

Commonwealth of Pennsylvania State Board for Certification of Water and Wastewater Systems Operators

2/1/2007

Formulas, Conversions, and Common Scientific Units

ABC Formulas, Conversions & Abbreviations

DEP Dry and Liquid Chemical Feed Diagrams

Deleted: ¶ Unit Cancellation Steps Formatted: Left

Units of Weight, Volume,Time, Density, Concentration & Flow

Formulas & Conversions

<u>Formulas</u>

•	Deleted: The symbol \prod = Pie = 3.14
AREA	Formatted: Font: Bold
<u>Area of Rectangle = (Length) (Width)</u>	Deleted: Alkalinity = (mL of Titrant) (Acid Normality) (50,000)¶ mL of Sample¶
<u>Area of Triangle = (Base) (Height)</u>	1
Area of Circle = ($\underline{0}$.785) (Diameter ²) or (3.14) (Radius ²)	Deleted: (
Area of Cylinder Surface = $[(0.785) (Diameter^2)] + [3.14] (Diameter) (Height)]$	Deleted: ([]
<u>Circumference of Circle = (3.14) (Diameter) or $(2) 3.14$ (Radius)</u>	
Curved Surface Area of a Cylinder = 2 (3.14) (Radius) (Height)	Deleted: (П
End Surface Areas of a Cylinder (both ends) = $2(3.14)$ (Radius ²)	Deleted: a
	Deleted: (П
<u>VOLUME</u>	Formatted: Font: Bold
Volume of Rectangular Tank (ft^3) = (Length) (Width) (Height)	Deleted: 1 Volume of a Cylinder = (Π) (Radius ²) (Height)
Volume of Cone $(ft^3) = (1/3) (0.785)$ (Diameter ²) (Height)	
<u>Volume of Cylinder (ft³) = (0.785) (Diameter²) (Height) or (3.14) (Radius²) (Height)</u>	Formatted: Font: 11 pt
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³)	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1.000,000	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ 2¶
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000) gal/MG) / (liquid, mg/mL)(24hr/day)(60 min/hr)	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = ([]) (Diameter) or (2) ([]) (Radius)¶
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000) gal/MG) / (liquid, mg/mL)(24hr/day)(60 min/hr) Chlorine Demand (lbs/day) = Ibs of Chlorine Fed/day = [(Chlorine Residual mg/l) (Flow, MGD) (8 34)]	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = ([]) (Diameter) or (2) ([]) (Radius)¶ Formatted: No underline
Volume of Cylinder (ft ²) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1.000,000 gal/MG) / (liquid, mg/mL)(24hr/day)(60 min/hr) Chlorine Demand (lbs/day) = lbs of Chlorine Fed/day – [(Chlorine Residual, mg/l) (Flow, MGD) (8.34)] Detention Time (minutes) = Volume of Tank (gallons) Influent Flow (gpm)	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = ([]) (Diameter) or (2) ([]) (Radius)¶ Formatted: No underline
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000) gal/MG) / (liquid, mg/mL)(24hr/day)(60 min/hr) Chlorine Demand (lbs/day) = lbs of Chlorine Fed/day – [(Chlorine Residual, mg/l) (Flow, MGD) (8.34)] Detention Time (minutes) = Volume of Tank (gallons) Influent Flow (gpm) Discharge = Volume Time	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = ([]) (Diameter) or (2) ([]) (Radius)¶ Formatted: No underline
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000) gal/MGi / (liquid, mg/mL)(24hr/day)(60 min/hr) Chlorine Demand (lbs/day) = lbs of Chlorine Fed/day - [(Chlorine Residual, mg/l) (Flow, MGD) (8.34)] Detention Time (minutes) = Volume of Tank (gallons) Influent Flow (gpm) Discharge = Volume Time	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = (∏) (Diameter) or (2) (∏) (Radius)¶ Formatted: No underline Deleted: age Formatted: Underline
Volume of Cylinder (ft ³) = (0.785) (Diameter ²) (Height) or (3.14) (Radius ²) (Height) Volume of a Treatment Vessel, gal = Vol (ft ³) (7.48 gal/ ft ³) WATER AND WASTEWATER Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample Chemical Feed Pump Setting (mL/min) = (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000 gal/MG) / (liquid, mg/mL)(24hr/day)(60 min/hr) Chlorine Demand (lbs/day) = lbs of Chlorine Fed/day – [(Chlorine Residual, mg/l) (Flow, MGD) (8.34)] Detention Time (minutes) = Volume of Tank (gallons) Influent Flow (gpm) Discharge = Volume Time Dose, mg/L = Feed Rate, lbs/day Flow, MGD X 8.34 lbs/mg/L/MG	Formatted: Font: 11 pt Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt Formatted: Font: Bold Deleted: Area of Rectangle = (Length) (Width)¶ ¶ Deleted: Area of Triangle = (Base) (Height)¶ Circumference of Circle = (∏) (Diameter) or (2) (∏) (Radius)¶ Formatted: No underline Deleted: age Formatted: Underline Deleted: lbs/day = (mg/L) (8.34) (MGD)

