Commonwealth of Pennsylvania
State Board for Certification of Water and Wastewater Systems Operators

Formulas, Conversions, and Common Scientific Units

ABC Formulas,
Conversions
\& Abbreviations

1.

Units of Weight, Volume,Time, Density, Concentration \& Flow

Formulas \& Conversions

Formulas

	Deleted: The symbol $\Pi=$ Pie $=3.14$
AREA	Formatted: Font: Bold
	Deleted: Alkalinity = (mL of Titrant)
$\underline{\text { Area of Rectangle }=\text { (Length })(\text { Width })}$	(Acid Normality) $(50,000)$ I mL of Sampleđ
$\underline{\text { Area of Triangle }=(\text { Base })(\text { Height })}$	9
Area of Circle $=(\underline{0} .785)\left(\right.$ Diameter $\left.^{2}\right)$ or (3.14) $\left(\right.$ Radius $\left.^{2}\right)$	Deleted: (Π
Area of Cylinder Surface $=\left[(\underline{0} .785)\left(\right.\right.$ Diameter $\left.\left.^{2}\right)\right]+[$ 3.14) $($ Diameter $)($ Height $)]$	Deleted: (Π
$\underline{\text { Circumference of Circle }=(3.14)(\text { Diameter }) \text { or (2) 3.14) (Radius) }}$	
Curved Surface Area of a Cylinder $=2$ (3.14) (Radius) (Height)	Deleted: (Π
End Surface Areas of a Cylinder (both ends) = 2 (3.14) (Radius ${ }^{2}$)	Deleted: a
	Deleted: (П)
VOLUME	Formatted: Font: Bold
$\underline{\text { Volume of Rectangular Tank }\left(\mathrm{ft}^{3}\right)=\text { (Length) (Width) (Height) }}$	Deleted: ${ }^{7}$ Volume of a Cylinder $=(\Pi)\left(\right.$ Radius $\left.{ }^{2}\right)$ (Height)
Volume of Cone (ft^{3}) $=(1 / 3)(0.785)\left(\right.$ Diameter $\left.{ }^{2}\right)($ Height $)$	
Volume of Cylinder (ft^{3}) $=\left(0.785\right.$) (Diameter ${ }^{2}$) (Height) or (3.14) (Radius ${ }^{2}$) (Height)	Formatted: Font: 11 pt
$\underline{\text { Volume of a Treatment Vessel, gal }=\operatorname{Vol}\left(\mathrm{ft}^{3}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)}$	Formatted: Normal, Indent: Left: 0 pt, First line: 0 pt
WATER AND WASTEWATER	Formatted: Font: Bold
$\frac{\text { Alkalinity }=(\mathrm{mL} \text { of Titrant })(\text { Acid Normality })(50,000)}{\mathrm{mL} \text { of Sample }}$	Deleted: Area of Rectangle = (Length) (Width) $!$
Chemical Feed Pump Setting $(\mathrm{mL} / \mathrm{min})=($ Flow, MGD $)($ Dose, $\mathrm{mg} / \mathrm{L})(3.785 \mathrm{~L} / \mathrm{gal})(1,000,000$ gal/MG) / (liquid, $\mathrm{mg} / \mathrm{mL})(24 \mathrm{hr} /$ day $)(60 \mathrm{~min} / \mathrm{hr})$	\qquad
```Chlorine Demand (lbs/day)= lbs of Chlorine Fed/day - [(Chlorine Residual, mg/l) (Flow, MGD) (8.34)]```	Formatted: No underline
Detention Time (minutes) = Volume of Tank (gallons)	
Influent Flow (gpm)	
Discharge $=\underline{\text { Volume }}$	
$\overline{\text { Time }}$	Deleted: age
	Formatted: Underline
$\frac{\text { Dose }_{n}, \mathrm{mg} / \mathrm{L}=\underset{\text { Feed Rate, lbs } / \text { day }}{\text { Flow, MGD X } 8.34 \mathrm{lbs} / \mathrm{mg} / \mathrm{L} . / \mathrm{MG}}}{}$	$\begin{aligned} & \begin{array}{l} \text { Deleted: } \mathrm{lbs} / \mathrm{day}=(\mathrm{mg} / \mathrm{L})(8.34) \\ (\mathrm{MGD}) \end{array} \end{aligned}$
	Formatted: Underline

