/5/2012	-29.29				
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016					
Pa23-0119F	Storage Tank Update Plan Approval ¹	8/16/2016		5.65			
RFD 5865	Diesel Tanks and Pumps	8/29/2016	1.56	0.01			
Pa23-0119G	Crude Storage Plan Approval	Sept. 2016		13.63			
De Minimis	Mobile Thermal Oxidizer	10/3/2016		1.00			
De Minimis	Crude Pump	11/14/2016		0.81			
De Minimis	Spheres S-20 and S-21 Commissioning	4/10/2018	0.06	0.55			
RFD 6991	Temporary Dock Flaring	4/12/2018	0.32	1.17			
Pa23-0119H	Flare Replacement Project Plan Approval ²	4/13/2018	7.16	58.23			
De Minimis	Source ID 118 Butane Tank TOOS	8/24/2018		1.00			
De Minimis	West Warm Flare Connections	3/22/2019	0.00	0.00			
Marcus H	-196.75	82.05					

Notes:

¹ The Storage Tank Update Plan Approval (23-0119F) is linked to Natural Gasoline Project because the VOC emissions limits set forth for Tanks 607, 609, and 611 in the Natural Gasoline Plan Approval (23-0119B) were revised. The total shown in this table is the total VOC emissions from the tanks not associated with the Natural Gasoline Plan Approval, without any offsets applied in order to allow for a total offset accounting during the aggregated project period.

 2 The Flare Replacement Project triggered NANSR requirements for ozone for the precursor VOC. SPMT provided VOC offsets for the project and contemporaneous emissions of VOC, however, the number shown in this table is the total VOC emissions from the project without the applied offsets in order to allow for a total offset accounting during the aggregated project period.

Table E-4 Evaluation of Applicability of 25 PA Code §127.203a(a)(1)(i)(A) Facility Emission Aggregation Occurring Within 5 Years of Application SPMT Marcus Hook Industrial Complex

PA/RFD No.	Source Description	Date	PM _{2.5} Precursor Emission Rate NO _x (tons/yr)				
Marcus Hook Industrial Complex							
Pa23-0001AD	CO controls for 6 WWTA diesels	5/17/2012	0.44				
ERC Application	Shutdown of Delaware Sources (SRU1/SRU2, Ethylene Cooling Tower, 17-1P heater, 17-1P Cooling Tower)	11/5/2012	-29.29				
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016					
RFD 5597	15-2B Cooling Tower Expansion	4/11/2016					
Pa23-0119F	Storage Tank Update Plan Approval	8/16/2016					
RFD 5865	Diesel Tanks and Pumps	8/29/2016	1.56				
Pa23-0119G	Crude Storage Plan Approval	Sept. 2016					
De Minimis	Mobile Thermal Oxidizer	10/3/2016					
De Minimis	Crude Pump	11/14/2016					
De Minimis	Spheres S-20 and S-21 Commissioning	4/10/2018	0.06				
RFD 6991	Temporary Dock Flaring	4/12/2018	0.32				
Pa23-0119H	Flare Replacement Project Plan Approval	4/13/2018	7.16				
De Minimis	Source ID 118 Butane Tank TOOS	8/24/2018					
De Minimis	West Warm Flare Connections	3/22/2019	0.00				
	-19.75						

APPENDIX F FLARE VENDOR SPECIFICATION

July 2019

INTERPORTATION AND A STATE OF A

COMBUSTION John Zink Reference number: 83059-A2 Regarding the Flare System for ME-2X Dual 70K project Marcus Hook, PA

For the LP Flare:

Elevated Flares by their nature do not lend themselves to direct measurement of the products of combustion using conventional techniques. The industry standards for determination of destruction or combustion efficiency of elevated flares are based on the testing conducted by the US EPA and Chemical Manufacturers from 1983 to 1985 and published in EPA document" Evaluation of the Efficiency of Industrial Flares (Sept 1985). Based on these studies the US EPA concluded that properly designed and operated flares achieve greater than 98% combustion efficiency. The EPA promulgated regulations for flares (40CFR60.18 and 40 CFR 63.11(b)) that establish guidelines for exit velocity and minimum heating value for steam assisted, air assisted and non-assisted flares to ensure proper flame stability / destruction efficiency of flares. The emissions factors obtained during this testing are published in EPA document AP42. This has become the industry standard (worldwide) for the determination of destruction efficiency of flares. Flares designed within these guidelines have been assumed to provide minimum DRE of 98%. Recent studies by the EPA and other environmental enforcement agencies have concluded that there are numerous other factors that should be considered in order to ensure that a flare is operating at high destruction efficiency including over-steaming of steam assisted flares, overaeration of air assisted flares, high winds, and flame lift off. These studies also showed that operation at the "incipient smoke point" normally produced a DRE of 98% or better. Additionally, testing of some types of high pressure flares has indicated that this class of flare can provide consistently high combustion efficiency when proper staging control is used. It is therefore impossible to guarantee the destruction efficiency of a flare without defining all the possible flow conditions and operating conditions that the flare will be operated under.

For the HP Flare:

The proposed HP flare is designed to provide a minimum 98% hydrocarbon destruction efficiency when operated within the design guidelines. This minimum DRE is valid for flare gas containing a minimum 800 BTU/SCF net heating value and design minimum operating pressure of the HP burners. This DRE is based upon numerous US EPA certified tests of the proposed burners under similar heating value and operating pressure range. The burners used have proven to be > 99.5% DRE in most of test data we shall limit our DRE guarantee to 98% which is the requested value used for the permitting of new flare. Elevated Flares by their nature do not lend themselves to direct measurement of the products of combustion using conventional techniques. If validation of the destruction efficiency is requested testing for a single Indair arm could be offered in our test facility to prove the minimum DRE.

John Zink Company, LLC 11920 East Apache Tulsa, Oklahoma 74116 USA +1 832 300 2422

APPENDIX G COUNTY AND MUNICIPAL NOTIFICATIONS

July 2019

July 29, 2019

John P. McBlain, Chairman Delaware County Council 201 West Front Street Media, PA 19063

RE: Sunoco Partners Marketing & Terminals L.P. – Marcus Hook County Notification

Dear Mr. McBlain,

In accordance with the Commonwealth of Pennsylvania's Administrative Code, Section 1905-A, please be advised that Sunoco Partners Marketing & Terminals, L.P., located in the Borough of Marcus Hook, Delaware County, Pennsylvania, has submitted an Application for Plan Approval in order to construct and operate ethane storage tanks and associated equipment at its Marcus Hook Industrial Complex.

This letter serves to satisfy the requirements in DEP 127.43a for municipal and county notification upon application for a Plan Approval Application. A 30 day comment period begins upon receipt of this notice.

Please contact me at 610-670-3297 if you require any additional information on this matter.

Sincerely,

Jedawerne

Jed A. Werner, Air Permitting Manager

July 29, 2019

Josephine M. Laird President Borough Council Borough of Marcus Hook 10th and Green Street Marcus Hook, Pennsylvania, 19061

RE: Sunoco Partners Marketing & Terminals L.P. – Marcus Hook Municipal Notification

Dear Ms. Laird:

In accordance with the Commonwealth of Pennsylvania's Administrative Code, Section 1905-A, please be advised that Sunoco Partners Marketing & Terminals, L.P., located in the Borough of Marcus Hook, Delaware County, Pennsylvania, has submitted an Application for Plan Approval in order to construct and operate ethane storage tanks and associated equipment at its Marcus Hook Industrial Complex.

This letter serves to satisfy the requirements in DEP 127.43a for municipal and county notification upon application for a Plan Approval Application. A 30 day comment period begins upon receipt of this notice.

Please contact me at 610-670-3297 if you require any additional information on this matter.

Sincerely,

Jedawerne

Jed A. Werner, Air Permitting Manager