Dry Chemical, lbs. =	water (lbs)		
	{100% / Che	emical (%)) - 1	

Efficiency, $\% = (In - Out) \times 100$ In _____

Feed Rate, lbs/day = (Plant Capacity, MGD) (Dosage, mg/L) (8.34 lbs/gal)

Filter Backwash rate = $\underline{Flow}(gpm)$ Filter surface area (ft^2)

Food/Microorganism Ratio = Influent BOD, lbs/day Aeration System MLVSS, lbs

Gallons/Capita/Day = Gallons Per Day Population

Hardness = (mL of Titrant)(1,000) (for 0.2 N EDTA) mL of Sample

Horsepower (hp):

theoretical hp = (Flow, gpm) (Total Water Head, ft) 3960

brake hp = theoretical hppump efficiency

Hydraulic Surface Loading Rate $(gpd/ft^2) = Flow Rate (gpd)_2$ Surface Area (ft²)

Loading rate (lbs/day) = (Concentration, mg/l) (Flow, MGD) (8.34)

Mean Cell Residence Time (MCRT): (lbs of Suspended Solids in Aeration System) (lbs of Suspended Solids Wasted/Day + lbs of Suspended Solids Lost in Effluent/Day)

Organic Loading Rate = Organic Load, lbs BOD/day Volume in 1000 ft³

Oxygen Uptake = <u>Oxygen Usage (mg/L)</u> Time (min)

Population Equivalent = (Flow, MGD) (BOD, mg/L) (8.34 lbs/gal) 0.18 lbs BOD/day/person

Reduction in Flow, % = (Original Flow - Reduced Flow) (100%)Original Flow

Slope = Drop or Rise Distance

Formatted: Underline
Formatted: Underline
Deleted: Mass

Deleted: Mass
Deleted: (100%) May substitute weight for mass
Deleted:
Deleted: Mass

Sludge Volume Index = <u>(Settleable Solids, %) (10,000)</u> MLSS, mg/L	
Solids Applied (liquid), lbs/day = (Flow, MGD) (Concentration, mg/l) (8.34 lbs/gal)	
Solids Loading, lbs/day/sq ft = <u>Solids Applied, lbs/day</u> Surface Area, sq ft	
Solids, mg/L = $(\underline{\text{Dry Solids, grams}}) (1,000,000)$ mL of Sample	
Surface Loading Rate $(GPD/ft^2) - \frac{Flow Rate, GPD}{Surface Area, ft^2}$	
Suspended Solids Under Aeration = (mlss, mg/L)(Tank volume, million gallons)(8.34 lbs/gal)	Deleted:
<u>UV Absorbance (A) = Log(100%/%T) where T = I/I_o</u> <u>I = Intensity at sensor (milliwatts per square centimeter)</u> <u>I_o = Intensity at source (milliwatts per square centimeter)</u> <u>T = Transmittance</u>	Formatted: Indent: First line: 36 pt
Velocity = $\frac{\text{Flow}}{\text{Area}}$ or $\frac{\text{Distance}}{\text{Time}}$	
Volatile Solids, $\% = (Dry Solids - Ash Solids) (100\%)$	Deleted: ¶
	Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt
Waste Milliequivalents = (mL) (Normality)	Deleted: ¶ ¶
Waste Normality = <u>(Titrant Volume) (Titrant Normality)</u> Note: Volumes are in same units Sample Volume	["] Volume of Rectangular Tank (ft ³) = (Length) (Width) (Height)¶ ¶
Weir Overflow Rate = $\underline{Flow}(\underline{gpd})$	Volume of Cone (ft^3) = (1/3) (.785) (Diameter ²) (Height)¶
Weir Length, (ft)	"Volume of Cylinder (ft^3) = (.785) (Diameter ²) (Height) or ¶ (II) (Radius ²) (Height) ¶
Weight in lbs = gallons X Specific Gravity X 8.34 lbs/gal	Deleted: Volume, gal = Vol (ft^3) (7.48 gal/ ft^3)¶