```
Dry Chemical, lbs. = water (lbs)
Efficiency, % = (In-Out) X 100
 #
 Feed Rate, lbs/day = (Plant Capacity, MGD) (Dosage, mg/L) (8.34 lbs/gal)
Filter Backwash rate = Flow (gpm)
 Filter surface area (ft }\mp@subsup{}{}{2}\mathrm{)
Food/Microorganism Ratio = Influent BOD, lbs/day
 Aeration System MLVSS, lbs
 Gallons/Capita/Day = Gallons Per Day
 Population
 Hardness = (mL of Titrant) (1,000)(for 0.2 N EDTA)
 mL of Sample
 Horsepower (hp):
 theoretical hp = (Flow, gpm)(Total Water Head, ft)
 3960
 brake hp = theoretical hp
 pump efficiency
 Hydraulic Surface Loading Rate (gpd/ft }\mp@subsup{}{}{2})=\underline{\mathrm{ Flow Rate (gpd)}
 Surface Area (ft')
 Loading rate (lbs/day) = (Concentration, mg/l) (Flow, MGD) (8.34)
 Mean Cell Residence Time (MCRT):
 (lbs of Suspended Solids in Aeration System)
 (lbs of Suspended Solids Wasted/Day + lbs of Suspended Solids Lost in Effluent/Day)
 Organic Loading Rate = Organic Load, lbs BOD/day
 Volume in 1000 ft }\mp@subsup{}{}{3
 Oxygen Uptake = Oxygen Usage (mg/L)
 Time (min)
 Population Equivalent = (Flow, MGD) (BOD, mg/L)(8.34 lbs/gal)
 0.18 lbs BOD/day/person
 Reduction in Flow, % = (Original Flow - Reduced Flow) (100%)
 Original Flow
 Slope = Drop or Rise
 Distance
```

Sludge Volume Index $=($ Settleable Solids, \%) (10,000)
MLSS, mg/L

Solids Applied (liquid), lbs/day $=($ Flow, MGD) $($ Concentration, $\mathrm{mg} / \mathrm{l})(8.34 \mathrm{lbs} / \mathrm{gal})$
Solids Loading, lbs/day/sq $\mathrm{ft}=\underline{\text { Solids Applied, lbs/day }}$

$$
\text { Surface Area, } \mathrm{sq} \mathrm{ft}
$$

Solids, $\mathrm{mg} / \mathrm{L}=(\underline{\text { Dry Solids, grams })}(1,000,000)$
mL of Sample
Surface Loading Rate $\left(\mathrm{GPD} / \mathrm{ft}^{2}\right)$ - Flow Rate, GPD Surface Area, $\mathrm{ft}^{2}$

Suspended Solids Under Aeration $=(\mathrm{mlss}, \mathrm{mg} / \underline{\mathrm{L}})($ Tank volume, million gallons $)(8.34 \mathrm{lbs} / \mathrm{gal})$
Deleted: 1

UV Absorbance $(\mathrm{A})=\log (100 \% / \% \mathrm{~T})$ where $\mathrm{T}=\mathrm{I} / \mathrm{I}_{0}$
$\mathrm{I}=$ Intensity at sensor (milliwatts per square centimeter) Formatted: Indent: First line: 36 pt $\underline{\underline{1}}$ 으응 T=Transmittance

Velocity $=\underline{\text { Flow }}$ or Distance
Area Time


## Conversion Factors:

1 acre $=43,560$ square feet	1 horsepower $=0.746$ kilowatts
1 cubic foot $=7.48$ Gallons	1 million gallons per day $=694$ gallons per minute
1 foot $=0.305$ meters	1 pound $=0.454$ kilograms
1 gallon $=3.79$ liters	1 pound per square inch $=2.31$ feet of water
1 gallon $=8.34$ pounds	Degrees Celsius $=($ Degrees Fahrenheit -32$)(5 / 9)$
1 grain per gallon $=17.1 _\mathrm{mg} / \mathrm{L}$	Degrees Farenheit $=($ Degrees Celsius $) * 1.8+32$
$1 \mathrm{mg} / \mathrm{l}=1 \mathrm{ppm}$	1 Ft of water column $=0.43 \mathrm{psi}$

## Abbreviations:

BOD	Biochemical Oxygen Demand
ft	feet
gpd	gallons per day
gpg	grains per gallon
gpm	gallons per minute
lbs	pounds
$\mathrm{mg} / \mathrm{L}$	milligrams per Liter
MGD	million gallons per day
mL	milliliter
MLSS	mixed liquor suspended solids
MLVSS	mixed liquor volatile suspended solids
ppm	parts per million

## CHEMICAL FEED CALCULATION DIAGRAM DRY FEED



Procedure: Fill in known data; put a question mark (?) for the value of the unknown data; convert all data to the units on the side where the (?) was placed and fill in the values; use unit cancellation to solve for the unknown.

## CHEMICAL FEED CALCULATION DIAGRAM

## LIQUID FEED



Procedure: Fill in known data; put a question mark (?) for the value of the unknown data; convert all data to the units on the side where the (?) was placed and fill in the values; use unit cancellation to solve for the unknown.


UNITS OF TIME	
day - day   hour -hr	minute -min   second -sec
CONVERSIONS	
1 day $=24 \mathrm{hr}$ or $24 \mathrm{hr} / \mathrm{day}$   $1 \mathrm{hr}=60 \mathrm{~min}$ or $60 \mathrm{~min} / \mathrm{hr}$	$1 \mathrm{~min}=60 \mathrm{sec}$ or $60 \mathrm{sec} / \mathrm{min}$   1 day $=1440 \mathrm{~min}$ or $1440 \mathrm{~min} /$ day


UNITS OF DENSITY		
English		Metric
$\mathrm{lbs} / \mathrm{gal}$	$\mathrm{kg} / \mathrm{L}$	
$\mathrm{lbs} / \mathrm{cu} \mathrm{ft}$		$\mathrm{g} / \mathrm{mL}$
THE DENSITY OF WATER		
English		Metric $/$ Metric
$8.34 \mathrm{lbs} / \mathrm{gal}$	$1 \mathrm{~kg} / \mathrm{L}$	
$62.4 \mathrm{lbs} / \mathrm{cu} \mathrm{ft}$		$1 \mathrm{~g} / \mathrm{mL}$


UNITS OF CONCENTRATION		
English		Metric
$\mathrm{lbs} / \mathrm{gal}$	$\mathrm{mg} / \mathrm{L}$	
CONVERSION		
$1 \mathrm{lb} / \mathrm{gal}=120,000 \mathrm{mg} / \mathrm{L}$		

## UNITS OF FLOW

English	Metric
gallons per minute - gal/min - GPM gallons per day - gal/day - GPD million gallons per day - Mgal/day - MGD cubic feet per second - cu ft/sec - CFS	milliliters per minute - mL/min
*CONVERSIONS	
English/English	English/Metric
1 MGD $=694$ GPM or 694 GPM/MGD   1 MGD = 1.55 CFS or 1.55 CFS/MGD	$1 \mathrm{gal} /$ day $=2.63 \mathrm{~mL} / \mathrm{min}$

