Drive Electric PA Coalition July 21, 2022

THE RECELL CENTER: ADVANCED BATTERY RECYCLING

JEFF SPANGENBERGER

Argonne National Laboratory Group Lead, Materials Recycling R&D Director, The ReCell Center

WHAT IS IN A BATTERY?

	Lithium	Z3 IDS	
	Nickel	115 lbs	
	Cobalt	38 lbs	e-
	Manganese	36 lbs	
Parts of a 100kWh	Copper foil	43 lbs	
NMC622 Battery	<u>Anode</u> Graphite	189 lbs	lector
(and how much is in	Alum. Foil	19 lbs	0
an electric vehicle)	Electrolyte	79 lbs	nt O
	Separator	6 lbs	re

Cathode

TOTAL 1102 lbs

Bal. of pack 554 lbs

WE NEED TO MINE A LOT OF MINERALS

	Li	Ni	Со
For global adoption (kt) ^{1,2}	10,500	52,000	17,400
US reserve (kt) ³	750	340	69
World reserve (kt) ³	22,000	95,000	7,600

1. Based on 100kWh NMC622 battery from BatPaC 5.0 8March2022

2. Assuming 1 billion electric vehicles worldwide

3. USGS Mineral Commodity Summaries 2022

SETTING THE STAGE

Projected Global Spent EV Battery Volume

(ANL projection based on IEA global PEV projection)

CURRENT PROCESSING

- Recycling lithium-ion batteries is possible today
- The process technologies are mature
 - Hydro
 - Pyro
- There are pros and cons to all process types, but they are all better than landfilling

THE RECELL CENTER

VEHICLE TECHNOLOGIES OFFICE

Purpose

- Foster the continued improvement of cost-effective, environmentally sound processes to recycle lithium-ion batteries
- Bring together experts from all battery recycling areas and bridge the gaps
- Efficiently address the many challenges that face a successful advanced battery recycling infrastructure

Outcome

- Minimize use of the earth's limited resources, reduce energy consumption and increase our national security
- Provide stability to the battery supply chain
- Drive battery pack costs down to DOE's \$80/kWh usable energy goal

THE RECELL CENTER'S MISSION

<u>Decrease the cost of recycling lithium-ion batteries</u> to ensure future supply of critical materials and decrease energy usage compared to raw material production

VEHICLE TECHNOLOGIES OFFICE

DOE VEHICLE TECHNOLOGIES OFFICE BIGGER PICTURE

ENERGY Energy Penewatre Energy VEHICLE TECHNOLOGIES OFFICE Courtesy Vehicle Technologies Office of DOE

RECELL HAS FOUR FOCUS AREAS

Binder Removal . Cathode/ Cathode . Separation Relithiation . DIRECT OTHER Cathode CATHODE . MATERIAL RECOVERY Upcycling Impurity Impact . **Cross Cutting Projects** DESIGN MODELING FOR AND SUSTAINABILITY ANALYSIS Cell Design for . Rejuvenation

Θ

- Cell Shredding
 - Electrode Delamination

.

.

- Anode/ Cathode Separation
 - Electrolyte Component Recovery

- EverBatt (TEA/LCA)
- LIBRA (Supply Chain Modeling)

ADVANCED BATTERY RECYCLING

DIRECT RECYCLING

Typical Direct Recycling Process Flow

- Multiple processes investigated to mitigate risk
- Continual review of new project ideas
- End projects that are not showing promise in cost and performance
- These unit operations can benefit other recycling processes

EVERBATT MODEL FLOW

EverBatt breaks down and evaluates each stage of the battery's lifecycle providing the opportunity to compare each stage's cost and environmental impact to the overall impacts

ENERGY Energy Efficiency 8 Renewable Energy Vehicle Technologies office

EVERBATT DATA OUTPUT

Model output is consistent between lifecycle stages

Recycle						
0 0	Pyro	Hydro	Direct	Custom		
Cost per kg cell recycled	\$	\$	\$			
Energy use in MJ per kg œl	l recycled	te au				
Total Energy	15.959	20.987	6.494			
Water use in gallon	5.3	0.5	1.5			
Total Emissions in g per kg	cell recycled	(4. 89) 197				
VOC	0.342	0.333	0.098			
CO	1.688	1.43 9	0.421			
NOx	5.478	2.700	0.789			
PM10	0.248	0.228	0.107			
PM2.5	0.208	0.207	0.076			
SOx	17.297	22.332	0.765			

Other outputs include:

* Example data is from hypothetical processes and will vary depending on process specifics

Energy from fossil fuels, coal, natural gas and petroleum Total emissions from BC, OC, CH_4 , N_2O , CO_2 , CO_2 (w/C in VOC &CO), and GHGs

FACILITIES

Center accomplishments - cont'd

- ReCell Laboratory Space
- Equipment
 - Screener
 - Magnet
 - Froth column
 - Calciners
 - Powders hood
 - Sink/float separation
 - Aspirator
 - CSTR

Energy Efficiency 8 VEHICLE TECHNOLOGIES OFFICE

Courtesy Argonne

RECELL INDUSTRY COLLABORATION MEETING

November 2019

134 people from 76 organizations

Provided an opportunity for ReCell and industry stakeholders to exchange challenges and ideas.

The meeting included stakeholders from every corner of the vehicle battery value chain

Potential for November 2022 meeting

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

E-Mail: jspangenberger@anl.gov Website: www.recellcenter.org