Conversion Factors:

1 acre = 43,560 square	are feet	1 horsepower $= 0.746$ kilowatts
1 cubic foot = 7.48 G	allons	1 million gallons per day $= 694$ gallons per minute
1 foot = 0.305 meter	rs	1 pound $= 0.454$ kilograms
1 gallon = 3.79 liter	5	1 pound per square inch = 2.31 feet of water
1 gallon = 8.34 pour	nds	Degrees Celsius = (Degrees Fahrenheit $- 32$) (5/9)
1 grain per gallon = 1	7.1_mg/L	Degrees Farenheit = (Degrees Celsius) * 1.8 + 32
1 mg/l = 1 ppm		1 Ft of water column = 0.43 psi

Abbreviations:

Biochemical Oxygen Demand
feet
gallons per day
grains per gallon
gallons per minute
pounds
milligrams per Liter
million gallons per day
milliliter
mixed liquor suspended solids
mixed liquor volatile suspended solids
parts per million

Procedure: Fill in known data; put a question mark (?) for the value of the unknown data; convert all data to the units on the side where the (?) was placed and fill in the values; use unit cancellation to solve for the unknown.

Procedure: Fill in known data; put a question mark (?) for the value of the unknown data; convert all data to the units on the side where the (?) was placed and fill in the values; use unit cancellation to solve for the unknown.

				Deleted: Unit Cancellation Steps
UNITS OF WEIGHT			¶ Sten 1: List unknown data as a	
English		Metric		question mark (?) including units, followed by an equals sign (=).¶
pound - Ib			gram - g milligram - mg kilogram - kg	Sept 2: Place data with same numerator unit to the right of the equal sign followed by a multiplication sign.¶
	CONVER	SIONS		denominator unit, next place data with
Metric/Metric			Metric/English	¶ Step 4: Continue to place data into
1000 mg = 1 g or 100 1000 gm = 1 kg or 10	00 mg/g 000 g/kg	1 ll 1 kg	b = 454 g or 454 g/lb = 2.2 lbs or 2.2 lbs/kg	equation to systematically cancel all unwanted units until only the unknown units remain.¶ ¶
	UNITS OF 1	VOLUME		numerator values, multiply all denominator values; then divide numerator by the denominator.)¶ ¶ <sp>I<sp>Example: ? lbs = 1x 1 g x 3785 mL = 8.34 lbs ¶. gal 454 g. mL 1</sp></sp>
English	English		Metric	── gal¶ ¶
gallon - gal million gallon - Mg cubic feet - cu f	gallon - gal ion gallon - Mgal ubic feet - cu ft		liter - L milliliter - mL	¶ Helpful Hints:¶ ¶ <u>Numerator</u> ¶ Denominator¶
CONVERSIONS			Vertical format: 5 gal = 5 gal¶	
Metric/Metric	Metric/En	glish	English/English	¶ 1 g = 1000 mg is written: <u>1 g</u>
1000 mL = 1 liter or 1000 mL/L	gal = 3.785 L o 1 gal = 3785 m mL/ga	r 3.785 L/gal ıL or 3785 ıl	7.48 gal = 1 cu ft or 7.48 gal/cu ft	

UNITS OF TIME		
day - day	minute - min	
hour - hr	hr second - sec	
CONVERSIONS		
1 day = 24 hr or 24 hr/day 1 hr = 60 min or 60 min/hr	1 min = 60 sec or 60 sec/min 1 day = 1440 min or 1440 min/day	

UNITS OF DENSITY		
English	Metric	
lbs/gal	kg/L	
lbs/cu ft	g/mL	
THE DENSITY OF WATER		
English	Metric/Metric	
8.34 lbs/gal	1 kg/L	
62.4 lbs/cu ft	1 g/mL	

UNITS OF CONCENTRATION		
English	Metric	
lbs/gal	mg/L	
CONVERSION		
1 lb/gal = 120,000 mg/L		

UNITS OF FLOW		
English	Metric	
gallons per minute - gal/min - GPM gallons per day - gal/day - GPD million gallons per day - Mgal/day - MGD cubic feet per second - cu ft/sec - CFS	milliliters per minute - mL/min	
English/English	English/Metric	
1 MGD = 694 GPM or 694 GPM/MGD 1 MGD = 1.55 CFS or 1.55 CFS/MGD	1 gal/day = 2.63 mL/min	